• Aucun résultat trouvé

Effect of reverse osmosis concentration coupled with drying processes on polyphenols and antioxidant activity obtained from Tectona grandis leaf aqueous extracts

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of reverse osmosis concentration coupled with drying processes on polyphenols and antioxidant activity obtained from Tectona grandis leaf aqueous extracts"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01982717

https://hal.archives-ouvertes.fr/hal-01982717

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Effect of reverse osmosis concentration coupled with

drying processes on polyphenols and antioxidant activity

obtained from Tectona grandis leaf aqueous extracts

Emmanuel N. Koffi, Emmanuelle Meudec, Félix A. Adjé, Paul R. Lozano,

Yves F. Lozano, Yves-Alain Bekro

To cite this version:

Emmanuel N. Koffi, Emmanuelle Meudec, Félix A. Adjé, Paul R. Lozano, Yves F. Lozano, et al.. Effect

of reverse osmosis concentration coupled with drying processes on polyphenols and antioxidant activity

obtained from Tectona grandis leaf aqueous extracts. Journal of Applied Research on Medicinal and

Aromatic Plants, Elsevier, 2015, 2 (2), pp.54-59. �10.1016/j.jarmap.2015.03.001�. �hal-01982717�

(2)

ContentslistsavailableatScienceDirect

Journal

of

Applied

Research

on

Medicinal

and

Aromatic

Plants

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / j a r m a p

Effect

of

reverse

osmosis

concentration

coupled

with

drying

processes

on

polyphenols

and

antioxidant

activity

obtained

from

Tectona

grandis

leaf

aqueous

extracts

Emmanuel

N.

Koffi

a,∗

,

Emmanuelle

Meudec

b

,

Félix

A.

Adjé

c

,

Paul

R.

Lozano

d

,

Yves

F.

Lozano

d

,

Yves-Alain

Bekro

a

aUniversitéNanguiAbrogoua,LaboratoiredeChimieBioOrganiqueetdeSubstancesNaturelles(LCBOSN),02BP801Abidjan02,Cote

d’Ivoire

bINRA,UMRSPO(Sciencespourl’œnologie),PlateformePolyphenols,34060Montpelliercedex1,France

cINP-HB,LaboratoiredeprocédésIndustriels,deSynthèse,del’EnvironnementetdesEnergiesNouvelles(LAPISEN),Yamoussoukro,Cote

d’Ivoire

dCIRAD,UMR-110INTREPID(INTensificationRaisonnéeetEcologiquepourunePiscultureDurable),TAB110-16,73rueJ.F.Breton,

34098Montpelliercedex5,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19October2014 Accepted2March2015 Availableonline25April2015 Keywords:

Tectonagrandisleafextracts Reverseosmosisconcentration Freeze-drying

Spray-drying Polyphenols Antioxidantcapacity

a

b

s

t

r

a

c

t

Tectona grandis leaf extracts obtained at pilot scale processes (ultrasound-assisted extraction,cross-flowmicrofiltration,reverseosmosisconcentration)containsphenolic compoundsthatexhibit antioxidantproperties.Thefinalreverseosmosis concentrate extractpresentedhighercontentofpolyphenol(21,080±117␮molg−1GAE)and antioxi-dantcapacity(8490±29␮molg−1TE)comparativelytocrudeextract(1300±12␮molg−1 GAEforpolyphenoland430±2␮molg−1TEforantioxidantactivity)orcrossflow micro-filtrationextract(1170±10␮molg−1GAEforpolyphenoland400±10␮molg−1TEfor antioxidant).Theconcentrationfactorsofpolyphenolandantioxidantcapacitywere18 and21,respectively.High-performanceliquidchromatography(HPLC)coupledto electro-sprayionizationmassspectrometry(ESI-MS)detectionnegativeionmodehasbeenused toidentifyandcharacterizedpolyphenolsintheconcentrateextractofT.grandisleaves. Sevenphenolicacidsandflavonoidswerecharacterized.Verbascoside(phenolicacid)was describedasthemostabundantphenoliccompoundsinthisconcentrateextract.Two dry-ingtechnologies(freeze-dryingandspray-drying)wereusedtoobtainedstablepowder fromconcentrateextract.Theeffectofthesedryingtechnologiesonphenoliccompounds andantioxidantactivitywerestudied.Freeze-dryingpresentedagoodrecoveryofphenolic compoundsandantioxidantcapacity.Thisdryingtechnologycouldbeusedforpreservation ofT.grandisextract.

©2015ElsevierGmbH.Allrightsreserved.

1. Introduction

Tectona grandis L. (Verbenaceae), commonly named

teak is used in folk medicine for a wide variety of

∗ Correspondingauthor.Tel.:+22507077180. E-mailaddress:emmanuelkoffi@ymail.com(E.N.Koffi).

remedies(Aradhanaetal.,2010;TraBietal.,2008).

