• Aucun résultat trouvé

A class of II1 factors without property P but with zero second cohomology

N/A
N/A
Protected

Academic year: 2022

Partager "A class of II1 factors without property P but with zero second cohomology "

Copied!
7
0
0

Texte intégral

(1)

A class of II1 factors without property P but with zero second cohomology

B. E. J o n N s o ~

University of Newcastle upon Tyne, England

I f ~ is a y o n N e u m a n n algebra, or i n d e e d a n y B a n a c h algebra, c)~2(~l, 9/) is t h e q u o t i e n t of t h e space o f c o n t i n u o u s bilinear m a p s S : 9~ • 9~ - + ~I such t h a t

bS(a, b, c) ~- aS(b, c) -- S(ab, c) -[- S(a, bc) -- S(a, b)c = 0 (a, b, c E 9.1) b y t h e subspace of t h o s e m a p s of t h e f o r m

S(a, b) = aR(b) -- t~(ab) + R(a)b = ((~R)(a, b)

for some c o n t i n u o u s linear m a p R : 9~ --> 9~. T h e b a c k g r o u n d to t h e p r e s e n t p a p e r is t h e t h r e e p a p e r s [6], [7] a n d [5], in w h i c h it is s h o w n t h a t c2/~(% ~l) = 0 for t y p e I y o n N e u m a n n algebras a n d for h y p e r f i n i t e y o n N e u m a n n algebras. I n this p a p e r we c o n s t r u c t some n o n h y p e r f i n i t e I I 1 f a c t o r s w h i c h h a v e this p r o p e r t y . Besides t h e t h r e e p a p e r s a b o v e we shall also use ideas f r o m [4].

LEMMA 1. Let G be a group of permutations of a set X , x o c X and H = {g : : g E G, gx o ---- x0}. S u p p o s e H is amenable and G is 3-fold transitive on X . T h e n

l ) = o.

f ~ ( X ) is t h e space of b o u n d e d f u n c t i o n s on X a n d if f E F ~ 1 7 6 g E G we define gf b y (gf)(x) ~ - f ( g - l x ) (x q X). C 1 is ~he set of c o n s t a n t f u n c t i o n s in ~ ( X ) a n d is closed u n d e r m u l t i p l i c a t i o n b y e l e m e n t s o f G so t h a t if F E f ~ 1 7 6 1, g F is well defined. S a y i n g 9 0 ( G , / ~ ( X ) / f J 1) = 0 m e a n s t h a t w h e n e v e r q~ is a m a p G - + ~ ~(X)/C 1 w i t h

Ilq~(g)li < K g E G

q)(gg') = qS(g) + gqb(g') g, g' E G,

t h a t is, if q~ is a b o u n d e d crossed h o m o m o r p h i s m , t h e n t h e r e is F C ~ ~176 1 w i t h

(2)

154 ~. ~. z o ~ s o ~ +(g) = g ~ - ~ g c r

t h a t is ~b is a p r i n c i p a l crossed h o m o m o r p h i s m . S a y i n g t h a t G is 3-fold transitive m e a n s t h a t if {x 1, x~, x3}, {x~, x' 2, x~} are t w o sets of 3 d i s t i n c t p o i n t s o f X t h e n t h e r e is g C G w i t h gxl = x'i i = 1, 2, 3. A m e n a b i l i t y o f g r o u p s is discussed in [3, w

P r o o f . I f X is f i n i t e t h e r e s u l t is a c o n s e q u e n c e of [4, T h e o r e m 3.4]. Accord- ingly we a s s u m e X has at least 3 points. L e t ~b be a b o u n d e d crossed h o m o m o r - p h i s m as above. As H is a m e n a b l e a n d as f ~ 1 7 6 1 is t h e d u a l of ~ - { a ; a E ~ ( X ) , (a, 1 ) ~ 0} a n d F ~ g F is t h e a d j o i n t o f t h e m a p a ~ a g w h e r e ag(x) = a(gx) on ~00, t h e r e is F in ~ ( X ) / C 1 w i t h ~ b ( h ) ~ h F - F for all h in H [4, T h e o r e m 2.5]. R e p l a c i n g ~b b y T : g ~ q~(g) - - g F -~ F we see t h a t T is a b o u n d e d crossed h o m o m o r p h i s m a n d T is p r i n c i p a l i f a n d o n l y i f ~b is.

