• Aucun résultat trouvé

Homogenization of a conductive and radiative heat transfer problem

N/A
N/A
Protected

Academic year: 2021

Partager "Homogenization of a conductive and radiative heat transfer problem"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: hal-00784061

https://hal.inria.fr/hal-00784061

Submitted on 4 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

transfer problem

Grégoire Allaire, K. El Ganaoui

To cite this version:

Grégoire Allaire, K. El Ganaoui. Homogenization of a conductive and radiative heat transfer problem.

Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2009, 7 (3), pp.1148-1170. �10.1137/080714737�. �hal-00784061�

(2)

CENTRE DE MATHÉMATIQUES APPLIQUÉES

UMR CNRS 7641

91128PALAISEAU CEDEX (FRANCE).Tél: 0169 33 4600. Fax: 01 69 3346 46

http://www.map.polytehnique.fr/

Homogenization of a ondutive

and radiative heat transfer

problem

Grégoire Allaire, Karima El Ganaoui

R.I. 639 September 2008

(3)
(4)

GRÉGOIRE ALLAIRE

AND KARIMA ELGANAOUI

Abstrat. Thispaper isdevoted tothe homogenizationof a heat ondution problem ina

periodiallyperforateddomainwithanonlinearandnonloalboundaryonditionmodelingradiative

heattransfer intheperforations. Beause ofthe onsideredritialsalingit isessentialtousea

methodoftwo-saleasymptotiexpansionsinsidethe variationalformulationofthe problem. We

obtain a nonlinear homogenized problem of heat ondution with eetive oeients whih are

omputedviaaellproblemfeaturingaradiativeheattransfer boundaryondition. Werigorously

justifythishomogenizationproess forthelinearizedproblembyusingtwo-saleonvergene. We

perform numerialsimulationsin2-d: wereonstrutanapproximatetemperature eldbyadding

tothe homogenizedtemperature aorretorterm. Theomputednumerial errorsagreewiththe

theoretial preditederrorsand provethe eetiveness ofourmethod formultisale simulationof

ondutiveandradiativeheattransferproblemsinperiodiallyperforateddomains.

Keywords.Homogenization,two-saleonvergene,radiativetransfer,heatondution.

AMSsubjet lassiations.

1. Introdution. The goal of this paper is to theoretially and numerially

study the homogenization of a ondutiveand radiative heat transferproblem in a

perforatedperiodimedia. The motivation of this problem omes from the nulear

reator industry: an alternative onept to the usual pressurized water reators is

thatofgasooledreators. Typially,agraphitematrix(playingtheroleofneutron

moderator)isperiodiallyperforatedbylonghannelsontainingeithertheuranium

fueloragasoolantwhihishelium. Reallthatthessionnulearreationsprodue

alargeamountofheatwhihshouldberemovedfromthereatororebyaoolantin

ordertoativateasteamgenerator(throughaheatexhanger)andnallytoprodue

eletriity. Herewefousonlyontheheattransferprobleminsuhanheterogeneous

medium. Tosimplifytheexposition,weassumethatthegraphiteanduraniummatrix

isalreadyhomogenizedandanbeonsideredasasinglehomogeneousmaterial. In-

sidethismatrixheat istransmittedbysimplelinearondution. Ontheotherhand,

the helium heat ondutivity is ompletely negligible with respet to the radiative

transfer taking plae inside the hannels. We therefore fae a oupled problem of

heat ondution and radiation where the number of helium hannels is very large,

typially of the order of 104. For dimensioning purposes as well as safety studies manynumerialsimulationshavetobeperformedforwhihadiretapproah(mesh-

ing all the geometri details) is impossible, orat least muh too ostly. Therefore,

homogenizationisaneessaryingredientforthestudyofsuhdevies.

