• Aucun résultat trouvé

Almost vanishing morphisms and centers

2. Triangle functors and centers

2.2. Almost vanishing morphisms and centers

Throughout this subsection, k will be a field and T will be a k-linear triangulated category, whichisHom-finiteand Krull–Schmidt.

Following [11,Definition 2.1],a nonzeromorphismw:Z →XinT isalmostvanishing providedthatf◦w= 0 andw◦g= 0 foranynon-sectionf:X →Aandnon-retraction g:B→Z.ThishappensifandonlyifwfitsintoanalmostsplittriangleΣ1X →E→ Z w X;see [9,I.4.1].Inparticular,both Z andX areindecomposable.

Proposition 2.6. Assumethat X f Y g Z h ΣX isan exact trianglein T with g = 0 andh= 0suchthatEndT(Z)eitherequalskorkIdZ⊕kΔ,wherethemorphismΔ :Z→ Z isalmostvanishing.Thenforanonzeroscalarλ,thetriangleX f Y g Z−−→λh Σ(X) is exactif andonly ifλ= 1.

Proof. We observe that g is a non-retraction, otherwise h = 0. Similarly, h is a non-section.Assumethatthegiventriangleisexact.Thenwehaveanisomorphismξ:Z →Z makingthefollowing diagramcommute.

X f Y g Z

ξ

h Σ(X)

X f Y g Z λh Σ(X)

If EndT(Z)=k,we assumethat ξ=μIdZ forsome μ∈k. It follows from themiddle square thatμ= 1, andthusλ= 1 fromtherightsquare.

Inthesecondcase,weassumethatξ=μIdZ+γΔ forsomeμ,γ∈k.Bythemiddle squareandthefactthatΔ◦g= 0,wehaveμ= 1.Bytherightsquareandthefactthat h◦Δ= 0,weinferthatλ= 1. 2

We denote by indT a complete set of representatives of isomorphism classes of in-decomposable objects in T. Here, indT is indeed a set, since T is skeletally small.

Denote by Λ the subset consisting of these objects X with an almost vanishing mor-phismΔX:X →X suchthatΔX iscentralinEndT(X).

Thefollowingisavariantof [11,Lemma 2.2];compare [22,Remark 4.15].

Lemma2.7. For each X Λ,we associate ascalarλX.Thenthere is auniquenatural isomorphismη: IdT IdT such that ηX = IdX+λXΔX forX Λ and ηY = IdY for Y indT \Λ.

Proof. WeviewindT asafullsubcategoryofT.ByLemma2.4,itsufficestoverifythat therestriction ofthe isomorphismη onindT isnatural. Forthis, we takeanarbitrary morphismf:Y →Z with Y,Z∈indT.WeclaimthatηZ◦f =f◦ηY.

IfneitherY norZ liesinΛ,theclaimisclear.IfY liesinΛ andZ doesnotliein Λ, wehavef◦ΔY = 0,sincef isanon-sectionandΔY isalmostvanishing.Thentheclaim follows.ThesameargumentworksforthecaseY Λ andZ /∈Λ.

Fortherest, wemayassume thatboth Y and Z lieinΛ.IfY =Z,then theclaims follows,sinceΔY andthusηY arecentralinEndT(Y).IfY =Z,wehaveΔZ◦f = 0= f◦ΔY.Thisimpliestheclaim.Wearedone. 2

LetAbe ak-linearadditivecategory. Wedenote byZ(A) thecenter of A,which is bydefinitionthe set ofnaturaltransformations λ: IdA IdA.To ensurethatZ(A) is indeed aset, we use the assumption that A is skeletally small. Then Z(A) is a com-mutativek-algebra,whoseaddition andmultiplicationareinducedbytheaddition and compositionofnaturaltransformations, respectively.

