• Aucun résultat trouvé

The D -standard and K -standard categories Advances in Mathematics

N/A
N/A
Protected

Academic year: 2022

Partager "The D -standard and K -standard categories Advances in Mathematics"

Copied!
35
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

The D-standard and K-standard categories

Xiao-Wu Chen,Yu Ye

KeyLaboratoryof WuWen-TsunMathematics,ChineseAcademyofSciences, SchoolofMathematicalSciences,UniversityofScienceandTechnologyofChina, No.96JinzhaiRoad,Hefei230026,Anhui,PRChina

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received8October2017 Accepted17May2018 Availableonlinexxxx

CommunicatedbyHenningKrause

MSC:

18E30 16G10 18G35 16E05

Keywords:

Standardequivalence Trianglecenter Trianglefunctor Derivedequivalence

Weintroduce thenotions ofa D-standard abeliancategory andaK-standardadditivecategory.Weprovethatforafinite dimensionalalgebra A,itsmodulecategoryisD-standardif andonlyifanyderivedautoequivalenceonAisstandard,that is, isomorphic to thederived tensor functor by a two-sided tiltingcomplex.Weprovethatifthesubcategoryofprojective A-modules is K-standard, then the module category is D-standard.WeprovidenewexamplesofD-standardmodule categories.

©2018ElsevierInc.Allrightsreserved.

Contents

1. Introduction . . . . 160

2. Trianglefunctorsandcenters . . . . 161

2.1. Trianglefunctorsandextendingnaturaltransformations . . . . 161

2.2. Almostvanishingmorphismsandcenters . . . . 164

3. Pseudo-identitiesandcenters . . . . 166

* Correspondingauthor.

E-mailaddresses:xwchen@mail.ustc.edu.cn(X.-W. Chen),yeyu@ustc.edu.cn(Y. Ye).

URLs:http://home.ustc.edu.cn/~xwchen(X.-W. Chen),http://staff.ustc.edu.cn/~yeyu(Y. Ye).

https://doi.org/10.1016/j.aim.2018.05.032 0001-8708/©2018ElsevierInc.Allrightsreserved.

(2)

3.1. Pseudo-identitiesonboundedhomotopycategories . . . . 166

3.2. Pseudo-identitiesonboundedderivedcategories . . . . 170

3.3. Comparingcenters . . . . 171

4. K-standardadditivecategories . . . . 173

5. D-standardabeliancategoriesandstandardequivalences . . . . 176

5.1. D-standardabeliancategories . . . . 176

5.2. Standardequivalences . . . . 179

6. K-standardnessversusD-standardness . . . . 182

7. Twoexamples . . . . 186

7.1. Thedualnumbers . . . . 187

7.2. Anotherexample . . . . 190

Acknowledgments . . . . 193

References . . . . 193

1. Introduction

Letkbeafield,andletAbeafinitedimensionalk-algebra.WedenotebyA-mod the category of finite dimensional left A-modules and by Db(A-mod) its bounded derived category. Byaderivedequivalence betweentwo algebras A and B,we meanak-linear triangleequivalenceF:Db(A-mod)Db(B-mod).Itisanopenquestionin [19] whether any derivedequivalenceisstandard,thatis,isomorphictothederivedtensorfunctorby atwo-sidedtiltingcomplex.

We mention thatthere exists a triangle functor betweenthe bounded derived cate- goriesofmodulecategories,whichisnotisomorphictothederivedtensorfunctorbyany complexofbimodules;see [20].

The above open question is answered affirmatively in the following cases: (1) A is hereditary [14]; (2)A is(anti-)Fano [13];(3) Ais triangular [6].Wemention thattheir proofs relyonthework [16] and [1].

In thepresent paper,we takeadifferent approach.Recall from [19] that foragiven derivedequivalenceF,thereisastandardequivalenceFsuchthattheyactidenticallyon objects.Thismotivatesthefollowingnotion:atriangleautoequivalenceGonDb(A-mod) is called a pseudo-identity, provided that G acts on objects by the identity and that the restriction of G to stalk complexes equals the identity functor. Roughly speaking, a pseudo-identityisverycloseto thegenuineidentityfunctoronDb(A-mod).Thenany derivedequivalenceF:Db(A-mod)Db(B-mod) allows afactorization F FGwith G a pseudo-identity on Db(A-mod) and F a standard equivalence; moreover, such a factorization isunique;seeProposition5.8.

We say that the module category A-mod is D-standard if any pseudo-identity on Db(A-mod) is isomorphic to the identity functor as triangle functors. We prove that A-mod isD-standardifandonlyifanyderivedequivalencefromDb(A-mod) isstandard;

seeTheorem5.10.Therefore,theopenquestionisequivalenttothefollowingconjecture:

any modulecategoryA-mod isD-standard.

This notion of D-standardness applies to any k-linear abelian category. It is well knownthatforthecategoriesofcoherentsheavesonsmoothprojectivevarieties,derived

(3)

equivalences of Fourier–Mukai type are geometric analogue to standard equivalences.