Inthisproblemthegoalofhomogenizationistwofold: rst,itmustyieldalear

denition of what is the homogenized problem, and seond, it has to give expliit

formulas for the eetive parameters as well as a reipe to approximate the exat

solution. Indeed,sinetheoriginalmodel isamixtureoftwodierenttypeofequa-

tions(ondutionandradiativetransfer),thepreiseformofthehomogenizedsystem

is not lear a priori. Conerning the seond point, the original problem is posed

in aperforatedmedium whilethe homogenizedproblem is posed in ahomogeneous

ThisworkhasbeensupportedbytheFrenhAtomiEnergyCommission,DEN/DM2SatCEA

Salay.

CMAP,(gregoire.allairepolyte hniq ue. fr) .

CMAP,(ganaouimap.polytehniq ue.f r).

(5)

medium, sotaking into aount orretorterms is of paramount importane if one

wantsageometriallysoundreonstrutionofanapproximatesolution.

Let us ome bak to the physial modeling of the original problem. The true

problemis three-dimensionalbut theheliumhannelsarelongparalleltubes,soho-

mogenization takes plae only in the ross setion. Therefore, it is not a severe

restritiontoonsideronlythetwo-dimensionalhomogenizationofarosssetionof

thegeometry (see Figure2.1) asweshall dobelow. Asusual in homogenizationwe

denote byε the period. The matrixperforateddomain is ε where energytransfer

is done by ondution. The tubes or holes are τε,i, with boundariesΓε,i whih are

grey-diuse surfaes, and are lled by helium, assumed to be a transparentmedia

withoutheat ondution norabsorption of radiation. Under these assumptions, the

radiation equation anbeintegrated inside eah hole τε,i to produe a ompliated

(non linear and non loal) boundary ondition on the wall Γε,i. Setion 2.2 gives

a preise desriptionof this boundaryondition. Let us simply gives theomplete

model when theemissivity is equalto one. Forgiven bulkand surfaeheat soure

termsf andg,thetemperatureTεisasolutionof

div(KεTε) = f in ε,

KεTε·n = g on ∂Ω,

KεTε·n = σ

ε Tε4(x) Z

Γε,i

F(x, s)Tε4(s)dγ(s)

!

on Γε,i,

(1.1)

where F(x, s) is the so-alled view fator for the wall Γε,i. The saling ε−1 in the

righthand sideof theboundaryonditionyieldsaperfetbalane, in thelimit asε

goestozero,betweenthebulkheatondution andthesurfaeradiativetransfer. A

dierentsalingwas studiedin[7℄.

Sine the seminal paper [12℄ it is known that the use of two-sale asymptoti

expansionsinperforateddomainsissometimesdeliate,espeiallywhentheboundary

onditionsarenonlinearandnonloal ashere. Indeed,thehomogenization of(1.1)

by the formal method of two-sale asymptoti expansions(as presented in [8℄, [9℄,

[11℄,[21℄)isnotompletelyobvious,allthemoreifoneworkswiththestrongfromof

theequations. Asexplainedin Setion3itismuhsimplerto performthetwo-sale

asymptoti expansionsin the variationalformulation of (1.1), symmetriallyin the

unknownand inthetest funtion (followinganideaofJ.-L. Lions[16℄). Asaresult

we obtain that the leading term T(x) in the ansatz of Tε(x) is the solution of the

followingnonlinearhomogenizedproblem

(

div(K(T)T) = mes(Y

)

mes(Y)f in Ω,

K(T)T·n = g on ∂Ω, (1.2)

whereK(T)istheeetiveondutivity,dependingonthemarosopitemperature

T,anddenedthroughaloalellproblem(3.3)whihisalinearizedondutiveand

radiativetransferproblemintheunit ell(seeProposition 3.1).

In Setion 4 we give a rigorous justiation of suh an homogenization result

for the linearized versionof (1.1) (see Theorem 4.6). Our main toolsare two-sale

onvergene[2℄,[20℄andsuitableTaylorexpansionsofthetestfuntion oneahhole

boundaryΓε,i inordertotakeadvantageof theviewfatorproperties.