WedenotebyZ(T) thetrianglecenter ofT,whichisthesetofnatural transforma-tionsλ: IdT IdT betweentrianglefunctors, equivalently,the naturaltransformation λsatisfies λΣ= Σλ.Then Z(T) isa subalgebraof Z(T). Wemention thatZ(T) is thezerothcomponentofthegradedcenterofT;compare [11,12].

Thefollowingobservationwillbeuseful.

Lemma2.8. Let(F,ω) :T → T beatriangleautoequivalence.Thenanynatural transfor-mation(F,ω)→(F,ω)oftrianglefunctorsisof theformF λ forauniquelydetermined λ∈Z(T). 2

Following [8, Section 4],wesaythatT isablock, providedthatT doesnot admita decompositionintotheproductoftwo nonzerotriangulatedsubcategories. Moreover,it is non-degenerate ifthere is anonzero non-invertiblemorphism X →Y betweensome indecomposableobjectsX and Y.

Proposition 2.9.LetT beanon-degenerateblock suchthatEndT(X)=kforeach inde-composable object X.Thenthefollowingstatements hold.

(1) Wehave Z(T)=k=Z(T).

(2) If (IdT,ω)is atrianglefunctor,thenω= IdΣ,theidentity transformationonΣ.

Proof. For (1), it suffices to show that any natural transformation η: IdT IdT is given by a scalar. By assumption, ηX = λXIdX for each indecomposable object X and somescalar λX. In viewof Lemma 2.4, it suffices to show that λX =λY for any indecomposablesX andY.

Weobserve thatλX =λY providedthatthereis anonzero mapX →Y orY →X, usingthenaturalityofη.SinceT isanon-degenerateblock,foranyindecomposablesX and Y,thereis asequenceX =X0,X1,· · ·,Xn =Y suchthatHomT(Xi,Xi+1)= 0 or HomT(Xi+1,Xi)= 0; see [8, Proposition 4.2 and Remark 4.7].From this sequence we inferthatλX =λY.

For(2),weobservethatω= Σ(η) forauniqueη∈Z(T).By(1)wemayassumethat η =λ∈k.Takeanonzeronon-invertiblemorphismg:X→Y betweenindecomposables andformanexacttriangleZ f X g Y h Σ(Z).SinceX isindecomposable,weobserve that h= 0. Applyingthe trianglefunctor (IdT,ω) to this triangle,we obtainan exact triangle

Z −→f X −→g Y −→λh Σ(Z).

ByProposition2.6,weinferthatλ= 1. Thenwearedone. 2 3. Pseudo-identitiesandcenters

Inthissection,westudytriangleendofunctorsontheboundedhomotopycategoryof an additive category and on thebounded derived category of an abelian category. We introduce the notion of a pseudo-identityendofunctor on them. Their triangle centers are studied.

3.1. Pseudo-identitiesonboundedhomotopy categories

LetAbeanadditivecategory.WedenotebyKb(A) thehomotopycategoryofbounded complexes inA.A boundedcomplexX isvisualizedas follows

· · · −→Xn d

n

−→X Xn+1d

n+1

−→X Xn+2−→ · · ·

where Xn= 0 foronlyfinitelymanyn’sandthedifferentialssatisfydn+1X ◦dnX= 0. The translation functor Σ oncomplexes is defined suchthat Σ(X)n =Xn+1 and dnΣ(X) =

−dn+1X .For achainmap f:X →Y, thetranslated chainmap Σ(f) : Σ(X) Σ(Y) is givenbyΣ(f)n =fn+1 foreachn∈Z.

Anadditivefunctor G: A→ B induces atriangle functor Kb(G) :Kb(A)Kb(B), which acts componentwise on complexes and whose connecting isomorphism is triv-ial. Similarly, a natural transformation η: G G induces a natural transformation Kb(η) :Kb(G)Kb(G) betweentrianglefunctors.