T is zero on H so T ( g h ) = T ( g ) , g E G , h E H . T h u s T is c o n s t a n t on t h e left cosets o f H , w h i c h are in one t o one c o r r e s p o n d e n c e w i t h t h e p o i n t s o f X , a n d so can b e c o n s i d e r e d as a f u n c t i o n T ' on X w h i c h is zero a t x 0. I f ~ 0 = { f : f E S ~ ( X ) , f(Xo) = 0} t h e n t h e q u o t i e n t m a p q o n t o ~ | 1 is one to one on

+~ 0 a n d i f we define

(g o f ) ( x ) = f ( g - ~ x ) - - f ( g - l x o ) f C ~0, g E G, x e X

t h e n g o f E ~ 0 a n d q(g o f ) = gq(f). T h u s we can a s s u m e t h a t T ' t a k e s values in +~ r a t h e r t h a n F ~ ( X ) / C 1 a n d we h a v e

T ' ( g g ' ) = ~ ' ( g ) + g o ~g'(g').

L e t O(x, y) ~ ( T ' ( x ) ) ( y ) (x, y E X). T h e n O is a b o u n d e d c o m p l e x v a l u e d func- t i o n on X • X w h i c h is zero i f e i t h e r v a r i a b l e is x 0. T h e crossed h o m o m o r p h i s m p r o p e r t y for T shows

O(x, g-~y) - - O(x, g-~Xo) - - O(gx, y) + O(gx o, y) ~-- 0 g E G, x, y C X .

I f x, y E X ~ { x 0 } t h e n t h e r e is g E G w i t h gx o - - x o, g x ~ - - y a n d t h e a b o v e e q u a t i o n yields O(x, x) ~ O(y, y). I f g x o ~-- Xo, z ~ g - l y we get O(x, z) ---- O(gx, gz) so t h a t , because G is 3-fold t r a n s i t i v e on X , O is c o n s t a n t off t h e diagonal of (X ~ {x0} ) • (X ~ {x0}). I f ~ is t h e v a l u e o f O on t h e d i a g o n a l a n d fi t h e v a l u e o f f t h e diagonal t h e n w r i t i n g g-~y ~ z a n d choosing g w i t h gx ~ - - x o we h a v e

O(x, z) - - O(x, x) § O(gxo, gz) = 0

so t h a t if x, x o, z are d i s t i n c t t h e n ~ - - fi ~- ~ = 0. D e f i n i n g ~(x) = --fi if x :fi Xo,

~(xo) --~ 0 we easily c h e c k t h a t O(gxo ' y) : F ( g 4 y ) _ q)(g-~xo ) _ ~(y) for all g E G , y E X . ~ E ~ ~ a n d this e q u a t i o n can be r e w r i t t e n T ' ( g x o ) = g o q ~ - - f r o m w h i c h we see T ( g ) = gq(~) - q(q~).

T ~ E o ~ 2. L e t (Z, ~) be a locally compact, g-compact m e a s u r e space a n d G a group o f h o m e o m o r p h i s m s o f Z such that ~ o g is absolutely c o n t i n u o u s w i t h respect

(3)

A C L A S S O F I I 1 F A C T O R S W I T H O U T ] ? I ~ O P E R T Y P B U T W I T H Z E R O S E C O N D C O H O ~ O L O G Y ] 5 5

to ~ for all g in G. Let K be an amenable normal subgroup of G and H an amenable subgroup containing K . We suppose that

(i) ~ ; N c ' Z U g = ( 0 ) i f g # e (ii) K is ergodic on Z

(iii) G is 3-fold transitive on the left coset space G / H

where the notation is that of [1, p. 134]. Let 95 be the yon ~Veumann algebra con- structed f r o m Z, ~, G [1, p. 133--135]. T h e n 9E~(~N, c~) = 0.

Proof. W e shall use the n o t a t i o n of [1, Ch. 1, w in particular t h a t o f E x . 1 p. 137.