By [16], any k-linear triangle equivalence between the bounded derived categories of coherent sheaves on smooth projective varieties is of Fourier–Mukai type. Indeed, the proof therein implies that the abelian category of coherent sheaves on any projective varietyisD-standard;compareProposition5.7.Inacertainsense,thisfactsupportsthe aboveconjecture.

Analogouslytotheaboveconsideration,weintroducethenotionofaK-standard ad- ditivecategory,whereapseudo-identityontheboundedhomotopycategoryisinvolved.

We prove that if the category of projective A-modules is K-standard, then A-mod is D-standard;seeTheorem6.1.Thisseemstoshednewlightontheaboveconjecture.

Thepaperisstructuredasfollows.InSection2,werecallbasicfactsontrianglefunc- torsandcenters.Thenotionsofapseudo-identityontheboundedhomotopycategoryof anadditivecategoryandontheboundedderivedcategoryofanabeliancategoryarein- troducedinSection3.InSection4,weintroducethenotionofa(strongly)K-standard additive category, and observe that an Orlov category [1] is strongly K-standard; see Proposition4.6.Analogously,wehavethenotionofa(strongly)D-standardabeliancat- egoryinSection5,whereweobservethatanabeliancategorywithanamplesequence [16]

of objects is strongly D-standard; see Proposition5.7. Weprove Theorem 5.10, which relatestheaboveopenquestiontotheD-standardness.

InSection6,weproveTheorem6.1,whichclaimsthatanabeliancategorywithenough projectivesisD-standardprovidedthatthefullsubcategoryofprojectivesisK-standard.

Inthe finalsection, we provide two examplesofalgebras, whosemodule categories are D-standard.Inparticular,thealgebraofdual numbersprovides aD-standard,butnot stronglyD-standard,modulecategory;see Theorem7.1.

Throughout thepaper,we assumethatthecategories inconsiderationareskeletally small.Weassumetheaxiomofglobal choice,thatis,theaxiomof choiceforclasses.

2. Trianglefunctorsandcenters

Inthissection,werecallbasicfactsontrianglefunctorsandthecentersoftriangulated categories.

2.1. Triangle functorsandextendingnatural transformations

LetT andTbetriangulatedcategories,whosetranslationfunctorsaredenotedbyΣ andΣ,respectively.Recallthatatrianglefunctor(F,ω) consistsofanadditivefunctor F: T → T and a natural isomorphism ω: FΣ ΣF such that any exact triangle X →Y →Z h Σ(X) inT issenttoanexacttriangleF(X)→F(Y)→F(Z)−−−−−−→ωX◦F(h) ΣF(X) inT.

Thenatural isomorphismω is called the connecting isomorphism forF. When ω is understoodornotimportantinthecontext,wesuppress itand writeF forthetriangle functor (F,ω). Theconnecting isomorphismω is trivial ifFΣ= ΣF and ω = IdFΣ is

(4)

theidentitytransformation.Forexample,theidentityfunctorIdT,asatrianglefunctor, is understoodasthepair(IdT,IdΣ),whichhasthetrivialconnectingisomorphism.

Foratrianglefunctor(F,ω),wedefinenaturalisomorphismsωn: n ΣnF forall n≥1 asfollows:ω1=ωand ωn+1= Σnω◦ωnΣ forn≥1.Weobserveωn+1= Σωn ωΣn.IfbothΣ andΣ areautomorphismsofcategories,wedefinenaturalisomorphisms ω−n:FΣ−n ΣnF as follows: ω−1 = (Σ1ω1Σ−1)−1 and ω−n−1 = Σnω−1 ω−nΣ−1 forn≥1.Byconvention,ω0= IdF.

For twotriangle functors(F,ω) and (F) fromT to T, a naturaltransformation η: (F,ω)→(F) between trianglefunctors meansanaturaltransformation η:F F satisfyingω◦ηΣ= Ση◦ω.Thecompositionoftwotrianglefunctors(F,ω) :T → T and (G,γ) :T → T isgiven by(GF,γF ◦Gω) :T → T, whichisoften denotedjust byGF.

Thefollowing factiswell known.

Lemma 2.1.Let η: (F,ω)→ (F) be thenatural transformation as above. Then the full subcategoryIso(η)={X ∈ T |ηX is an isomorphism}ofT isatriangulatedsubcat- egory. 2

WesaythatafullsubcategoryS ofT isgenerating providedthatthesmallesttrian- gulated subcategory containingS is T itself. Thefollowing well-knownresultis known as Beilinson’sLemma;see[9, II.3.4].