ForanobjectA inA,wedenote byA thecorresponding stalkcomplexconcentrated ondegreezero.In thisway, weviewA asafull subcategory ofKb(A).ForA∈ A and n∈Z,thecorresponding stalkcomplexΣn(A) isconcentratedondegree−n.

ForacomplexX and n∈Z,weconsider thebrutaltruncation σ≥−nX =· · · →0 X−nd

−n

X X1−n→ · · ·,whichisasubcomplexofX.Thereisaprojectionπn:σ≥−nX Σn(Xn),andthusanexacttriangleinKb(A)

Σn1(Xn)−→f σ≥1−nX −→in σ≥−nX −→πn Σn(Xn), (3.1) where in is the inclusionmap and f is given bythe minus differential −dXn: Xn X1−n.Usingthesetriangles,oneobservesthatAisageneratingsubcategory ofKb(A).

Lemma 3.1. LetF:Kb(A) Kb(A) be atriangle functor satisfying F(A)⊆ A. Then thefollowingstatements hold.

(1) F isfullyfaithfulif andonlyif soistherestriction F|A:A→ A. (2) If therestriction F|A: A→ Aisan equivalence,so isF.

(3) Assume thatA has splitidempotents. IfF isan equivalence,so isF|A.

Proof. The “only if” part of (1) is trivial. For the “if” part, we observe that HomKb(A)(X,Σn(Y)) = 0 for X,Y ∈ A and n = 0. Since A is a generating subcat-egoryofKb(A),weapplyLemma2.2toobtainthatF isfullyfaithful.

For(2),weobservethatifF|Aisanequivalence,theessentialimageImF containsA, a generatingsubcategory of Kb(A).Inviewof thesecond statementofLemma2.2, we inferthatF isdense.

For (3), we recall the following well-known observation: a bounded complex Y is isomorphic to some object in A if and only if HomKb(A)(Y,Σn(A)) = 0 = HomKb(A)n(A),Y) foreachA∈ A andn= 0.

It suffices to prove that for any complex X, if F(X) is isomorphic to some object inA,so isX.ForeachA∈ Aandn= 0, wehave

HomKb(A)(X,Σn(A))HomKb(A)(F(X), FΣn(A)) HomKb(A)(F(X),Σn(F A)) = 0,

where the first isomorphism uses thefully-faithfulness of F and the last equality uses thefactthatF(A)∈ A.Similarly,wehaveHomKb(A)n(A),X)= 0.Thenwearedone bytheaboveobservation. 2

Thefollowingresultisanalogousto [18,Proposition 7.1],whereacompletelydifferent argument isused.

Proposition 3.2. Let (F,ω) :Kb(A) Kb(A) be a triangle autoequivalence satisfying F(A)⊆ A. Assume that therestriction F|A is isomorphic to theidentity functor IdA. Then foreachcomplex X Kb(A),F(X) isisomorphicto X.

Proof. Assume that φ: F|A IdA is the given isomorphism. Using the translation functor andtheconnectingisomorphismω,itsufficesto provethestatementunderthe assumption thatXi= 0 fori>0.

Weclaimthatforeachn≥0,there isanisomorphism an:F≥−nX)−→σ≥−nX

satisfying πn◦an = ΣnX−n)◦ωXn−n◦Fn). Theclaim will be provedby induction onn.

We takea0 =φX0. Weassumethattheisomorphisman−1is alreadygiven forsome n≥1.Considertheexacttriangle(3.1).We claimthattheleft squareinthefollowing diagram commutes.

FΣn−1(X−n) F(f)

Σn−1X−n)ωn−1X−n

F(σ1nX)

an−1 F(in)

F≥−nX)

ωΣn−1 (X−n)◦F(πn)

ΣFΣn−1(X−n)

ΣnX−n)◦Σ(ωX−nn−1)

Σn−1(X−n) f σ≥1−nX in σ≥−nX πn Σn(X−n) Indeed,thefollowing mapinducedbyπn1:σ1nX Σn−1(X1−n) isinjective

HomKb(A)(FΣn1(Xn), σ≥1−nX)−→HomKb(A)(FΣn1(Xn),Σn1(X1n)).