Sev-eralpharmacologicalactivitieshavebeenattributedtoT.

grandisextracts,mainlyantidiabeticactivity(Ghaisasetal.,

2010;PoojaandSamanta,2011)andantioxidantactivity

(NairaandKarvekar,2011;Raoetal.,2011).Previous

stud-iesrevealedthepresenceofphenoliccompoundsonthe

extractsofT. grandisleavessuchflavonoidsand

pheno-licacids(NairaandKarvekar,2010;Shuklaetal.,2010).

http://dx.doi.org/10.1016/j.jarmap.2015.03.001 2214-7861/©2015ElsevierGmbH.Allrightsreserved.

(3)

Polyphenols are ofa great interest due totheir

benefi-cialeffectforhumanhealth:preventionandtreatmentof

certaincancers,inflammatorydiseases,cardiovascularand

neurodegenerativediseases(PandeyandRizvi,2009).They

haveoftenbeenidentifiedasactiveprinciplesofnumerous

folkherbalmedicines(Apaketal.,2007).

Localpopulationsof Côted’Ivoire hasbeenextracted

thesebioactivecompoundsfromplantmaterialsby

decoc-tionorinfusionwithwaterassolvent.Manystudieshave

showedthatpolyphenolcontentsinaqueousextractswere

unstableduringstorage(Chedeaetal.,2011;Malickand

Bradford,2008).Inthisstudy,apilotplantscaleprocessing

ofdriedplantleaveswassettoproducestabilizedextracts

in apowder formtoincrease theshelf-lifeof theready

to use medicinal product. The process includes several

steps such as ultrasound-assisted water-maceration of

dried leaves, membrane filtration and concentration of

theextractandstabilizationoftheconcentrateextractby

spray-dryingorfreeze-drying. Theeffectofstabilization

processesonpolyphenolcontentsandantioxidantcapacity

wasstudied.Polyphenolcontentswerealsoidentifiedand

characterizedbyHPLCcoupledtoUV–visdiodearray

detec-tionandmassspectrometrywithelectrosprayionization

(LC/DAD/ESI-MS2).

2. Materialandmethods

2.1. Plantmaterial

LeavesofT. grandiswerecollectedfromteak

planta-tionsinthecentreofCôted’IvoirearoundYamoussoukro

area.Afterharvesting,theleaveswerebroughttoLAPISEN

laboratory(Yamoussoukro,Côted’Ivoire)fordryingatan

averagetemperatureof30◦Cduringdaytime,andkept

awayfromdirectsunexposureunderanopen-sidedshed.

Thedriedleaveswerepackedinplasticbagsandshipped

toCIRADlaboratory(Montpellier,France),wheretheywere

storedat4◦Cuntilprocessedandanalyzed.

2.2. Chemicals

Allreagentswereofanalyticalgrade.Sodiumhydroxide

(NaOH),sodiumcarbonatesalt (Na2CO3),monohydrated

citricacid,dihydratedmonosodiumphosphate(NaH2PO4,

2H2O),disodiumhydrogenphosphate(Na2HPO4),

Folin-Ciocalteu’sphenolreagentwerepurchasedfromCarloErba

(Spain).

Gallic acid, quercetin, trolox

(6-hydroxy-2,5,7,8-tetramethylchroman-1-carboxylic acid), fluorescein,

AAPH (2,2-azobis (2-methylpropanimidamide)

dihy-drochloride),luteolin,caffeicandchlorogenicacidswere

purchasedfromSigma-Aldrich(Germany).

2.3. Pilotplantextractionandextractconcentration

Ultrasound-assistedextractionofdriedleaves(1.65kg)

was performed with100L of acidified tap water (H2O,

0.01Ncitricacid)during40minusingultrasonic(US)pilot

plantunitequippedwithanchor-shapeandslow-motion

stirrer (40kHz US frequency, 200–500W US variable

power,REUS,Contes,France).Thewaterextractobtained

wasfiltered using a nyloncloth to givea crude extrat

(CE),whichwasthenclarifiedbyCross-flow

microfiltra-tion(CFM)togiveaCFMpermeatevolume(VCFM)ofabout

92L,whichwasthenconcentratebyreverseosmosis(RO)

ataconstanttrans-membranepressureof40bar.Thefinal

volumeoftheROconcentrateextractobtained(VRO)was

generally3L,whichwasclosetothatofthedeadvolumeof

theROpilotplantunit.TheperformanceofthisRO

concen-trationstepwascharacterizedbycalculatingconcentration

factor:

CF= TSPRO

TSPCFM

where CF, concentration factor; TSPRO, total soluble

polyphenolcontentintheROconcentrateandTSCFM,total

solublepolyphenolcontentintheTSPCFMpermeates.