L e t 910 be t h e n o r m closed *subalgebra of ~ ( ~ ) g e n e r a t e d b y t h e operators { q ) ( T ) ; T E t Z } , {Uk;/c C K}, 91 the w e a k closure of 92[ 0 , go the n o r m closed algebra g e n e r a t e d b y {q)'(T) ; T E t Z } a n d {U~',; h E H } a n d ~3 t h e w e a k closure of go. I t is easy to see t h a t t h e s u b g r o u p cU of the u n i t a r y group of 910 generated b y the { r U - 1 = U * E a } a n d { U k ; / c E K } is an extension of the abelian group {qs(U): U - l = U* E t;Z} b y a group isomorphic with K and so ~Zd is a m e n a b l e [3, T h e o r e m s 17.5 a n d 17.14]. T h u s 91 0 is s t r o n g l y a m e n a b l e [4, Pro- position 7.8]. Similarly ~3o is strongly amenable. I f M is a t r a n s l a t i o n i n v a r i a n t m e a n on ell t h e n defining

( P X ~ , ~ ) = M ( U * X U ~ , v ) ~ , ~ E ~, X e?-~(~O),

U E IZ

where the right h a n d side indicates t h e v a l u e of M at t h e function U ~+ ( U * X U~, ~]), we define a projection P : ~E-(~) --> 910 = 91' with ! P ( X B ) = P ( X ) B , P ( B X ) =

= B P ( X ) for B E 91', X E 5~(~)). There is a similar projection Q onto ~3'.

B y [5, L e m m a 5.4] to show 9~2(c75, ~r~) = 0 it is enough to show t h a t if S : qvo• N _+ ~/r~ is s e p a r a t e l y u l t r a w e a k l y continuous, dS = 0 a n d S(a, b ) = 0 if either a or b lies in 910 (and so too if a or b lies in 91) t h e n N = dR 0 for some n o r m continuous m a p Ro : ~N - ~ ~-r--~. Using [7, T h e o r e m 2.4] we see t h a t there is a n o r m continuous m a p /~ : ~ --~ ~ ( ~ ) with S = dR and b y [5, L e m m a 5.5]

with ql~ = ~ ( ~ ) we can t a k e /~ to b e u l t r a w e a k l y continuous. As R(ab) =

= aR(b) -~ l~(a)b for all a in 91 using t h e definition of a m e n a b l e algebra [4, w we see t h a t t h e r e is x C ~ ( ~ ) with J ~ ( a ) = a x - - x a for all a in 910 and so, b y n l t r a w e a k continuity, for all a in 91. Replacing _R b y a ~+ t~(a) - - ax -~ xa if necessary we can assume R is zero on 9I. R e p l a c i n g /~ b y QR if necessary we can assume in addition t h a t R m a p s 9~ into ~3'. W e h a v e 0 = S(a, b) =

= aR(b) - - R(ab) a E 91, b E 9~. Similarly JR(ba) = R(b)a a E 91, b E ~ .

The set of generators of 910 is m a p p e d onto itself u n d e r t h e a u t o m o r p h i s m X ~ + U* X~/g of ? ~ ( 5 ) so U* 9 l U g = 91 for all g in G. H e n c e _R(Ug)U* A U g =

(4)

156 B . E . g o d . s o N

= R(A~Ts) = A/~(~Ts) for all A C 91, g E G, so t h a t R(~;g)U* E 9/'. Also R(~Tg)Ug*

E ~ ' because /~(~?g) a n d ~?g are.

is a direct s u m of copies of ~ ~) so a n y element L of ~_Z(~) can be repre- s e n t e d as a G • G m a t r i x w i t h entries from ~ ( ~ ) ) . W e shall investigate t h e special form this m a t r i x t a k e s w h e n L E 9/' fl ~ ' . As Lq~(T) = r we h a v e Ls,~ T =

= TL~,= for all T in ~ , s, u in G. As ~7~ is m a x i m a l abelian this shows Ls, ~ E ~Z..

A similar calculation s t a r t i n g f r o m Lq~'(T) = qb'(T)L shows Ls, u E U~ ~ U* ----

= ~ Us~-, so L ~ , , E ~ N ~ U s ~ _ , = { 0 } i f s v e u . Thus Ls0~= ~,~Y, where for each s in G, Y, E ~ . The e q u a t i o n LUk = (TkL shows Yk~ = UkY,,U*

for / c E K , u E G . The e q u a t i o n LLT~= l~'hL shows Y , h = Y~ for all u E G , h E H . T h u s Y~ = Uk Yk~Uk : Uk Y~-,k~Uk = * * UkY~Uk, u E G , * k E K . As K is ergodic on Z this implies Y ~ = y ~ I o for some y ~ E C . T h u s if L E 9 / ' A !3' t h e n