Hence,fortheclaim,itsufficesto prove

πn1◦an1◦F(f) =πn1◦f◦Σn−1X−n)◦ωXn−n1. Bytheinductionhypothesis,thefirstequality inthefollowingidentity holds:

πn−1◦an−1◦F(f) = Σn1X1−n)◦ωn−1X1−n◦Fn−1)◦F(f)

=Σn−1X1−n)◦ωXn1−n1 ◦FΣn−1(dXn)

=Σn−1(dXn)Σn−1X−n)◦ωXn−n1

=πn1◦f◦Σn−1X−n)◦ωXn−1n.

Here,the second and fourth equalities use the factthat πn1◦f =Σn−1(d−nX ), and thethirdusesthenaturalityofωn−1and φ.

Thanks to the above diagram between exact triangles, the required isomorphism an:F≥−nX)→σ≥−nX follows from theaxiom(TR3) inthe triangulatedstructure ofKb(A). 2

Inspiredby theaboveresult, itseemsto be of interestto havethefollowing notion.

Foreach n∈Z,we denote byΣn(A) the full subcategory ofKb(A) consistingofstalk complexesconcentratedondegree−n.WeidentifyΣ0(A) withA.

Definition 3.3. A triangle functor (F,ω) :Kb(A) Kb(A) is called a pseudo-identity, providedthatF(X)=X foreachboundedcomplexX andthatitsrestrictionF|Σn(A)

tothesubcategoryΣn(A) equals theidentity functoronΣn(A),foreachn∈Z. 2 Thedifferencebetweenapseudo-identityandthegenuineidentity functoronKb(A) liesintheiractiononmorphismsandtheirconnectingisomorphisms.

Corollary3.4.Let(F,ω) :Kb(A)Kb(A)beatrianglefunctor.Then(F,ω)is isomor-phic to a pseudo-identity if and only if F is an autoequivalence satisfying F(A) ⊆ A suchthat therestrictionF|A isisomorphic totheidentityfunctor.

Proof. ByLemma3.1,a pseudo-identityisanautoequivalence.Thenwehavethe“only if”part.

Forthe“if” part,we assumethatγ:F|AIdA isthegivenisomorphism.Weapply Proposition 3.2 and choose for each complex X an isomorphism δX: F(X) X = F(X) suchthatforeachobject A∈ A andn∈Z, δΣn(A):FnA)→FnA) equals ΣnA)◦ωAn; here, we refer to Subsection 2.1 for the notation ωn. Using δX’s as the adjustingisomorphismsandLemma2.3,weobtainapseudo-identity(F) onKb(A), whichisisomorphicto(F,ω) astrianglefunctors. 2

Lemma 3.5. Let (F,ω) :Kb(A) Kb(A) be a pseudo-identity. Assume that (F,ω) is isomorphic totheidentity functorIdKb(A),astrianglefunctors.Thenthere isanatural isomorphism θ: (F,ω) IdKb(A) of triangle functors, whose restriction to A is the identity transformation.

Proof. Takeanaturalisomorphismδ: (F,ω)→IdKb(A).Therestrictionofδto Aisan invertibleelement μinZ(A).Setθ=Kb−1)◦δ.Then wearedone. 2

3.2. Pseudo-identitiesonboundedderived categories

Throughout this subsection, A is an abelian category. We denote by Db(A) the bounded derived category. We identify A as the full subcategory of Db(A) formed by stalk complexesconcentratedondegreezero.

An exact functor G: A → B between abelian categories induces a triangle functor Db(G) : Db(A) Db(B), which acts componentwise on complexes and has a trivial connecting isomorphism.Similarly,a natural transformation μ:G→G between exact functors induces a natural transformation Db(μ) :Db(G) Db(G) between triangle functors.