2.4. Freezedryingprocess

Reverseosmosis(RO)concentrateextractwerefrozen

at−30◦Cincoldroomanddriedusingfreezedryer(type

cryonext,France)for48h.Sampletemperaturewassetat

−80◦Candthepressurewassetlessthan0.2bar.

2.5. Spraydryingprocess

ROconcentrateextractsweredriedusingspraydryer

(MinisprayDryer,B-290MinisprayDryer)with120◦Cofan

inletairtemperatureand60◦Cofanoutletairtemperature.

2.6. Totalpolyphenolcontent

Totalpolyphenolcontentwasdeterminedby

colorime-try,usingtheFolin-Ciocalteu(F-C)method(Singletonand

Rossi,1965;Woodetal.,2002).To30␮Lsampleextract,

2.5mLofdilutedFolin-Ciocalteu’sphenolreagent(1/10)

wereadded.After2minofincubationinthedarkatroom

temperature,2mLofaqueoussodiumcarbonate(75gL−1)

wereadded.Afterslightstirring,themixturewasputin

awater bathat 50◦C for15minthencooleddown.The

absorbancewasmeasuredat=760nmusinga UV–vis

spectrophotometer (Jenway 6705, Barloworld Scientific

SAS,France).Totalpolyphenolcontentwasexpressedas

␮molGAE(GallicAcidEquivalent)pergramofdriedleaves

water-extracted.Sampleswereanalyzedintriplicate.

2.7. Antioxidantcapacity

Antioxidant capacity was carried by oxygen radical

absorbancecapacity(ORAC)assay.TheORACmethodused

wasdescribedbyOuetal.(2001).TheautomatedORAC

assaywascarriedoutonaVICTORTMX3MultilabelPlate

Reader(Perkin–Elmer,USA)withfluorescencefiltersforan

excitationwavelengthat485nmandanemission

wave-lengthat535nm(Zuluetaetal.,2009).Thereactionwas

performedat37◦Casthereactionwasstartedbythermal

decompositionofAAPHin75mmolL−1 phosphatebuffer

(pH7.4).Astocksolutionoffluorescein(FL)wasprepared

byweighing22mgofFL,dissolvingitin100mLof

phos-phatebuffer(PBS)(75mmolL−1,pH7.4),andthenstoring

(4)

workingsolution(78nmolL−1)wasprepareddailyby

dilu-tionof0.334mLofthestocksolutionin25mLofphosphate

buffer. The AAPH radical (221mmolL−1) was prepared

dailybytaking0.6gofAAPHandmakingitupto10mL

withPBS.100␮LofFLand100␮Lofdilutedsample,PBSor

standard(Trolox5–50␮molL−1)wereplacedineachwell

ofa96well-plateandpre-incubatedduring15min.After,

50␮LofAAPHwereaddedintothewells.Thefluorescence

wasmeasuredeveryminuteduring60minwithemission

andexcitationwavelengthof485and535nm,respectively,

whichwasmaintainedat37◦C.TheORACvalueswere

cal-culatedasareaunderthecurve(AUC)andwereexpressed

as␮molTE(TroloxEquivalent)pergramofdriedleaves

water-extracted.Sampleswereanalyzedintriplicate.

2.8. HPLC–ESI-SManalyses

Aniontrapmassspectrometer(BrukerDaltonics

Ama-zon,Bremen,Germany)wasconnectedviaanelectrospray

ionization (ESI) interface for high performance liquid

chromatography–tandemmassspectrometry(HPLC-SM2)

to UPLC-DAD (Waters Acquity, Milford, MA) equipped

withaRP18column(AcquityBEHcolumn,10mm×1mm,

1.7␮mparticlesize,Waters,Milford,MA)placedina

con-trolledtemperatureovensetat35◦C.Theinjectionvolume

was0.5␮L.Themobilephasewasabinarysolventsystem

ofA(water:formicacid,99:1,v/v)andB(methanol:formic

acid,99:1,v/v).Themulti-lineargradientprofilewas:2%B

fromstartto1min,2–30%B,from1to10min,30%Bfrom10

to12min,30–75%Bfrom12to25min,75–90%Bfrom25to

30min,and90%Bfrom30to35min.Theelutionflowrate

wassetat0.08mLmin−1.Themassspectrometeroperated

innegativeionmode(capillaryvoltage:2.5kV;endplate

offset:−500V;temperature:200◦C;nebulizergas:10psi

anddrygas:5Lmin−1;collisionenergyforfragmentation

inMS/MSsetat1).Polyphenolsweredetectedat280nm.

UV–visspectrawererecordedfrom210nmto600nm.The

dataanalysissoftwarewasusedfordataacquisitionand

processing.