Lemma 2.2.Let F: T → T be atriangle functor. Assume that S ⊆ T isa generating subcategory. ThenF isfullyfaithful ifandonly ifF inducesisomorphisms

HomT(X,Σn(Y))−→HomT(F X, FΣn(Y))

for allX,Y ∈ S andn∈Z. In this case, F is denseif and only if the essentialimage ImF containsagenerating subcategory ofT. 2

LetF:C → Dbe afunctor. Foreachobject CinC,wechooseanobjectF(C) inD and anisomorphismδC:F(C)→F(C).Here,weareusing theaxiomofchoiceforthe classofobjectsinC.WecallthesechosenisomorphismsδC’stheadjustingisomorphisms.

Indeed, the choice makes F into a functor such that δ is a natural isomorphism between F and F. The action of F on a morphism f: C C is given by F(f) = δC◦F(f)◦δC1.ItfollowsthatFpreservestheidentitymorphismandthecomposition of morphisms,thatis,itisindeedafunctor. Bythevery constructionofF,weobserve the naturalityofδ.Inacertainsense,thenew functorF: C → Disadjusted from the given functorF.

Bythefollowingwell-knownlemma, wemightalsoadjusttrianglefunctors.

Lemma 2.3. Let (F,ω) :T → T be a triangle functor. Assume that F:T → T is another functor with a natural isomorphism δ: F F. Then there is a unique iso-

(5)

morphism ω: FΣ ΣF such that (F) is a triangle functor and that δ is an isomorphismbetweentrianglefunctors.

Proof. Takeω = Σδ◦ω◦(δΣ)−1.Thestatementsaredirecttoverify. 2

Thefollowingstandardfactwillbeusedlater.Weprovideafullproofforcompleteness.

Lemma 2.4.Let F,G:A → B be two additive functors betweenadditive categories. As- sume that C ⊆ A is a full subcategory such that any object in A is isomorphic to a finite direct sum of objects in C. Let η: F|C G|C be a natural transformation. Then there is a unique natural transformation η: F G extending η. Moreover, if η is an isomorphism,soisη.

Proof. For eachobject A inA, wechoose anisomorphism ξA:A → ⊕iICi with each Ci∈ C andIafiniteset.WemakethechoicesuchthatξC istheidentity morphismfor eachobjectCinC.Here,we usetheaxiomofchoicefortheclass ofobjectsinA.

We define ηA :F(A) →G(A) to be G(ξA)1(iIηCi)◦F(ξA). Here, we identify F(iICi) with iIF(Ci), G(⊕iICi) with iIG(Ci). In particular, ηC = ηC for C∈ C byourchoice.

We claim that the morphism ηA is natural in A. For this, we take an arbitrary morphism f: A A in A. For the object A, we have the chosen isomorphism ξA: A → ⊕jJCj with Cj ∈ C and J is a finite set. Then we have the following commutativediagram

A

f

ξA

iICi

(fji)(i,j)∈I×J

A ξA

jJCj

Here,eachfji:Ci→Cj isamorphisminC.Inthefollowingcommutativediagram,the middlesquareusesthenaturalityofη.

F(A)

F(f)

F(ξA)

iIF(Ci)

(F(fji))

iIηCi

iIG(Ci)

(G(fji)) G(ξA)−1

G(A)

G(f)

F(A)F(ξA)

jJF(Cj)

j∈JηC

j

jJG(Cj)G(ξA)

−1

G(A) TheoutercommutativediagramprovesthatηA◦F(f)=G(f)◦ηA,as required.

Wemention thattheabove argumentactually proves thatηA is independentof the choiceof theisomorphismξA, bytaking A=Aand f = IdA. 2

(6)

Let kbe acommutativering. LetA beak-linearadditivecategory. Foraset Mof morphisms in A, we denote by obj(M) the full subcategory formed by those objects, which are either the domain or the codomain of a morphism in M. We say that M linearly spans A providedthat eachmorphism in obj(M) is ak-linear combination of theidentitymorphismsandcompositionofmorphismsfromM,andthateachobjectin Ais isomorphictoafinite directsumofobjectsinobj(M).

Lemma 2.5. LetM bea spanning set of morphismsin A.Assumethat F:A→ Ais a k-linearendofunctorsuchthatF(f)=f foreachf ∈ M.Thenthereisauniquenatural isomorphism θ:F IdA satisfyingθS = IdS foreach objectS fromobj(M).

Proof. TheassumptionimpliesthatF(S)=SforanyobjectS fromobj(M).Moreover, therestrictionofF onobj(M) istheidentityfunctor,sinceitactsonmorphismsbythe identity. ApplyingLemma2.4 toF andIdA,wearedone. 2

2.2. Almost vanishingmorphismsandcenters

Throughout this subsection, k will be a field and T will be a k-linear triangulated category, whichisHom-finiteand Krull–Schmidt.

Following [11,Definition 2.1],a nonzeromorphismw:Z →XinT isalmostvanishing providedthatf◦w= 0 andw◦g= 0 foranynon-sectionf:X →Aandnon-retraction g:B→Z.ThishappensifandonlyifwfitsintoanalmostsplittriangleΣ1X →E→ Z w X;see [9,I.4.1].Inparticular,both Z andX areindecomposable.