For abounded complex X and n Z, we denote by Hn(X) the n-th cohomology.

We recallthegood truncations τ≤n(X)=· · · →Xn−2d

n2

X Xn−1 KerdnX 0→ · · · and τ≥n(X) =· · · → 0 CokdnX1 Xn+1 d

n+1

X Xn+2 → · · ·. This gives riseto the truncationfunctorsτ≤nandτ≥nonDb(A).ThereisafunctorialisomorphismHn(X) Σnτnτn(X).

The following observation seems to be known; compare Lemma 3.1 and [7, Corol-lary 2.5].

Lemma 3.6. LetF:Db(A)Db(A)be atrianglefunctor satisfying F(A)⊆ A.The F is anequivalence ifand onlyif soistherestrictionF|A:A→ A.

Proof. Forthe“if”part,weobservethatF induces anisomorphism ExtnA(X, Y)−→ExtnA(F(X), F(Y))

foranyX,Y ∈ Aandeachn∈Z.Here,weidentifyforeachn≥1,theExtnA-groupswith then-thYodenaextensiongroups,wherethelatterarepreservedbytheautoequivalence F|A.SinceAisageneratingsubcategoryofDb(A),weinferbyLemma2.2thatF isan equivalence.

Forthe“onlyif”part,weonlyneedtoprovethedensenessofF|A.Itsufficestoclaim thatifF(X) isisomorphictosomeobjectinA,so isX.

We observe that a complex X is isomorphic to some object in A if and only if Hn(X) = 0 for n = 0. By the assumption that F(A) ⊆ A, we infer that F com-muteswiththetruncationfunctorsτ≤nandτ≥n.Consequently,itcommuteswithtaking cohomologies. More precisely, foreach boundedcomplex X and eachn∈Z, there is a naturalisomorphism

F|A(Hn(X))−→ Hn(F(X)).

Since F|Aisfullyfaithful,theclaimfollowsimmediately. 2

WehavethefollowinganalogueofProposition3.2;compare [18,Proposition 7.1].

Proposition 3.7. Let F: Db(A) Db(A) be a triangle autoequivalence satisfying F(A) ⊆ A. Assume that the restriction F|A is isomorphic to the identity functor IdA. Thenforeach complex X∈Db(A),F(X) isisomorphic toX.

Proof. The sameargument of Proposition3.2 works,where we still usebrutal trunca-tions.It suffices toobserve thattheprojectionπn1:σ1nX Σn−1(X1−n) induces aninjectivemap

HomDb(A)(FΣn−1(X−n), σ≥1−nX)−→HomDb(A)(FΣn−1(X−n),Σn−1(X1−n)), sincewehave

HomDb(A)(FΣn−1(X−n), σ≥2−nX)HomDb(A)n−1(X−n), σ≥2−nX) = 0.

Weomitthedetails. 2

The following definition and corollary are analogous to the ones for the homotopy category. Recall that for each n Z, Σn(A) denotes the full subcategory of Db(A) consisting of stalk complexes concentrated on degree−n. As usual, we identify Σ0(A) withA.

Definition3.8.A trianglefunctor(F,ω) :Db(A)Db(A) isapseudo-identity provided thatF(X)=X foreachboundedcomplexX and thatitsrestrictionF|Σn(A)toΣn(A) equalstheidentity functoronΣn(A) foreachn∈Z. 2

ThefollowingresultisaconsequenceofLemma3.6andProposition3.7.

Corollary3.9.Let(F,ω) :Db(A)Db(A)beatrianglefunctor.Then(F,ω)is isomor-phic to a pseudo-identity if and only if F is an autoequivalence satisfying F(A) ⊆ A suchthat therestrictionF|A isisomorphic totheidentityfunctor. 2

Thefollowingisanalogousto Lemma3.5.