Eventually Setion 5is onerned with numerial simulations for this problem.

Followingalassialideainperiodihomogenization,weapproximatethesolutionTε

(6)

of (1.1)bythetworsttermsofitsansatz,i.e.,thehomogenizedsolutionT plusthe

so-alledorretorterm

Tε(x)T(x) +ε Xd i=1

ωi

T3(x),x ε

∂T

∂xi

(x), (1.3)

whereωiarethesolutionsoftheellproblems. SineT isdenedinthefulldomain while Tε is merely dened in the perforated domain ε, the orretor term is

ruialfor agoodapproximation. Wemakeomparisonsbetweentheexatsolution

Tε (or,at least, aonvergednumerialapproximationof it,when available)and the reonstrution(1.3). WeobtainanumerialerrorestimateoftheorderofεinL2(Ω),

as predited by homogenization theory [9℄. Of ourse, the gain in terms of CPU

timeand memorystorageis enormouswhen using (1.3)insteadofsolvingtheexat

problem(1.1)sinethehomogenizedproblem(1.2)requiresonlyaoarsemesh. Note

howeverthattheellproblemmustbesolvedfordierentvaluesof themarosopi

temperatureT. Finallyletus mentionthat aslightlysimplermodelis studiedin [6℄

andthatmoredetailsanbefoundin[14℄.

2. Setting of the problem. Thegoalof thissetion isto denepreisely the

geometry of theperforated periodi medium, to introdue the model of ondutive

andradiativeheat transferproblemandtogivesomenotations.

Figure2.1. Refereneellandperiodidomain

2.1. Geometry. Letbeasmoothbounded opensetin Rd (d= 2or3in the

appliations). Wedeneaperiodiperforateddomainε,whereεdenotesitsperiod,

byremovingfromaolletionofholesε,k)k=1,...,M(ε)inaperiodimanner. Eah

holeτεk isequal,uptoatranslation, tothesameunit holeτ resaledatsize ε. The

domain is also subdivided in N(ε) periodiity ells (Yε,i)i=1,...,N(ε), eah of them

beingequal,uptoatranslation,to thesameunit ellY =Qd

j=1(0, ℓj). Thenumber

ofperiodiityellsisnotequaltothenumberofholessine,intheappliationtogas

ooledreators,thereareseveralholesperell(seeFigure2.1). WedenotebyY the

(7)

solid partof Y, i.e., Y =Y \τ, and by Γ the boundary of τ (by aslightabuseof

languagewedenote byτ anindividual holeaswellasall theholesontainedin the

unitellY). Toavoidsomeunneessarytehnialities(see[1℄fordetails),weassume that,ifaperiodiityellutstheboundaryof , thenit doesnotontainanyhole.

Theholesτε,k orrespondtoheliumhannelsinourappliationwhereradiativeheat

transfertakesplae,whileεorrespondstothesoliddomainwhereondutiontakes

plae. Insummarywehave

ε= Ω\

M(ε)[

k=1

τε,k, ∂Ωε=∂ΩΓε with Γε=

M(ε)[

k=1

∂τε,k=

N(ε)

[

i=1

Γε,i, (2.1)

where Γε,i denotesthe boundariesof theholesτε,k inside theellYε,i. Denotingby

mesthemeasure(surfaeorvolume,dependingontheontext)ofaset,wereallthe

followingidentities

mes(Y)εd= mes(Ω)

N(ε) (1+O(ε)), mes(Γε,i) =εd−1mes(Γ), mes(Yε,i) =εdmes(Y).

Denotingbydγ(x)thesurfaemeasureonΓε,wedenetheenterofmassx0,iofΓε,i

by

x0,i= 1 mes(Γε,i)

Z

Γε,i

x dγ(x) orequivalently

Z

Γε,i

(xx0,i)dγ(x) = 0.