Proposition 2.6. Assumethat X f Y g Z h ΣX isan exact trianglein T with g = 0 andh= 0suchthatEndT(Z)eitherequalskorkIdZ⊕kΔ,wherethemorphismΔ :Z→ Z isalmostvanishing.Thenforanonzeroscalarλ,thetriangleX f Y g Z−−→λh Σ(X) is exactif andonly ifλ= 1.

Proof. We observe that g is a non-retraction, otherwise h = 0. Similarly, h is a non- section.Assumethatthegiventriangleisexact.Thenwehaveanisomorphismξ:Z →Z makingthefollowing diagramcommute.

X f Y g Z

ξ

h Σ(X)

X f Y g Z λh Σ(X)

If EndT(Z)=k,we assumethat ξ=μIdZ forsome μ∈k. It follows from themiddle square thatμ= 1, andthusλ= 1 fromtherightsquare.

(7)

Inthesecondcase,weassumethatξ=μIdZ+γΔ forsomeμ,γ∈k.Bythemiddle squareandthefactthatΔ◦g= 0,wehaveμ= 1.Bytherightsquareandthefactthat h◦Δ= 0,weinferthatλ= 1. 2

We denote by indT a complete set of representatives of isomorphism classes of in- decomposable objects in T. Here, indT is indeed a set, since T is skeletally small.

Denote by Λ the subset consisting of these objects X with an almost vanishing mor- phismΔX:X →X suchthatΔX iscentralinEndT(X).

Thefollowingisavariantof [11,Lemma 2.2];compare [22,Remark 4.15].

Lemma2.7. For each X Λ,we associate ascalarλX.Thenthere is auniquenatural isomorphismη: IdT IdT such that ηX = IdX+λXΔX forX Λ and ηY = IdY for Y indT \Λ.

Proof. WeviewindT asafullsubcategoryofT.ByLemma2.4,itsufficestoverifythat therestriction ofthe isomorphismη onindT isnatural. Forthis, we takeanarbitrary morphismf:Y →Z with Y,Z∈indT.WeclaimthatηZ◦f =f◦ηY.

IfneitherY norZ liesinΛ,theclaimisclear.IfY liesinΛ andZ doesnotliein Λ, wehavef◦ΔY = 0,sincef isanon-sectionandΔY isalmostvanishing.Thentheclaim follows.ThesameargumentworksforthecaseY Λ andZ /∈Λ.

Fortherest, wemayassume thatboth Y and Z lieinΛ.IfY =Z,then theclaims follows,sinceΔY andthusηY arecentralinEndT(Y).IfY =Z,wehaveΔZ◦f = 0= f◦ΔY.Thisimpliestheclaim.Wearedone. 2

LetAbe ak-linearadditivecategory. Wedenote byZ(A) thecenter of A,which is bydefinitionthe set ofnaturaltransformations λ: IdA IdA.To ensurethatZ(A) is indeed aset, we use the assumption that A is skeletally small. Then Z(A) is a com- mutativek-algebra,whoseaddition andmultiplicationareinducedbytheaddition and compositionofnaturaltransformations, respectively.

WedenotebyZ(T) thetrianglecenter ofT,whichisthesetofnaturaltransforma- tionsλ: IdT IdT betweentrianglefunctors, equivalently,the naturaltransformation λsatisfies λΣ= Σλ.Then Z(T) isa subalgebraof Z(T). Wemention thatZ(T) is thezerothcomponentofthegradedcenterofT;compare [11,12].

Thefollowingobservationwillbeuseful.

Lemma2.8. Let(F,ω) :T → T beatriangleautoequivalence.Thenanynaturaltransfor- mation(F,ω)→(F,ω)oftrianglefunctorsisof theformF λ forauniquelydetermined λ∈Z(T). 2

Following [8, Section 4],wesaythatT isablock, providedthatT doesnot admita decompositionintotheproductoftwo nonzerotriangulatedsubcategories. Moreover,it is non-degenerate ifthere is anonzero non-invertiblemorphism X →Y betweensome indecomposableobjectsX and Y.

(8)

Proposition 2.9.LetT beanon-degenerateblock suchthatEndT(X)=kforeachinde- composable object X.Thenthefollowingstatements hold.

(1) Wehave Z(T)=k=Z(T).

(2) If (IdT,ω)is atrianglefunctor,thenω= IdΣ,theidentity transformationonΣ.

Proof. For (1), it suffices to show that any natural transformation η: IdT IdT is given by a scalar. By assumption, ηX = λXIdX for each indecomposable object X and somescalar λX. In viewof Lemma 2.4, it suffices to show that λX =λY for any indecomposablesX andY.

Weobserve thatλX =λY providedthatthereis anonzero mapX →Y orY →X, usingthenaturalityofη.SinceT isanon-degenerateblock,foranyindecomposablesX and Y,thereis asequenceX =X0,X1,· · ·,Xn =Y suchthatHomT(Xi,Xi+1)= 0 or HomT(Xi+1,Xi)= 0; see [8, Proposition 4.2 and Remark 4.7].From this sequence we inferthatλX =λY.