L~,t = (5~,ty~Io

for some complex v a l u e d f u n c t i o n y on G which is c o n s t a n t on t h e left cosets of H . Clearly y is bounded. W r i t i n g J L for y we see t h a t J is a linear i s o m e t r y of 9~'N ~ ' o n t o ~ ( X ) where X is t h e space of left eosets of H in G. More- over UgLU* e 9/' gl ~ ' a n d J(UgL~]*) = g J L where t h e p r o d u c t of g E G, J L C f ~ ( X ) is as d e f i n e d in L e m m a 1. A n o t h e r calculation shows t h a t J ( ~ N 9/') =

= e l .

r u t 0(g) = The e q u a t i o n S ( @ = where

S ( U v Ug,)Ug, Ug*-*E~ a n d R(Ug,,)Ug* C 9 ~ ' ~ 1 ~ ' for all g " E G shows t h a t bR(~7, Ug,)U~ U* e ~ f'l 9/' f r o m which we see gq~o(g') -- #(gg') + #(g) E C 1.

Thus q~b 0 is a b o u n d e d crossed h o m o m o r p h i s m f r o m G into / ~ 1. L e t z ~ / * ( X ) w i t h q#o(g) = gq(z) -- q(z) (using t h e L e m m a ) a n d let L 0 E 9~' N ~ ' w i t h J L o = z . W e h a v e

-- U~L oU~ + Lo) E C l

so t h a t -- U~LoU ~ + L o E C I ~ ~ ~/~. - * T h u s defining R0(B) = R(B) -- -- ( B L o --/LoB ) for all B in ~ we see t h a t R o is a n u l t r a w e a k l y continuous m a p from ~ into !3'.

Because /Lo E 9/' a n d R ( A B ) = A R ( B ) , B ( B A ) = 2R(B)A a n d _R(A) ---- 0 if A ~ 9/, B ~ ~ , R o has t h e same properties. I n a d d i t i o n if g ~ G t h e n /?o(fig) ----

= (R(Us)U* -- ~7~Log~* + L0)U ~ e ~ . T h u s i f T E ~ , g E G t h e n Bo(q~(T)Ug ) :

= Og(T)Ro(~7) E ~?~. As R o is u l t r a w e a k l y continuous a n d t h e u l t r a w e a k l y closed linear span of t h e 09@) Ug is ~2~ we see t h a t R 0 ( ~ ) _~ ~2~. F o r all B x, B~ in

w e h a v e

S(B~, B~) -~ B~R(B~) -- R(BxB~) + R(B~)B+= = B~Ro(B~) -- Ro(B~B~) + Ro(B~)B v

(5)

A C L A S S O F I I 1 : F A C T O R S W I T H O U T P R O : P E R T Y P B U T W I T H Z E R O S E C O N D C O t I O M O L O G Y ] 5 7

T h u s t o p r o v i d e o u r e x a m p l e we h a v e o n l y t o show t h a t t h e h y p o t h e s e s can be satisfied in some s i t u a t i o n in w h i c h ~ is a t y p e I][ 1 f a c t o r w i t h o u t p r o p e r t y P [8, D e f i n i t i o n 1]. T o f a c i l i t a t e this we simplify c o n d i t i o n * [1, p. 135].

L]~MMX 3. Let Z be a locally compact a-compact metrizable space, ~ a positive Radon measure on Z, s a homeomorphism of Z. Then the following condition * is satisfied i f and only i f v((z : z E Z, sz : z}) = O.

(*) For each measurable set Z' in Z with v(Z') r 0 there is a measurable subset Z" of Z' with r(Z")=/= 0 and Z " n 8 Z " = 0 .

Proof. I f F = { z : z E Z , z = sz} has v(F) = O, Z' c Z, v(Z') > 0 is a m e t r i c on Z c o m p a r a b l e w i t h t h e t o p o l o g y t h e n

a n d d

Z~ = {z : z e Z', d(z, sz) > n -~}

defines a m o n o t o n i c increasing sequence o f m e a s u r a b l e subsets o f Z w i t h u n i o n Z ~ F w h e r e v ( Z ~ F ) = v ( Z ) > 0. T h u s for some n , v ( Z , ) > O. T a k i n g a c o m p a c t subset K of Z , w i t h v(K) > 0 a n d a ball B c e n t r e z 0 o f radius (2n) -1 w i t h ~ ( B n K ) > 0 we p u t Z " = B f ] K . T h e n if z E Z " we h a v e d(z0, s z ) >

> d(z, sz) -- d(z 0, z) > (2n) -1 showing sz ~ Z". T h e converse is obvious.