Lemma 3.10.Let (F,ω) :Db(A) Db(A) be a pseudo-identity. Assume that (F,ω) is isomorphic totheidentity functorIdDb(A),astrianglefunctors.Thenthere isanatural isomorphism θ: (F,ω) IdDb(A) of triangle functors, whose restriction to A is the identity transformation. 2

3.3. Comparing centers

Wewill comparethetrianglecentersofthehomotopycategoryandthederived cate-gory.

LetP beanadditivecategory.There isaringhomomorphism

res : Z(Kb(P))−→Z(P), λ→λ|P (3.2) sending λtoitsrestrictiononP.Itissurjective.Indeed,thereisanothercanonicalring homomorphism

ind :Z(P)−→Z(Kb(P)), μKb(μ),

which sends μ: IdP IdP to Kb(μ) : IdKb(P)IdKb(P).More precisely,the actionof Kb(μ) oncomplexes iscomponentwise byμ. Sincethecomposition resind equals the identity, thehomomorphism(3.2) issurjective.

Thefollowingnotationisneeded.ForaclassSofobjectsinatriangulatedcategoryT, we denote bySthe smallestfull additivesubcategory containingS and closed under taking directsummands,Σ andΣ1.Fortwo classesX andY ofobjects,wedenote by X Y the classformed bythose objectsZ, whichfit into anexact triangleX →Z Y Σ(X) forsomeX ∈ X andY ∈ Y.Weset S1 =SandSd+1 =SdS1 ford≥1.

Thefollowing lemmaisimplicitin [21,Lemma 4.11].

Lemma 3.11. LetA→a B b C be twomorphisms in T suchthat HomT(a,) vanishes on X andHomT(b,)vanishes onY.ThenHomT(b◦a,−)vanishes onX Y. Proof. AssumethatX u Z→v Y Σ(X) isanexacttrianglewith X∈ X and Y ∈ Y. Take anymorphismf:C→Z.Thenv◦f◦b= 0.Itfollowsthatf◦b=u◦g forsome morphism g:B→X.Using g◦a= 0,weinferthatf ◦b◦a= 0. 2

The second statement of the following result is analogous to [12, Proposition 2.9];

compare [21,Remark 4.12].

Proposition3.12.Keepthenotationasabove.ThenthekernelN ofthemapresin(3.2) lies in theJacobsonradicalof Z(Kb(P)).

If Kb(P)=Pd forsomed≥1,we haveNd= 0.

Proof. Letλ∈ N.Thenres(1+λ)= 1.InthenotationofLemma2.1,thetriangulated subcategory Iso(1+λ) contains P. It forces thatIso(1+λ)=Kb(P),thatis, 1+λis invertible.Consequently,theidealN liesintheJacobsonradical.

For thesecondstatement, wetakeλi ∈ N for1≤i≤d.It sufficestoclaim thatfor eachcomplexX,thecomposition

X−−−−→1)X X −→ · · · −→X −−−−→d)X X

is zero. Thissequence of morphisms induces asequenceof naturaltransformations be-tweentheHomfunctorsonKb(P)

Hom(X,)−−−−−−−−−−→Hom((λ1)X,−) Hom(X,)→ · · · →Hom(X,)−−−−−−−−−−→Hom((λd)X,−) Hom(X,).

We observe that each of these natural transformations vanishes on P. Indeed, for an objectAinP andanymorphismf:X →A,f◦i)X = (λi)A◦f = 0.ByLemma3.11 thecompositionvanishesonPd, whichisequaltoKb(P).An applicationofYoneda’s Lemmayields therequiredclaim. 2

LetAbeanabeliancategory.Then thereisaringhomomorphism

res : Z(Db(A))−→Z(A), λ→λ|A (3.3) sending λ to its restriction on A. By a similar argument as above, there is another canonicalringhomomorphism

ind :Z(A)−→Z(Db(A)), μDb(μ),

satisfyingthatresind isequaltotheidentity.Thenthehomomorphism(3.3) is surjec-tive.