For(2),weobservethatω= Σ(η) forauniqueη∈Z(T).By(1)wemayassumethat η =λ∈k.Takeanonzeronon-invertiblemorphismg:X→Y betweenindecomposables andformanexacttriangleZ f X g Y h Σ(Z).SinceX isindecomposable,weobserve that h= 0. Applyingthe trianglefunctor (IdT,ω) to this triangle,we obtainan exact triangle

Z −→f X −→g Y −→λh Σ(Z).

ByProposition2.6,weinferthatλ= 1. Thenwearedone. 2 3. Pseudo-identitiesandcenters

Inthissection,westudytriangleendofunctorsontheboundedhomotopycategoryof an additive category and on thebounded derived category of an abelian category. We introduce the notion of a pseudo-identityendofunctor on them. Their triangle centers are studied.

3.1. Pseudo-identitiesonboundedhomotopy categories

LetAbeanadditivecategory.WedenotebyKb(A) thehomotopycategoryofbounded complexes inA.A boundedcomplexX isvisualizedas follows

· · · −→Xn d

n

−→X Xn+1d

n+1

−→X Xn+2−→ · · ·

where Xn= 0 foronlyfinitelymanyn’sandthedifferentialssatisfydn+1X ◦dnX= 0. The translation functor Σ oncomplexes is defined suchthat Σ(X)n =Xn+1 and dnΣ(X) =

(9)

−dn+1X .For achainmap f:X →Y, thetranslated chainmap Σ(f) : Σ(X) Σ(Y) is givenbyΣ(f)n =fn+1 foreachn∈Z.

Anadditivefunctor G: A→ B induces atriangle functor Kb(G) :Kb(A)Kb(B), which acts componentwise on complexes and whose connecting isomorphism is triv- ial. Similarly, a natural transformation η: G G induces a natural transformation Kb(η) :Kb(G)Kb(G) betweentrianglefunctors.

ForanobjectA inA,wedenote byA thecorresponding stalkcomplexconcentrated ondegreezero.In thisway, weviewA asafull subcategory ofKb(A).ForA∈ A and n∈Z,thecorresponding stalkcomplexΣn(A) isconcentratedondegree−n.

ForacomplexX and n∈Z,weconsider thebrutaltruncation σ≥−nX =· · · →0 X−nd

−n

X X1−n→ · · ·,whichisasubcomplexofX.Thereisaprojectionπn:σ≥−nX Σn(Xn),andthusanexacttriangleinKb(A)

Σn1(Xn)−→f σ≥1−nX −→in σ≥−nX −→πn Σn(Xn), (3.1) where in is the inclusionmap and f is given bythe minus differential −dXn: Xn X1−n.Usingthesetriangles,oneobservesthatAisageneratingsubcategory ofKb(A).

Lemma 3.1. LetF:Kb(A) Kb(A) be atriangle functor satisfying F(A)⊆ A. Then thefollowingstatements hold.

(1) F isfullyfaithfulif andonlyif soistherestriction F|A:A→ A. (2) If therestriction F|A: A→ Aisan equivalence,so isF.

(3) Assume thatA has splitidempotents. IfF isan equivalence,so isF|A.

Proof. The “only if” part of (1) is trivial. For the “if” part, we observe that HomKb(A)(X,Σn(Y)) = 0 for X,Y ∈ A and n = 0. Since A is a generating subcat- egoryofKb(A),weapplyLemma2.2toobtainthatF isfullyfaithful.

For(2),weobservethatifF|Aisanequivalence,theessentialimageImF containsA, a generatingsubcategory of Kb(A).Inviewof thesecond statementofLemma2.2, we inferthatF isdense.

For (3), we recall the following well-known observation: a bounded complex Y is isomorphic to some object in A if and only if HomKb(A)(Y,Σn(A)) = 0 = HomKb(A)n(A),Y) foreachA∈ A andn= 0.

It suffices to prove that for any complex X, if F(X) is isomorphic to some object inA,so isX.ForeachA∈ Aandn= 0, wehave

HomKb(A)(X,Σn(A))HomKb(A)(F(X), FΣn(A)) HomKb(A)(F(X),Σn(F A)) = 0,

(10)

where the first isomorphism uses thefully-faithfulness of F and the last equality uses thefactthatF(A)∈ A.Similarly,wehaveHomKb(A)n(A),X)= 0.Thenwearedone bytheaboveobservation. 2

Thefollowingresultisanalogousto [18,Proposition 7.1],whereacompletelydifferent argument isused.

Proposition 3.2. Let (F,ω) :Kb(A) Kb(A) be a triangle autoequivalence satisfying F(A)⊆ A. Assume that therestriction F|A is isomorphic to theidentity functor IdA. Then foreachcomplex X Kb(A),F(X) isisomorphicto X.