= Q~

Example 4. I n T h e o r e m 2 let Z Z 2 , t h a t is t h e p r o d u c t of a c o u n t a b l e n u m b e r o f copies o f t h e g r o u p o f integers rood 2, t h e f a c t o r s being i n d e x e d b y p a i r s o f r a t i o n a l n u m b e r s , w i t h t h e u s u a l p r o d u c t t o p o l o g y a n d let v be H a a r m e a s u r e on Z w i t h v(Z) = 1. T h u s Z is a c o m p a c t m e t r i z a b l e g r o u p . L e t Z 0 = ( z : z E Z , z e : 0 for all b u t a f i n i t e n u m b e r o f p E Q2} a n d let K be t h e set of all m a p p i n g s o f Z o n t o itself o f t h e f o r m z ~ + z ~ - z 0. K is t h e n a n abelian g r o u p o f h o m e o m o r p h i s m s p r e s e r v i n g v and, in p a r t i c u l a r , is a m e n a b l e [3, T h e o r e m 17.5]. I f F E L ~ ( v ) has F ( l c z ) : F ( z ) for a l m o s t all z in Z for each k E K t h e n we h a v e f f ( z -- zo)F(z)&(z ) -- ff(z)F(z)dv(z) ( f E C(Z), z 0 E Z0). As

y~ff(z-

y)F(z)dv(z) is c o n t i n u o u s a n d Z o is dense in Z this shows F v is an i n v a r i a n t i n t e g r a l on C(Z) a n d h e n c e F is a c o n s t a n t . T h u s K is ergodic on Z.

F o r a n y one t o one m a p ~ o f Q~ o n t o itself a ' : z ~ - ~ { z ~ ( p ) ; p E Q~} is a n a u t o m o r p h i s m o f t h e topological g r o u p Z a n d so is a h o m e o m o r p h i s m p r e s e r v i n g v.

G is t h e g r o u p o f h o m e o m o r p h i s m s of Z g e n e r a t e d b y K a n d t h e a ' w i t h a E SL(2, Q) w h e r e t h e m a t r i x g r o u p acts on Q2 in t h e usual way. E v e r y e l e m e n t of G can be w r i t t e n /ca', /~ E K , ~ ESL(2, Q) in e x a c t l y one w a y . I f a E SL(2, Q), a n d a is n o t t h e i d e n t i t y t h e n ~ has an i n f i n i t e n u m b e r of n o n f i x e d p o i n t s in its a c t i o n on Q2 so we can f i n d an i n f i n i t e subset E of Q2 w i t h E f l a ( E ) : O. I f / c E K is t h e h o m e o m o r p h i s m z ~-> y - ~ z t h e n t h e e q u a t i o n ]ca'z = z is e q u i v a l e n t t o t h e s y s t e m zp = z~(p) -~- yp (p C Q2) so t h a t if E o is a subset of E c o n t a i n i n g e x a c t l y n e l e m e n t s t h e set o f f i x e d p o i n t s of /ca' is a subset o f

(6)

158 B . E . JOHNSON

{z : z ~ Z, % = z~(~) § y~, p ~ Eo}

where this l a t t e r set has v measure 2 -~. Thus t h e set of f i x e d points of k~x' has measure zero. I f k E K t h e n k has no f i x e d points unless k is t h e i d e n t i t y . T h u s b y L e m m a 3 we see t h a t G satisfies condition *. G is ergodie on Z because K is.

Thus [1, p. 135] condition (i) of Theorem 3 holds.

L e t H be t h e subgroup of G containing K a n d those h o m e o m o r p h i s m s ~' where c ~ E / " I = { c ~ : ~ S L ( 2 , O), ~ = 0} a n d H~ t h e group g e n e r a t e d b y K a n d t h e c~' w i t h

a E r 2 = {c~ : ~ E SL(2, O), oh1 = 1, ~21 = 0}.

F 2 is n o r m a l in 1"1 a n d //1 a n d H are t h e inverse images of /"2 a n d F 1 u n d e r t h e isomorphism s:/c~'~-> c~ of G/K onto SL(2, Q) so t h a t K is n o r m a l in H 1 , / / 1 is n o r m a l in H a n d K, H1/K a n d H / H 1 are abelian. Thus [3, Theorems 17.5 a n d 17.14] H is amenable. I n t h e usual w a y SL(2, Q) acts on the r a t i o n a l projective line a n d /"1 is t h e subgroup leaving (0, 1) fixed. U n d e r z t h e action of G on G/H is m a p p e d onto this action a n d it is well k n o w n t h a t the action of SL(2, Q) on t h e projective line is 3-fold transitive. Thus condition (iii) of T h e o r e m 2 is satisfied. B y [1, p. 135] c~ is a I I 1 factor.

