• Aucun résultat trouvé

Impact of the growth conditions of colloidal PbS nanocrystals on photovoltaic device performance

N/A
N/A
Protected

Academic year: 2021

Partager "Impact of the growth conditions of colloidal PbS nanocrystals on photovoltaic device performance"

Copied!
8
0
0

Texte intégral

(1)

S1

Supporting Information

Impact of the Growth Conditions of Colloidal PbS Nanocrystals on Photovoltaic

Device Performance

Huiying Fu,† Sai-Wing Tsang,† Yanguang Zhang,† Jianying Ouyang, ‡ Jianping Lu,*, † Kui Yu*, ‡ and Ye Tao*, †

Institute for Microstructural Sciences,† Steacie Institute for Molecular Sciences, ‡ National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada

E-mail: Jianping.Lu@nrc-cnrc.gc.ca; Kui.Yu@nrc-cnrc.gc.ca; Ye.Tao@nrc-cnrc.gc.ca;

Table of contents

Absorption and PL spectra of the PbS nanocrystals S2

XPS spectra of the as-synthesized PbS nanocrystals S3

TEM images of cross-linked PbS nanocrystals with 1,3- benzenedithiol S4

FTIR spectra of cross-linked PbS nanocrystals with 1,3- benzenedithiol S5

Nanocrystal mono-dispersivity on PV device performance S6

PbS nanocrystal PV device performance at different light intensities S7

(2)

S2 Absorption and PL spectra of the PbS nanocrystals

Figure S1. Absorption and PL spectra of the PbS nanocrystals grown at an OA concentration in ODE of 0.51 mol/kg after growth at 90 °C for 3 min.

(3)

S3 XPS spectra of the as-synthesized PbS nanocrystals

1000 800 600 400 200 0 0 20 40 60 80 100 120 140 In te n s it y ( k C P S )

Bonding Energy (eV)

P b 5 d P b 5 p P b 5 p 1 /2 P b 4 f7 /2 P b 4 f5 /2 S 2 p S 2 s C 1 s P b 4 d 5 /2 P b 4 d 3 /2 O 1 s P b 4 p 3 /2 P b 4 p 1 /2 P b 4 s O K L L (a) 152 148 144 140 136 132 0 2 4 6 8 10 12 14 16 18 20 P b 4 f In te n s it y ( k C P S )

Binding Energy (eV) (b) P b 4 f PbS PbS 172 170 168 166 164 162 160 158 156 154 4.0 4.5 5.0 5.5 6.0 6.5 In te n s it y ( k C P S )

Binding Energy (eV)

S 2 p (c) 300 295 290 285 280 275 4 6 8 10 12 14 16 18 20 22 In te n s it y ( k C P S )

Binding Energy (eV)

C 1 s C 1s C-C, C-H C 1S C=O (d)

Figure S2. (a) XPS survey spectra of the as-synthesized PbS nanocrystals. (b), (c) and (d) High resolution of Pb 4f, S 2p and C 1s spectra of PbS nanocrystals.

(4)

S4

TEM images of the cross-linked PbS nanocrystals with with 1,3-benzenedithiol

Figure S3. (a) TEM and (b) HRTEM images of PbS nanocrystals cross-linked with 1,3-benzenedithiol.

Thiols strongly binds with the Pb atoms on NC surface. After cross-linking, the inter-nanocrystal distance is reduced from 2 nm to 0.6 nm. The small 1,3- benzenedithiol can tightly crosslink NC thin films and facilitate the layer-by-layer process. Compared with 1,4- benzodithiol, 1,3-benzodithiol can bring NCs into closer contact. Compared with 1,2-ethylene dithiols (EDT), the lower vapour pressure of 1,3-BDT makes it easier to be handled during the fabrication processes.