Proof. Assume that φ: F|A IdA is the given isomorphism. Using the translation functor andtheconnectingisomorphismω,itsufficesto provethestatementunderthe assumption thatXi= 0 fori>0.

Weclaimthatforeachn≥0,there isanisomorphism an:F≥−nX)−→σ≥−nX

satisfying πn◦an = ΣnX−n)◦ωXn−n◦Fn). Theclaim will be provedby induction onn.

We takea0 =φX0. Weassumethattheisomorphisman−1is alreadygiven forsome n≥1.Considertheexacttriangle(3.1).We claimthattheleft squareinthefollowing diagram commutes.

FΣn−1(X−n) F(f)

Σn−1X−n)ωn−1X−n

F(σ1nX)

an−1 F(in)

F≥−nX)

ωΣn−1 (X−n)◦F(πn)

ΣFΣn−1(X−n)

ΣnX−n)◦Σ(ωX−nn−1)

Σn−1(X−n) f σ≥1−nX in σ≥−nX πn Σn(X−n) Indeed,thefollowing mapinducedbyπn1:σ1nX Σn−1(X1−n) isinjective

HomKb(A)(FΣn1(Xn), σ≥1−nX)−→HomKb(A)(FΣn1(Xn),Σn1(X1n)).

Hence,fortheclaim,itsufficesto prove

πn1◦an1◦F(f) =πn1◦f◦Σn−1X−n)◦ωXn−n1. Bytheinductionhypothesis,thefirstequality inthefollowingidentity holds:

πn−1◦an−1◦F(f) = Σn1X1−n)◦ωn−1X1−n◦Fn−1)◦F(f)

=Σn−1X1−n)◦ωXn1−n1 ◦FΣn−1(dXn)

(11)

=Σn−1(dXn)Σn−1X−n)◦ωXn−n1

=πn1◦f◦Σn−1X−n)◦ωXn−1n.

Here,the second and fourth equalities use the factthat πn1◦f =Σn−1(d−nX ), and thethirdusesthenaturalityofωn−1and φ.

Thanks to the above diagram between exact triangles, the required isomorphism an:F≥−nX)→σ≥−nX follows from theaxiom(TR3) inthe triangulatedstructure ofKb(A). 2

Inspiredby theaboveresult, itseemsto be of interestto havethefollowing notion.

Foreach n∈Z,we denote byΣn(A) the full subcategory ofKb(A) consistingofstalk complexesconcentratedondegree−n.WeidentifyΣ0(A) withA.

Definition 3.3. A triangle functor (F,ω) :Kb(A) Kb(A) is called a pseudo-identity, providedthatF(X)=X foreachboundedcomplexX andthatitsrestrictionF|Σn(A)

tothesubcategoryΣn(A) equals theidentity functoronΣn(A),foreachn∈Z. 2 Thedifferencebetweenapseudo-identityandthegenuineidentity functoronKb(A) liesintheiractiononmorphismsandtheirconnectingisomorphisms.

Corollary3.4.Let(F,ω) :Kb(A)Kb(A)beatrianglefunctor.Then(F,ω)isisomor- phic to a pseudo-identity if and only if F is an autoequivalence satisfying F(A) ⊆ A suchthat therestrictionF|A isisomorphic totheidentityfunctor.

Proof. ByLemma3.1,a pseudo-identityisanautoequivalence.Thenwehavethe“only if”part.

Forthe“if” part,we assumethatγ:F|AIdA isthegivenisomorphism.Weapply Proposition 3.2 and choose for each complex X an isomorphism δX: F(X) X = F(X) suchthatforeachobject A∈ A andn∈Z, δΣn(A):FnA)→FnA) equals ΣnA)◦ωAn; here, we refer to Subsection 2.1 for the notation ωn. Using δX’s as the adjustingisomorphismsandLemma2.3,weobtainapseudo-identity(F) onKb(A), whichisisomorphicto(F,ω) astrianglefunctors. 2

Lemma 3.5. Let (F,ω) :Kb(A) Kb(A) be a pseudo-identity. Assume that (F,ω) is isomorphic totheidentity functorIdKb(A),astrianglefunctors.Thenthere isanatural isomorphism θ: (F,ω) IdKb(A) of triangle functors, whose restriction to A is the identity transformation.

Proof. Takeanaturalisomorphismδ: (F,ω)→IdKb(A).Therestrictionofδto Aisan invertibleelement μinZ(A).Setθ=Kb−1)◦δ.Then wearedone. 2

(12)

3.2. Pseudo-identitiesonboundedderived categories

Throughout this subsection, A is an abelian category. We denote by Db(A) the bounded derived category. We identify A as the full subcategory of Db(A) formed by stalk complexesconcentratedondegreezero.

An exact functor G: A → B between abelian categories induces a triangle functor Db(G) : Db(A) Db(B), which acts componentwise on complexes and has a trivial connecting isomorphism.Similarly,a natural transformation μ:G→G between exact functors induces a natural transformation Db(μ) :Db(G) Db(G) between triangle functors.