Similarly, y0 denotesthe enter of massofthe unit holeboundaryΓ. Wereall the

followingobviousidentities.

Lemma 2.1. Asmoothfuntion f satises Z

Γε,i

fx ε

dx=εd−1 Z

Γ

f(y)dy, Z

Γε,i

fx ε

(xx0,i)dx=εd Z

Γ

f(y)(yy0)dy, Z

Γε,i

fx ε

(xx0,i)(xx0,i)dx=εd+1 Z

Γ

f(y)(yy0)(yy0)dy,

ε

N(ε)

X

i=1

mes(Γε,i)f(x0,i) = mes(Γ) mes(Y)

Z

f(s)ds+O(ε).

2.2. Boundaryonditions. Asalreadysaidtheholesareatuallyheliumhan-

nelswhere radiativeheat transfertakesplae. Sinehelium isassumed tobetrans-

parent(noheatondution norabsorptionofradiation),thisproessismodeledbya

boundaryonditionontheholesboundaries. Letus reallthemodelingofradiative

exhanges between grey-diuse surfaes [15, 17℄. A grey-diuse surfae emits and

absorbsradiationinthesamemannerinalldiretions. Partofthereeivedradiations

anbereeted: a surfaeisthus haraterized byits emissivity ewhih takesval-

uesbetween0(fullreetion)and1(noreetion). DenotingbyT thetemperature andbyR theradiosity,i.e. theintensity ofemittedradiation,wehavethefollowing

relationship

R(x) = eσT4(x) + (1e)J(x), (2.2)

(8)

Figure2.2. DomainwitharadiativeavityΣ

whereσistheStefan-Boltzmannonstantand J isgivenby J(x) =

Z

Σ

F(x, s)R(s)dγ(s),

whereF(x, s)istheviewfator(ageometrialquantity)betweentwodierentpoints xand s of a avity Σ(see Figure 2.2). Thus, the radiosityis given asthe solution

ofanintegralequationintermsofthetemperature. Forourappliation,theexpliit

formulaoftheviewfatorin2-dforaonvexavityis

F(x, s) = ns·(xs)nx·(sx) 2|sx|3

where nz denotestheunit normalat thepointz. However,ourmathematialstudy doesnotrelyonthisspei formulaandwesimplyneedthefollowingpropertiesof

thekernelF: forany(x, s)Σ2,itsatises

F(x, s)0,

F(x, s) =F(x, s),

R

ΣF(x, s)ds= 1.

LetJbetheoperatorgoingfromLp(Σ),1p+,intoitselfdened by J(f)(x) =

Z

Σ

F(x, s)f(s)dγ(s). (2.3)

DenotingbyEtheoperatoronsisting ofmultiplyingbytheemissivityvaluee,(2.2)

anberewritten

R= (Id(IdE)J)−1EσT4.

Ontheavitywalltheenergybalanereads

qR+J = 0, (2.4)

whereq istheheat uxtransmittedbyondutionfrom thesolid to theavityΣ,

fromwhihwededue

q= G(σT4),

whereGisalinearnon-loaloperatordened by

G(ϕ) = [IdJ] [Id(IdE)J]−1E(ϕ) ϕLp(Σ). (2.5)

(9)

LetusreallsomepropertiesofJdenedby(2.3)(see[22℄).

Lemma 2.2. The operatorJ going fromLp(Σ) toLp(Σ),1p≤ ∞,satises

J(c) =c,cR;

• kJk ≤1;

J isnonnegative: f Lp(Σ), f0 J(f)0;

J issymmetri(self-adjoint for p= 2)inthe sense that Z

Σ

J(ϕ)ψ= Z

Σ

J(ψ)ϕ, ϕLp(Σ), ψLp(Σ), with 1 p+ 1

p = 1.