(5)

S5

FTIR spectra of cross-linked PbS nanocrystals with 1,3- benzenedithiol

Figure S4. FTIR spectra of a PbS nanocrystals thin film (15 nm) spin cast on Si substrate before (oleic acid capped) and after (1,3-Benzenedithiol capped) cross-linking. After cross-linking the intensity of C-H (2856 cm-1 and 2925 cm-1) vibration arising from oleic acid is largely reduced. Instead, three new absorption peaks were observed at 1558, 1540, and 1454 cm-1, indicating the pesence of 1,3-benzenedithiol.

(6)

S6

Nanocrystal mono-dispersivity on PV device performance

Figure S5 The fill-factor (FF) and power conversion efficiency (PCE) of Schottky-type PbS nanocrystal PV devices fabricated with nanocrystals with different first excitonic peak width (w). The peak widths were obtained by fitting the first excitonic peak with Gaussian functions. The first excitonic peak position of different samples were chosen at 1000±50 nm.

(7)

S7

PbS nanocrystal PV device performance at different light intensities

Figure S6 (a) J-V characteristics, (b) VOC and FF, (c) JSC, and (d) PCE of Schottky-type PbS

nanocrystals device performance at different light intensities of AM 1.5G illumination. The linear dependence of JSC on excitation density suggests geminate recombination as the major recombination

(8)

S8

Summary of the photovoltaic performance for the PbS nanocrystals with different storage time

Table S1. Summary of the photovoltaic performance of ITO/PbS-BDT/LiF/Al devices based on PbS nanocrystals storied in the glovebox for different time. PbS NCs were from the same batch.

PV cell performance Thickness of PbS NCs (nm) JSC (EQE) (mA/cm2) VOC (V) FF (%) PCE (EQE) (%) As-synthesized PbS NCs 10.85 0.55 59 3.5 1 month 11.33 0.57 58 3.8 2 months 11.19 0.55 59 3.6 Storage time in the glovebox 4 months 110 to 115 11.23 0.55 57 3.5

Figure

Figure S1. Absorption and PL spectra of the PbS nanocrystals grown at an OA concentration in ODE of  0.51 mol/kg after growth at 90 ° C for 3 min
Figure  S2.  (a)  XPS  survey  spectra  of  the  as-synthesized  PbS  nanocrystals.  (b),  (c)  and  (d)  High  resolution of Pb 4f, S 2p and C 1s spectra of PbS nanocrystals
Figure S3. (a) TEM and (b)  HRTEM images of PbS nanocrystals cross-linked with 1,3-benzenedithiol
Figure S4. FTIR spectra of a PbS nanocrystals thin film (15 nm) spin cast on Si substrate before (oleic  acid capped) and after (1,3-Benzenedithiol capped) cross-linking
+4

Références

Documents relatifs

channel current (between drain and source) as a function of the gate voltage, are shown in figure 4.8 of both N-type and P-type TFTs with same channel size, (40μm large and 20μm

- To recapitulate, pro- visional energy band pictures have been obtained for GeTe, SnTe, PbTe, PbSe, and PbS by carrying out relativistic OPW band calculations at

Des cellules HEK exprimant constitivement TLR2 (cellules HEK T2Y recombinantes) ont été transfectées avec un plasmide rapporteur NF-B-luciférase et un plasmide vide comme

Avec ma règle, j’ai tracé le triangle ABM et ensuite je trace la perpendiculaire à AB passant par M et ça marche..

• « Elles nécessitent une synthèse, brève, qui porte non seulement sur les quelques notions, résultats et outils de base que les élèves doivent connaître, mais aussi sur

At the lower temperature, T = 5 K, the ETS is modulated by sharp conductance peaks which are char- acteristics Coulomb blockade peaks in the shell filling regime[28]. In this

Simples et peu chers à fabriquer, les PE constituent la matière plastique la plus commune, représentant avec 100 millions de tonnes, environ un tiers de l'ensemble des

Plasmid Drug marker Use Reference pSIM5 Chloramphenicol λ Red recombinase Datta et al., 2006[1].. pBS-kan r Kanamycin Kanamycin