For abounded complex X and n Z, we denote by Hn(X) the n-th cohomology.

We recallthegood truncations τ≤n(X)=· · · →Xn−2d

n2

X Xn−1 KerdnX 0→ · · · and τ≥n(X) =· · · → 0 CokdnX1 Xn+1 d

n+1

X Xn+2 → · · ·. This gives riseto the truncationfunctorsτ≤nandτ≥nonDb(A).ThereisafunctorialisomorphismHn(X) Σnτnτn(X).

The following observation seems to be known; compare Lemma 3.1 and [7, Corol- lary 2.5].

Lemma 3.6. LetF:Db(A)Db(A)be atrianglefunctor satisfying F(A)⊆ A.The F is anequivalence ifand onlyif soistherestrictionF|A:A→ A.

Proof. Forthe“if”part,weobservethatF induces anisomorphism ExtnA(X, Y)−→ExtnA(F(X), F(Y))

foranyX,Y ∈ Aandeachn∈Z.Here,weidentifyforeachn≥1,theExtnA-groupswith then-thYodenaextensiongroups,wherethelatterarepreservedbytheautoequivalence F|A.SinceAisageneratingsubcategoryofDb(A),weinferbyLemma2.2thatF isan equivalence.

Forthe“onlyif”part,weonlyneedtoprovethedensenessofF|A.Itsufficestoclaim thatifF(X) isisomorphictosomeobjectinA,so isX.

We observe that a complex X is isomorphic to some object in A if and only if Hn(X) = 0 for n = 0. By the assumption that F(A) ⊆ A, we infer that F com- muteswiththetruncationfunctorsτ≤nandτ≥n.Consequently,itcommuteswithtaking cohomologies. More precisely, foreach boundedcomplex X and eachn∈Z, there is a naturalisomorphism

F|A(Hn(X))−→ Hn(F(X)).

Since F|Aisfullyfaithful,theclaimfollowsimmediately. 2

WehavethefollowinganalogueofProposition3.2;compare [18,Proposition 7.1].

(13)

Proposition 3.7. Let F: Db(A) Db(A) be a triangle autoequivalence satisfying F(A) ⊆ A. Assume that the restriction F|A is isomorphic to the identity functor IdA. Thenforeach complex X∈Db(A),F(X) isisomorphic toX.

Proof. The sameargument of Proposition3.2 works,where we still usebrutal trunca- tions.It suffices toobserve thattheprojectionπn1:σ1nX Σn−1(X1−n) induces aninjectivemap

HomDb(A)(FΣn−1(X−n), σ≥1−nX)−→HomDb(A)(FΣn−1(X−n),Σn−1(X1−n)), sincewehave

HomDb(A)(FΣn−1(X−n), σ≥2−nX)HomDb(A)n−1(X−n), σ≥2−nX) = 0.

Weomitthedetails. 2

The following definition and corollary are analogous to the ones for the homotopy category. Recall that for each n Z, Σn(A) denotes the full subcategory of Db(A) consisting of stalk complexes concentrated on degree−n. As usual, we identify Σ0(A) withA.

Definition3.8.A trianglefunctor(F,ω) :Db(A)Db(A) isapseudo-identity provided thatF(X)=X foreachboundedcomplexX and thatitsrestrictionF|Σn(A)toΣn(A) equalstheidentity functoronΣn(A) foreachn∈Z. 2

ThefollowingresultisaconsequenceofLemma3.6andProposition3.7.

Corollary3.9.Let(F,ω) :Db(A)Db(A)beatrianglefunctor.Then(F,ω)isisomor- phic to a pseudo-identity if and only if F is an autoequivalence satisfying F(A) ⊆ A suchthat therestrictionF|A isisomorphic totheidentityfunctor. 2

Thefollowingisanalogousto Lemma3.5.

Lemma 3.10.Let (F,ω) :Db(A) Db(A) be a pseudo-identity. Assume that (F,ω) is isomorphic totheidentity functorIdDb(A),astrianglefunctors.Thenthere isanatural isomorphism θ: (F,ω) IdDb(A) of triangle functors, whose restriction to A is the identity transformation. 2

3.3. Comparing centers

Wewill comparethetrianglecentersofthehomotopycategoryandthederivedcate- gory.

(14)

LetP beanadditivecategory.There isaringhomomorphism

res : Z(Kb(P))−→Z(P), λ→λ|P (3.2) sending λtoitsrestrictiononP.Itissurjective.Indeed,thereisanothercanonicalring homomorphism

ind :Z(P)−→Z(Kb(P)), μKb(μ),

which sends μ: IdP IdP to Kb(μ) : IdKb(P)IdKb(P).More precisely,the actionof Kb(μ) oncomplexes iscomponentwise byμ. Sincethecomposition resind equals the identity, thehomomorphism(3.2) issurjective.