Thefollowingresultisprovedbythesameargumentas Proposition3.12.

Proposition 3.13.Let A be an abelian category. Then the kernel M of the map res in (3.3) liesin theJacobsonradical of Z(Db(A)).

IfDb(A)=Ad forsome d≥1,wehave Md= 0. 2

LetA be anabelian category with enoughprojective objects. Denote byP thefull subcategoryformedbyprojectiveobjects.WeviewKb(P) asatriangulatedsubcategory ofDb(A).

Weconsiderthefollowingcommutativediagramofringhomomorphisms,where“res”

denotesthecorrespondingrestrictionofnaturaltransformations Z(Db(A))

res

res

Z(Kb(P))

res

Z(A)

res

Z(P)

(3.4)

It is well knownthat thelower row map is an isomorphism.By [10, Theorem 2.5] the upperoneisalsoanisomorphism.Consequently,wemayidentifythekernelsofthetwo verticalhomomorphisms.

4. K-standardadditivecategories

In this section, we introduce the notions of a K-standard additive category and a stronglyK-standardadditivecategory.

Let k be a commutative ring. We will assume that all functors and categories are k-linear.Throughout,A isak-linearadditivecategory, whichis always assumedto be skeletally small.

Definition 4.1.The category A is said to be K-standard (over k), provided that the following holds: given any k-linear triangle autoequivalence (F,ω) : Kb(A) Kb(A) satisfying F(A)⊆ A and any natural isomorphismθ0:F|A IdA, there is a natural transformation θ: (F,ω)→IdKb(A)oftrianglefunctorsextendingθ0.

The categoryA issaidto be stronglyK-standard (over k),iffurthermore theabove extension θisalwaysunique. 2

We observethattheaboveextensionθ isnecessarilyanisomorphism. Indeed,inthe notation of Lemma2.1, thetriangulated subcategory Iso(θ) contains A.Then we have Iso(θ)=Kb(A).

Lemma 4.2.LetA beasabove. Thenthefollowingstatementsare equivalent.

(1) The categoryA isK-standard.

(2) For any k-linear pseudo-identity (F,ω) on Kb(A), there is a natural isomorphism η: (F,ω)→IdKb(A)of trianglefunctors suchthatη|Aistheidentity.

(3) Any k-linear pseudo-identity(F,ω)on Kb(A)is isomorphic toIdKb(A),as triangle functors.

Proof. The implications (1) (2) and (2) (3) are clear. By Lemma 3.5, we have (3)(2).

For(2)(1),let(F,ω) andθ0beasinDefinition4.1.ByCorollary3.4anditsproof, there is a pseudo-identity(F) onKb(A) with anatural isomorphismθ: (F,ω)→ (F) such that θ|A = θ0. By assumption, there is an isomorphism η: (F) IdKb(A)withη|A theidentitytransformation.Take θ=η◦θ.Thenwearedone. 2

The centers of the homotopy category and the underlying additive category play a role forstronglyK-standardcategories.

Lemma 4.3.LetAbeak-linear additivecategory.ThenitisstronglyK-standardif and only if itisK-standard andthehomomorphism res in(3.2) for Aisanisomorphism.

Proof. Forthe“onlyif”part,itsufficestoshowthatthehomomorphism(3.2) isinjective, since we observe that in Section 3 it is always surjective. We claim that each λ in the kernel of (3.2) is zero. Indeed, both 1+λ and 1 are extensions of the identity transformation (IdKb(A))|A= IdAIdA.Bytheuniquenessoftheextensions,weinfer that1+λ= 1.

For the “if” part, we take two extensions θ,θ: (F,ω) IdKb(A) of the given iso-morphism θ0: F|AIdA. Asmentionedabove,both θ andθ areisomorphisms.Then

θ◦θ1lies inZ(Kb(A)),whoserestrictionto Aistheidentity transformation.Since thehomomorphism(3.2) isinjective,we inferthatθ◦θ −1 isequalto theidentity and thusθ=θ. 2

WehavethefollowingbasicpropertiesofaK-standardadditivecategory.