2.9. Statisticalanalysis

Resultswereexpressedasmean±standarddeviationof

threereplicate.Datawereevaluatedbyone-wayanalysis

ofvariance(ANOVA)usingStatistica7.1(StatSoft,Inc.,USA)

solfware.Newman-keulstestwasperformedtodetermine

significantdifferencesatp<0.05.

3. Resultsanddiscussion

3.1. Extractionandconcentrationprocess

The ultrasound-assisted extract of T. grandis leaves

obtainedinpilotscalewasclarifiedbycrossflow

micro-filtration(CFM)andthenconcentratedbyreverseosmosis

(RO).Table1presents totalpolyphenol andantioxidant

content from the three co-products (crude

extract-CFM extract-concentrate ROretentate). Theamounts of

polyphenols and antioxidants were higher in RO

con-centrateextract than crude extractor CFM extract.The

Table1

TotalpolyphenolcontentsandantioxidantactivityofT.grandisL.leaf extract.

Processco-products Totalpolyphenols (␮molg−1GAE) Antioxidant capacity (␮molg−1TE) Crudeextract 1300±12a 430±2a CFMpermeate 1170±10a 400±10a ROconcentrate 21,080±117b 8490±29b CF 18 21

GAE,gallicacidequivalent;TE,troloxequivalent;CFM,crossflow mem-brane;RO,reverseosmosis;CF,concentrationfactor.Foreachcolumn, lettersequalsindicatethatthemeansdifferenceisnotsignificantat p<0.05.

concentrationfactors(CF)oftotalpolyphenoland antiox-idantcapacitywere18and21;respectively.Theamount of polyphenols and antioxidant capacity obtained in CFM extract was lower than those obtained in crude extract. Statisticalanalysis didnotshow significant dif-ferencesatp<0.05betweentheconsideredvalues.These resultsindicatethatconcentrationprocessdidnotdegrade polyphenolsandantioxidantactivityfromT.grandisleaves, asfoundbyAdjéetal.(2012).

3.2. Identificationofphenoliccompoundsfrom

concentrateROextract

HPLC-DADprofileofpolyphenolsfromROconcentrate

extractwasshowninFig.1.Phenolicacidsandflavonoids

wereidentified.

3.2.1. Phenolicacidsidentification

ThemolecularstructuresofphenolicacidsinT.grandis

leavesextract,wereconfirmedonthebasisoftheirLC–MS

fragmentationMS,MS2andMS3andontheshapeoftheir

UV–visspectraasshowninTable2,andwerecompared

withpreviouspublishedstudies.Sevenphenolicacidswere

identifiedinaqueousextractofT.grandisleaves.

Compound1gave[M−H]−atm/z153withUV–vismax

at 260 and 294nm spectra are typicalfor

protocatech-uic acid. Compounds2and 7had [M−H]− atm/z=353.

The MS2 fragmentation patterns produced ions at m/z

191, 179, 135, correspondingto3-O-caffeoylquinic acid

(Compound2).Thefragmentationatm/z191([M-H-162]),

179([M-H-174]),173([M-H-180])and 135([M-H-218])

werecharacteristicsof4-O-caffeoylquinicacid(Stalmach

et al., 2009). The product ions m/z 191for quinicacid

and179forcaffeicacidrevealedtheconstituentof3-CQA

prior tocondensation.Loss ofa caffeoylmoiety yielded

the other dominant fragment ion m/z 173. The

struc-tureof4-CQA(Compound7)wasconfirmedbyco-elution

with thestandard. Compound3 wasidentified as

2-O-caffeoylhydroxycitricacidwithm/z−at369andMS2at207

afterlossof162amu(caffeoylmoiety).Asimilar

fragmen-tationwasreportedbyParveenetal.(2008).Compound

4with[M−H]−atm/z487andafragmentat179(caffeic

acid)obtainedafterloss308amu.InMS2 fragmentation,

itobservedthatcompound3lostneutralmassionatm/z

44correspondingtolossofCO2.So,compoundshouldbe

identifiedascaffeoylacidderivative.Compound6,which

(5)

Fig.1.HPLCchromatogramobtainedat280nmforaqueousextractofT.grandisleaves. Table2

LC–MSdataobtainedfromtheanalysisofT.grandisleavesextract.