Thefollowingnotationisneeded.ForaclassSofobjectsinatriangulatedcategoryT, we denote bySthe smallestfull additivesubcategory containingS and closed under taking directsummands,Σ andΣ1.Fortwo classesX andY ofobjects,wedenote by X Y the classformed bythose objectsZ, whichfit into anexact triangleX →Z Y Σ(X) forsomeX ∈ X andY ∈ Y.Weset S1 =SandSd+1 =SdS1 ford≥1.

Thefollowing lemmaisimplicitin [21,Lemma 4.11].

Lemma 3.11. LetA→a B b C be twomorphisms in T suchthat HomT(a,) vanishes on X andHomT(b,)vanishes onY.ThenHomT(b◦a,−)vanishes onX Y. Proof. AssumethatX u Z→v Y Σ(X) isanexacttrianglewith X∈ X and Y ∈ Y. Take anymorphismf:C→Z.Thenv◦f◦b= 0.Itfollowsthatf◦b=u◦g forsome morphism g:B→X.Using g◦a= 0,weinferthatf ◦b◦a= 0. 2

The second statement of the following result is analogous to [12, Proposition 2.9];

compare [21,Remark 4.12].

Proposition3.12.Keepthenotationasabove.ThenthekernelN ofthemapresin(3.2) lies in theJacobsonradicalof Z(Kb(P)).

If Kb(P)=Pd forsomed≥1,we haveNd= 0.

Proof. Letλ∈ N.Thenres(1+λ)= 1.InthenotationofLemma2.1,thetriangulated subcategory Iso(1+λ) contains P. It forces thatIso(1+λ)=Kb(P),thatis, 1+λis invertible.Consequently,theidealN liesintheJacobsonradical.

For thesecondstatement, wetakeλi ∈ N for1≤i≤d.It sufficestoclaim thatfor eachcomplexX,thecomposition

X−−−−→1)X X −→ · · · −→X −−−−→d)X X

is zero. Thissequence of morphisms induces asequenceof naturaltransformations be- tweentheHomfunctorsonKb(P)

(15)

Hom(X,)−−−−−−−−−−→Hom((λ1)X,−) Hom(X,)→ · · · →Hom(X,)−−−−−−−−−−→Hom((λd)X,−) Hom(X,).

We observe that each of these natural transformations vanishes on P. Indeed, for an objectAinP andanymorphismf:X →A,f◦i)X = (λi)A◦f = 0.ByLemma3.11 thecompositionvanishesonPd, whichisequaltoKb(P).An applicationofYoneda’s Lemmayields therequiredclaim. 2

LetAbeanabeliancategory.Then thereisaringhomomorphism

res : Z(Db(A))−→Z(A), λ→λ|A (3.3) sending λ to its restriction on A. By a similar argument as above, there is another canonicalringhomomorphism

ind :Z(A)−→Z(Db(A)), μDb(μ),

satisfyingthatresind isequaltotheidentity.Thenthehomomorphism(3.3) issurjec- tive.

Thefollowingresultisprovedbythesameargumentas Proposition3.12.

Proposition 3.13.Let A be an abelian category. Then the kernel M of the map res in (3.3) liesin theJacobsonradical of Z(Db(A)).

IfDb(A)=Ad forsome d≥1,wehave Md= 0. 2

LetA be anabelian category with enoughprojective objects. Denote byP thefull subcategoryformedbyprojectiveobjects.WeviewKb(P) asatriangulatedsubcategory ofDb(A).

Weconsiderthefollowingcommutativediagramofringhomomorphisms,where“res”

denotesthecorrespondingrestrictionofnaturaltransformations Z(Db(A))

res

res

Z(Kb(P))

res

Z(A)

res

Z(P)

(3.4)

It is well knownthat thelower row map is an isomorphism.By [10, Theorem 2.5] the upperoneisalsoanisomorphism.Consequently,wemayidentifythekernelsofthetwo verticalhomomorphisms.

4. K-standardadditivecategories

In this section, we introduce the notions of a K-standard additive category and a stronglyK-standardadditivecategory.

Références

Documents relatifs

[r]

2.7 Contingent Connection. Under certain conditions, a temporary connection is maintained betw~en the tape control unit and a magnetic tape unit on behalf of the

Another example of such a statistic is provided with the Denert statistic, “den”, introduced recently (see [Den]) in the study of hereditary orders in central simple algebras1.

Constructs a menu from a list of items and returns the value associated with the selected item; also returned are the item and the mouse character that was used to select it..

global superconvergence error analysis for semi-discrete standard and mixed finite element methods for Maxwell’s equations when dispersive media are involved.. In Section 2,

Generally, as the protocol enters the standards track a decision is made as to the eventual STATUS, requirement level or applicability (elective, recommended, or required)

Generally, as the protocol enters the standards track a decision is made as to the eventual STATUS, requirement level or applicability (elective, recommended, or required)

To accomplish an abort (that is, a mapping of the IR-ABORT service in the Z39.50 protocol) in the TCP/IP environment, client or server need only terminate the TCP