Lemma 4.4. Let A be a K-standard additive category. Then the following statements hold.

(1) Let (F,ω) : Kb(A) Kb(A) be a triangle autoequivalence with F(A) ⊆ A. If A has split idempotents, thenthere isan isomorphism(F,ω)−→ Kb(F|A)of triangle functors.

(2) AssumefurtherthatAisstronglyK-standard.LetF1,F2:A→ Abetwo autoequiv-alences, whichareisomorphic. Thenany natural transformationKb(F1)Kb(F2) of triangle functors is of the form Kb(η) for a unique natural transformation η:F1→F2.

Proof. (1)WehaveobservedinLemma3.1(3)thatF|A:A→ Aisanautoequivalence.

We fix its quasi-inverse G. Consider the triangle autoequivalence Kb(G)F, whose re-striction to A is isomorphic to the identity functor. By the K-standard property, we inferthatKb(G)F is isomorphicto theidentityfunctor. Consequently,we havethatF isisomorphictoKb(F|A).

(2) We fix a natural isomorphism δ: F2 F1. Take any natural transformation θ:Kb(F1)Kb(F2) oftrianglefunctors andset η=θ|A tobe itsrestrictionto A.By Lemma2.8thereareγ,γ∈Z(Kb(A)) satisfyingKb(F1)γ=Kb(δ)◦θandKb(F1= Kb(δ)Kb(η).We observe thatthe restrictionsof γ and γ to A coincide.Lemma 4.3 impliesthat thehomomorphism (3.2) isinjective. It follows thatγ =γ, whichproves thatθ=Kb(η). 2

An additive category A is split provided that it has split idempotents and every morphism f: X Y admits a factorization f = v◦u with u a retraction and v a section.

The following observation provides a trivial example for strongly K-standard cate-gories.

Lemma4.5. LetAbea splitcategory.ThenA isstronglyK-standard.

Proof. By assumption, we observe that any complex X in Kb(A) is isomorphic to a directsumofstalk complexes.Let(F,ω) andθ0 be asinDefinition4.1. Weset

θΣn(A)= Σn((θ0)A)◦ωAn:F(ΣnA)−→Σn(A)

for any A ∈ Aand n Z. Bythe additivity,θX:F(X) →X is defined forany com-plexX;compareLemma2.4.Thisyieldstherequiredextensionofθ0,whichisobviously unique. 2

ForaKrull–SchmidtcategoryA,wedenotebyindAacompletesetofrepresentatives of isomorphismclassesofindecomposableobjects.

The following notion is slightly generalized from [1]; see also [6]. A Krull–Schmidt category A is called an Orlov category provided that the endomorphism ring of each indecomposableobjectisadivisionringandthatthereisadegreefunctiondeg : indA→ Z satisfyingHomA(S,S)= 0 forany non-isomorphicS,SindAwithdegSdegS.

Thefollowing basicresultisdueto [1, Section 4].

Proposition 4.6. LetA bean Orlovcategory.Then AisstronglyK-standard.

Proof. Let (F,ω) and θ0 be as in Definition 4.1. Then F|A is automatically homoge-neous in the sense of [1, Definition 4.1]. Then theexistence of the extension θ follows from [1, Theorem 4.7],whose uniquenessfollows from thecommutativediagram (4.10) and Lemma 4.5(2)in [1].

In particular, the homomorphism (3.2) for A is an isomorphism. This can also be deduced from[6,Proposition 2.2(ii)]. 2

Example 4.7.Let k be acommutative artinian ring, and let A be an Artin k-algebra.

Denote by A-proj the category of finitely generated projective left A-modules. Then

Denote by A-proj the category of finitely generated projective left A-modules. Then

Documents relatifs