Peak Compounds max MW [M−H+] Fragments Neutralloss Percentage(%)

1 Protocatechuicacid 296 154 153 0.9

2 3-O-caffeoylquinic(3-CQA) 324 354 353 191-179-(135) 1.3

3 2-O-caffeoylhydroxycitricacid 326 370 369 207 162 3.2

4 Caffeoylacidderivative 326 488 487 179-135 308-44 2.2

6 Caffeicacid 297sh-325 180 179 1.8

7 4-O-caffeoylquinic(4-CQA) 326 354 353 173-191-179-135 180-162-174–218 12.2

10 Apigenin7-O-diglucuronide 269–330 624 623 447(271) 176(2×176) 8.0 11 Luteolin7-O-diglucuronide 255–349 638 637 351-(285-193) 286-(352-444) 9.5 14 luteolin7-O-glucuronide 289sh-333 462 461 285 176 2.8 15 Verbascoside 289sh-333 624 623 461-315 162-308 31 16 Luteolindiglucuronide 269–340 637 461–285 176*2 2.3 17 Apigeninglucuronide 266–336 446 445 269 176 1.0 19 Luteolinglucuronide 268–340 462 461 285 176 0.9 20 Luteolin 254–349 286 285 175-239-241 0.4

typicalforcaffeicacid(Fernandesetal.,2011).Thenature

ofthiscompound wasconfirmedbyco-elutionwiththe

standard. Caffeicacidwasalready reportedinT.grandis

extract(NayeemandKarvekar,2010).Compound15gave

[M−H]− at 623andfragments at461amuand 315amu

afterlossof162amu(caffeoylmoiety)and308amu

(rham-nosidemoiety),respectively.ItsUV–visspectrumshowed

amaximalatmax=333withashoulderat289shtypical

forverbascoside(Petreskaetal.,2011).Verbascosidewas

identifiedasthemostabundantcompound(30%oftotal

peakareaat280nm)inextractofT.grandisleaves.

Pre-viousstudyshowedsignificantantihyperglycemicactivity

of verbascoside (Shukla et al., 2010). Thisproperty can

bebeneficialforthetreatmentofdiabetics.Otherstudies

assignedtothiscompoundantioxidant,anti-inflammatory,

photo-protective and anti-gastriculcer activities (Singh

etal., 2010;Vertuanietal., 2011).So, leaveswhichare

thedischargesofwoodindustriescouldbeinterestedby

pharmaceuticalorcosmeticindustries.

3.2.2. Flavonoididentification

Sevenflavonoidswereidentifiedonbetweenbasisof

HPLCcoupledtoUV–visdiodearraydetectionandmass

spectrometry withelectrospray ionization

(LC/DAD/ESI-MS2).

Themolecularionpeak[M−H]−forthecompound11

wasm/z623withfragmentsionsatm/z447([M-H-176]−)

and271([M-H-176–176]−),typicalfragmentsofapigenin

7-O-diglucuronide (Meng et al., 2006). Compounds 12

and16wereassignedtoluteolindiglucuronide.HPLC-SM

Table3

Effectofdryingprocessesonpolyphenolcontentsandantioxidantactivity.

Co-product Polyphenol Antioxidant

Content(␮molg−1GAE) Recovery(%) Capacity(␮molg−1TE) Recovery(%)

ROconcentrate 21,080±117a 100.0 8490±29a 100.0

Powder1 18,170±75b 86.19 6980±12b 82.21

Powder2 13,960±38c 66.22 5210±5c 61.36

RO,reverseosmosis;GAE,gallicacidequivalent;TE,troloxequivalent.Foreachcolumn,lettersequalsindicatethatthemeansdifferenceisnotsignificant atp<0.05.

(6)

characteristicsindicatedinSM1,m/zat637[M–H]with

fragmentsions at m/z461([M-H-176]− and 285 ([M-H-(2×176)]−),respectivelyafterlossofoneglucuronidacid andtwoglucuronidacids.Compound14with[M−H]−at

m/z461anda fragmentat285(luteolin)obtainedafter loss176(glucuronic acid)wasassignedtoluteolin 7-O-glucuronide. A similar fragmentation of the compound wasreportedbyJohnsonetal.(2011)inRusselia

equiseti-formisextract.Compound18 wasidentifiedas apigenin

glucuronide showed the loss of a glucuronic acid (m/z

176)andproducedthepredominantfragmentatm/z269

correspondingtodeprotonatedapigenin.Similar

fragmen-tationofthecompoundwasreportedbyZimmermannetal.

(2011)whenanalysingSalviaofficinalisL.extracts.

Com-pound19wasluteolinglucuronidewithm/z−at461and

MS2ionat285(luteolin)duetothelossof176amu

cor-respondingtoglucuronideacid.Thesimilarfragmentation

haspreviouslybeenbyPatoraandKlimek(2002)fromthe

leavesofMelissaofficinalis.Compound20hada[M−H]−

ionatm/z285andwasassignedtoluteolinaglycone.The

co-elutionwithastandardconfirmedthepresenceof

lute-olin.