To complete our example we copy t h e a r g u m e n t in [8, L e m m a 7] to show t h a t does n o t have p r o p e r t y P . As G contains a group isomorphic w i t h SL(2, Z) which in t u r n contains a free group on two generators ([2, p. 26]), G is n o t amen- able [3, T h e o r e m 17.16]. H o w e v e r ~N is spatially isomorphic w i t h ~L~' [1, p. 137, Ex. 1] so t h a t if ~d has p r o p e r t y P so has ~?-3' a n d in this ease there is a s t a t e on ~ ( ~ ) ) w i t h T ( U * A U ) = ~(A) w h e n e v e r A E ~ s a n d U is u n i t a r y in

~;~' [8, Corollary 6]. I f F C f ~ ( G ) a n d A F is the element of ~-2(~) defined b y (AF),, , = F(s)Ia if s = t, (AF),, t = 0 otherwise, t h e n denote z(AF) b y M(F).

M is t h e n a state on / ~ ( G ) a n d M(gF) = z(AgF) : z(~J'gAf~7"g*) = z(AF) = M(F) so t h a t M is a n i n v a r i a n t m e a n for f ~ ( G ) .

References

1. DIX~IEI~, J., Les alg~bres d' op~rateurs clans l' espace Hilberticn, 2nd edition, Gauthier-Villars, Paris, 1969.

2. I-IALr~, P. a n d I-IARTLEY, B., The s t a b i l i t y group of a series of subgroups, Proc. London 2~iath.

Soc. (3) 16 (1966), 1--39.

3. HEWIT~, E. a n d R o s s , ~2. A., Abstract harmonic analysis, Vol. 1, Springer, Berlin, 1963.

4. JOHNSO~r, B. E., Cohomology in B a n a c h algebras, Mere. A m e r . Math. Soc., 127 (1972).

5. --~)-- KM)ISObr, R. V. a n d I~INGROSE, J. R., Cohomology of operator algebras I I I , Reduction to n o r m a l c0homology, Bull. Soc. Math. France 100 (1972), 73--96.

(7)

A C L A S S OF I I 1 F A C T O R S W I T H O U T P R O P E R T Y P B U T W I T I t Z E R O S E C O N D C O H O ) I O L O G Y 159

6. KADISON, R. V. a n d t ~ I N G R O S E , J . R . , Cohomology of operator algebras I, Type I yon N e u m a n n algebras, Acta Math. 126 (1971), 227--243.

7. --~>-- --~>-- Cohomology of operator algebras I I , E x t e n d e d cobounding and the h y p e r - finite case, Ark. Mat. 9 (1971), 55--63.

8. SCHWARTZ, J. T., Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl.

Math. 14 (1963), 19--26.

Received September 11, 1972 ]3. E. Johnson

U n i v e r s i t y of Newcastle Newcastle upon Tyne E n g l a n d

Références

Documents relatifs

In the next section, we briefly review the basics of substitution tilings, projection methods, tiling cohomology, and the construction of the maximal equicontinuous factor.. In

Systems arising from self-similar tilings are known to be linearly repetitive, this means there exists a positive constant L, such that every pattern of diameter D appears in every

Let X be a non-algebraic compact complex surface.. Then there exist strongly irreducible holomorphic vector bundles of rank 2 on X. 170), ifX has no curves it follows that ft is

At the output of the classifier (the fifth layer), the degree of belonging of the considered NON- factor to various classes is formed. Figure 2 shows an example of

Determining the order and the structure of the automorphism group of a finite p-group is an important problem in group theory.. There have been a number of studies of the

La métropole est directement gérée par les services de l’Etat. Les gouvernements successifs ne possèdent pas de vision globale en ce qui concerne les stratégies

It can be said that a typical non-degenerate integrable system (in the sense of Kolmogorov, Arnold or Nekhoroshev) is non-convex nor quasi-convex, but for these systems,

catherine.cavalin@sciencespo.fr SILICOSIS project, ERC Advanced Grant, Centre for European Studies, Sciences Po, Paris, France (CC, OM, P-AR); Laboratory for Interdisciplinary