We easily dedue from Lemma 2.2 that (IdςJ), 0 ς < 1, is invertible (for ς = 1,(IdςJ)isnotinvertiblesineker(IdJ) =R). Inpartiularwededuethat G is well dened, symmetriand non negative (this is lear for 0 <e 1 and for e = 0wendG0).

Remark 2.3. The operators dened by (2.3), (2.5) will be denoted by Jε, Gε

respetively,ifating onΓεinsteadof Γ.

2.3. Governing equations. Let Kbethe ondutivity tensorof the unit ell Y. We assumeKto be symmetri,uniformlyoeriveand bounded (innorm L),

i.e.,thereexist twopositiveonstants0< αβ suhthat

vRd, fora.e. yY, α|v|2 Xd i,j=1

Ki,j(y)vivjβ|v|2. (2.6)

Asusual,K(y)beingaY-periodifuntion,wedeneitsYε-periodiextension

Kε(x) = Kx ε

.

For given bulk and surfae soure terms f and g, we onsider the following mixed

problemofondution andradiativeheattransferfortheunknowntemperatureTε

div(KεTε) = f in ε, KεTε·n = g on ∂Ω,

KεTε·n = 1εGε(σTε4) on Γε,

(2.7)

where G is the operator dened by (2.5). For non-negativesoures, the boundary valueproblem(2.7)admitsauniquepositivesolutionaswasprovedin[22℄. Themain

diultyin(2.7)isthenon-linearandnon-loalboundaryonditiononΓε. Notealso

theε−1 salingin theboundaryonditionwhihinsuresthat theradiativeondition

will notdisappear when passingto the limit ε 0 and will be represented in the homogenizedmodel.

2.4. Notations. Thesubsript # in thedenition of funtional spaes on the

unitellY indiatesthatweonsiderY-periodifuntions. WedenotebyL2(Ω;C#(Y))

thespaeofmeasurableandsquaresummablefuntionsofxwithvaluesintheBa-

nahspaeofontinuousandY-periodifuntionsofy. WedenotebyL2(Ω;H#1(Y))

thespaeof measurableand squaresummablefuntions ofxwithvaluesin the

Sobolev spae H#1(Y) of Y-periodi funtions dened only on Y. We all ell-

problemaproblemthatwesolveonlyontheelementaryelloftheperiodidomain.

Cell-problemsusually takeinto aountthe mirostruturebehaviorand ontribute

totheeetiveparametersalulation. WedenotebyOp), pRafuntionofε >0

suhthatthereexistsaonstantCnotdependingonεsothatwehave|Op)| ≤p

forallε >0.

Références

Documents relatifs

Test Case 1 concerns the estimation of an optimal time-dependent heat flux q(t) that makes possible the simultaneous estimation of all Luikov’s parameters of cer- amics from a

The surface phonon polar- itons with &gt; nk 0 have a relatively small MTF but give the dominant contribution to the heat flux due to the large number of contributing modes... 5,

Let us now recall our main results of section VIII on radiative heat transfer :.. • In the plane-plane case, the heat flux associated with the profiles of SiO 2 has a convex

(Color online) The enhancement factor between two gold gratings as a function of the depth a of the corrugations, with the distance of closest approach kept fixed L = 1 μm4. As

This section also provides a detailed discussion on the vibrational relaxation mechanisms of the thermal energy absorbed and the subsequent effect of heat trapping by polar

Grenkin, G.V., Chebotarev, A.Yu., Kovtanyuk, A.E., Botkin, N.D., Hoffmann, K.-H.: Boundary optimal control problem of complex heat transfer model.. Ioffe, A.D., Tikhomirov, V.M.:

Kovtanyuk, A.E., Chebotarev, A.Yu., Botkin, N.D., Hoffmann, K.-H.: Optimal boundary control of a steady-state heat transfer model accounting for radiative effects. Kovtanyuk,

Consequently, instead of using the formal method of two scale asymptotic expansions in the strong form of problem (8), which is complicated because of the non-local boundary