Manystudies wereinvestigated polyphenolcontents

of T.grandis leafextracts. Amongof polyphenol

identi-fiedonlychlorogenicacid(Ghareeb etal.,2013),caffeic

acid (Naira and Karvekar, 2010; Shalini and Rachana,

2009),verbascoside(Shuklaetal.,2010;Singhetal.,2010)

and luteolin (Shukla et al., 2010) were identified

dur-ing previous studies.Others phenolic compounds were

reportedfor thefirsttime (namely protocatechuic acid,

2-O-caffeoylhydroxycitricacid,Caffeoylacidderivative,

4-O-caffeoylquinicacid,apigenin7-O-diglucuronide,luteolin

7-O-diglucuronide, luteolin glucuronide, luteolin

diglu-curonide,apigeninglucuronide,luteolinglucuronide).The

compositioninpolyphenolofourextractswasforgreater

partdifferentfromthoseofpreviousstudies.Manahetal.

(2004)wasreportedthat polyphenolcontents ofplants

wereaffectedbynumerousfactors.Thesefactorsinclude

genetic,ripenessat time harvest,environmental factors

(soiltype,sunexposure,andrainfall),processing,and

stor-age.

3.3. Effectofdryingprocessesonreverseosmosis

concentrateextract

Thereverseosmosis concentrateextractsweredried

by freeze-drying and spray-drying to obtain powder 1

and2,respectively.Thepowdersobtainedareallbrown.

Asshown in Table3, the effect of drying processes on

polyphenolsandantioxidantcapacityfromreverse

osmo-sis(RO)concentrateextract.Theamountsofpolyphenols

obtained after drying process are lower than those of

theconcentrateextract:powder2(13,960±38␮molg−1

GAE)<powder1(18,170±75␮molg−1GAE)<RO

concen-trateextract(21,080±117␮molg−1GAE).Theamountof

antioxidantcapacityofpowder2(5210±5␮molg−1 TE)

wasalsolowerthanthoseofpowder1(6980±12␮molg−1

TE)andROconcentrateextract(8490±29␮molg−1GAE).

Recoveryofpolyphenolcontentsandantioxidantcapacity

inpowders,weregenerallybetterthan61%.Freeze-drying

gavebetteryields(>82%)thandidspray-drying(61–67%).

Similar result was reported by Da Silva et al. (2011)

whendryingpropolis.Phaechamudetal.(2012)alsowere

demonstratedthatthermaldryingprocessaffected

signif-icantlytheamountofphenoliccompoundsinextract.

Thisstudy showedthat freeze-drying is a good

pro-cesstostabilizephenolicantioxidantfromT.grandisleaves,

as indicated by Munin and Edwards-Lévy (2011). They

reportedthatfreeze-driedparticleswerestableoverlong

periodsandprovidedtopolyphenolsaneffective

protec-tionagainstoxidationphenomenonduringtheirstorage,

whereasantioxidantactivityremainedidentical.

4. Conclusion

T.grandisleavesextractsobtainedatpilotscalecontain

phenolic compounds that exhibit antioxidant

proper-ties. Reverse osmosis concentrate extract have higher

amountofphenoliccompoundsandantioxidantcapacity

comparatively tocrude extract.In this extract,fourteen

phenolic compounds as flavonoids and phenolic acids

were identified and characterized. The most abundant

polyphenolinthisextractwasverbascoside.Others

com-pounds were reported for the first time in T. grandis

(namely protocatechuic acid, 3-O-caffeoyl quinic acid,

2-O-caffeoylhydroxycitricacid,Caffeoylacidderivative,

4-O-caffeoylquinicacid,apigenin7-O-diglucuronide,luteolin

7-O-diglucuronide, luteolin glucuronide, luteolin

diglu-curonide, apigenin glucuronide, luteolin glucuronide).

Whenaconcentrateextractwasdriedbyfreeze-dryingand

spray-drying,thefreeze-driedextracthasbeenpresented

agoodrecoveryofpolyphenolsandantioxidantcapacity.

Thepowderformofleafwater-extractsobtainedby

freeze-dryingcouldbeapotentialadvantageforpreservationof

itsqualityduringstorageandmarketingofthistraditional

medicineatvillagelevelintropicalcountries.

Acknowledgement

WegratefullyacknowledgetheFrenchEmbassyinCôte

d’IvoireforthedoctoralscholarshipprovidedtoE.K.and

CIRAD(DRS) fortechnicalassistanceand otherfinancial

support.

References

AdjéAF,LozanoFY,LeGuernevéC,LozanoRP,MeudecE,AdimaAA, Gay-douE,2012.PhenolicacidandflavonolwaterextractsofDelonixregia redflowers.IndustrialCropandProducts37,303–310.

ApakR,Güc¸lüK,DemirataB,ÖzyürekM,C¸elikSE,Bektas¸o˘gluB,Berker KI,ÖzyurtD,2007.Comparativeevaluationofvarioustotal antioxi-dantcapacityassaysappliedtophenoliccompoundswiththeCUPRAC assay.Molecules12(7),1496–1547.

AradhanaR,RaoKNV,BanjiD,ChaithanyaRK,2010.AreviewonTectona grandislinn:chemistryandmedicinaluses(Family:Verbenaceae). HerbalTechIndustry,6–9.

ChedeaVS,EchimC,BraicuC,AndjelkovicM,VerheR,SocaciuR,2011. Compositioninpolyphenolsandstabilityoftheaqueousgrapeseed extractfromtheRomanianvarietyMerlotrecas.JournalofFood Bio-chemistry35(1),92–108.

DaSilvaFC,Favaro-TrindadeCS,DeAlencarSM,ThomaziniM,BalieiroJC, 2011.Physicochemicalproperties,antioxidantactivityandstabilityof spray-driedpropolis.JournalofApiProductandApiMedicalScience3 (2),94–100.

(7)

FernandesA,SousaA,MateusN,CabralM,DeFreitasV,2011.Analysisof phenoliccompoundsincorkfromQuercussuberL.by HPLC-DAD/ESI-MS.FoodChemistry125(4),1398–1405.

GhaisasMM,NavghareVV,TakawaleAR,ZopeVS,PhanseMA,2010. AntidiabeticandnephroprotectiveeffectofTectonagrandislinnin alloxaninduceddiabetes.ARSPharmaceutica51(4),195–206. GhareebMA,ShoebHA,MadkourHMF,RefahyLA,MohamedMA,Saad

AM, 2013.Radical scavengingpotential andcytotoxic activityof phenoliccompoundsfromTectonagrandisLinn.GlobalJournalof Pharmacology7(4),486–497.

JohnsonCE,Long-ZeL,HarnlyJM,OladeindeFO,KinyuaAM, Miche-linR,BronnerY,2011.Identificationofthephenoliccomponentsof VernoniaamygdalinaandRusseliaequisetiformis.JournalofNatural Products4,57–64.

MalickSAN,BradfordMJ,2008.Recoveryandstabilityofoleuropeinand otherphenoliccompoundsduringextractionandprocessingofolive (OleaeuropaeaL.)leaves.JournalofFood,Agricultureand Environ-ment6(2),8–13.

ManahC,ScalbertA,MorandC,RémésyC,JimérezL,2004.Polyphenols: foodsourcesandbioavailability.AmericanJournalofClinicalNutrition 79,727–747.

Meng L, Lozano Y, Bombarda I, GaydouE, Li B, 2006. Anthocyanin andflavonoidproductionfromPerillafrutescens:pilotplantscale processingincludingcross-flowmicrofiltrationandreverseosmosis. JournalofAgriculturalandFoodChemistry54(12),4297–4303. MuninA,Edwards-LévyF,2011.Encapsulationofnaturalpolyphenolic

compounds:areview.Pharmaceutics3(4),793–829.

NairaN,KarvekarMD,2010.Isolationofphenoliccompoundsfromthe methanolicextractofTectonagrandis.ResearchJournalof Pharma-ceutical,BiologicalandChemicalSciences1(2),221–225.

NairaN,KarvekarMD,2011.Antimicrobialandanti-oxidantproperties oftheisolatedcompoundsfromthemethanolicextractfromthe leavesofTectonagrandis.JournalofBasicandClinicalPharmacy2(4), 163–165.

NayeemN,KarvekarMD,2010.Comparativephytochemicaland phar-macologicalscreeningofthemethanolicextractsofthefrontaland matureleavesofTectonagrandis.InternationalJournalofPharmaand BioSciences1(3),1–7.

OuB,Hampsch-WoodillM,PriorRL,2001.Developmentandvalidation ofanimprovedoxygenradicalabsorbancecapacityassayusing fluo-resceinasthefluorescentprobe.JournalofAgriculturalandFood Chemistry49(10),4619–4626.

PandeyKB,RizviSI,2009.Currentunderstandingofdietarypolyphenols andtheirroleinhealthanddisease.CurrentNutritionandFood Sci-ence5,249–263.

ParveenI,WintersA,ThreadgillMD,HauckB,MorrisP,2008. Extrac-tion,structuralcharacterisationandevaluationofhydroxycinnamate estersoforchardgrass(Dactylisglomerata)assubstratesfor polyphe-noloxidase.Phytochemistry69(16),2799–2806.

PatoraJ,KlimekB,2002.Flavonoidsfromlemonbalm(Melissaofficinalis L.,Lamiaceae).ActaPoloniae-DrugResearch59(2),139–143. PetreskaJ,StefovaM,FerreresF,MorenoDA,Tomás-BarberánFA,Stefkov

G,KulevanovaS,Gil-IzquierdoA,2011.Potentialbioactivephenolics ofMacedonianSideritisspeciesusedformedicinal“MountainTea”. FoodChemistry125,13–20.

PhaechamudT,YodkhumK,LimmatvapiratC,WetwitayaklungP,2012. Morphology,thermalandantioxidativepropertiesofwaterextracts from Sonneratiacaseolaris (L.)Engl. Preparedwith freeze drying andspraydrying.ResearchJournalofPharmaceutical,Biologicaland ChemicalSciences3(1),725–739.

PoojaVS,SamantaKC,2011.Hypoglycemicactivityofmethanolicextract ofTectonagrandislinn.Rootinalloxaninduceddiabeticrats.Journal ofAppliedPharmaceuticalScience1(4),106–109.

RaoKNV,AradhanaR,BanjiiD,ChaitanyaR,KumarAA,2011.In-vitro anti-oxidantandfreeradicalscavengingactivityofvariousextracts ofTectonagrandisLinnleaves.JournalofPharmacyResearch4(2), 440–442.

Shalini,RachanaS,2009.Antifungalactivityscreeningandhplcanalysis ofCrudeextractfromTectonagrandis,shilajit,Valerianawallachi. Elec-tronicJournalofEnvironnementalAgriculturalandFoodChemistry8 (4),218–229.

ShuklaN,KumarM,AkankshaAhmadG,RahujaN,SinghAB,Srivastava AK,RajendraSM,MauryaR,2010.Tectone,anewantihyperglycemic anthraquinonefromTectonagrandisleaves.NaturalProduct Commu-nications5(3),427–430.

SinghN,ShuklaN,SinghP,SharmaR,RajendraSM,2010.Verbascoside isolatedfromTectonagrandismediatesgastricprotectioninratsvia inhibitingprotonpumpactivity.Fitoterapia81,755–761.

Singleton VL, Rossi JA, 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungsticacidreagents.AmericanJournal ofEnologyandViticulture16,144–158.

StalmachA,MullenW,BarronD,UchidaK,YokotaT,CavinC,SteilingH, WilliamsonG,CrozierA,2009.Metaboliteprofilingof hydroxycin-namatederivativesinplasmaandurineaftertheingestionofcoffee byhumans:identificationofbiomarkersofcoffeeconsumption.Drug MetabolismandDisposition37(8),1749–1758.

TraBiFH,IrieGM,N’GamanK,MahouCHB,2008.Étudesdequelques plantesthérapeutiquesutiliséesdansletraitementdel’hypertension artérielleetdudiabète:deuxmaladiesémergentesenCôted’Ivoire. Sciences&Nature5(1),39–48.

VertuaniS,BegheliE,ScalambraE,MalisardiG,CopettiS,TosoRD, Baldis-serottoA,2011.Activityandstabilitystudiesofverbascoside,anovel antioxidant,indemo-cosmeticandpharmaceuticaltopical formula-tions.Molecules16(8),7068–7080.

WoodJE,Senthilmohan ST,PeskinAV, 2002. Antioxidantactivity of procyanidin-containingplantextractsatdifferentpHs.Food Chem-istry77(2),155–161.

ZimmermannBF,WalchSG,TinzohLN,StühlingerW,LachenmeierDW, 2011.Rapiduhplcdeterminationofpolyphenolsinaqueousinfusions ofSalviaofficinalisL.(sagetea).JournalofChromatographyB879(24), 2459–2464.

ZuluetaA,EsteveMJ,FrígolaA,2009.Oracandteacassayscomparisonto measuretheantioxidantcapacityoffoodproducts.FoodChemistry 114(1),310–316.

Figure

Fig. 1. HPLC chromatogram obtained at 280 nm for aqueous extract of T. grandis leaves.

Références

Documents relatifs

There are few opportunities to apply goal setting or model the behaviours using the very skills taught in our Integrated Correctional Program Model (ICPM)

increased the extinction risks at the introduction site, and the occupancy of peripheral patches 102. (Table 1, Figure

introduction site in scattered landscapes, did not prevent colonisation of other good patches 250. altogether, although it made it more

Barker, Sevcik, Morris, &amp; Romski, 2013) ( ﻲﻓ مﻬﯾﻠﻋ رﻬظﺗو ،فﻗوﻣﻟا بﺎﻫرو قﻠﻘﻟا نﻣ نوﻧﺎﻌﯾ ﺔﺛدﺎﺣﻣﻟاو ةءارﻘﻟا ﻲﻓ لﻠﻋ نﻣ نوﻧﺎﻌﯾ نﯾذﻟا بﻼطﻟا نأ موﺳر

A ’Cet égard le chercheur a estimé qu’il existe un manque et cela en se basant sur une étude établie à propos des enseignants de la matière, (Education physique

La caractérisation géochimique des altérites prélevées dans les différentes séquences stratigraphiques du Crétacé inférieur jusqu’à l’Eocène supérieur permet

The objective of this research was to evaluate the viability of using parameters measured in nursery seedlings (Velocity of ultrasonic waves (VLs), basic density (BDs), height

We address the problem of MDC by proposing a framework that features three key ele- ments, namely: (1) to model documents over a unified conceptual space, with the support of