• Aucun résultat trouvé

Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination

N/A
N/A
Protected

Academic year: 2021

Partager "Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: hal-03164018

https://hal.sorbonne-universite.fr/hal-03164018

Submitted on 9 Mar 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Machine learning based white matter models with

permeability: An experimental study in cuprizone

treated in-vivo mouse model of axonal demyelination

Ioana Hill, Marco Palombo, Mathieu Santin, Francesca Branzoli,

Anne-Charlotte Philippe, Demian Wassermann, Marie-Stéphane Aigrot,

Bruno Stankoff, Anne Baron-van Evercooren, Mehdi Felfli, et al.

To cite this version:

Ioana Hill, Marco Palombo, Mathieu Santin, Francesca Branzoli, Anne-Charlotte Philippe, et al..

Machine learning based white matter models with permeability: An experimental study in cuprizone

treated in-vivo mouse model of axonal demyelination. NeuroImage, Elsevier, 2021, 224, pp.117425.

�10.1016/j.neuroimage.2020.117425�. �hal-03164018�

(2)

demyelination

Ioana

Hill

a,1

,

Marco

Palombo

a,1,∗

,

Mathieu

Santin

b,c

,

Francesca

Branzoli

b,c

,

Anne-Charlotte

Philippe

b

,

Demian

Wassermann

d,e

,

Marie-Stephane

Aigrot

b

,

Bruno

Stankoff

b,f

,

Anne

Baron-Van

Evercooren

b

,

Mehdi

Felfli

b

,

Dominique

Langui

b

,

Hui

Zhang

a

,

Stephane

Lehericy

b,c

,

Alexandra

Petiet

b,c

,

Daniel

C.

Alexander

a

,

Olga

Ciccarelli

g

,

Ivana

Drobnjak

a

a Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK

b Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm 1127, CNRS UMR 7225, F-75013, Paris, France c Institut du Cerveau et de la Moelle épinière, ICM, Centre de NeuroImagerie de Recherche, CENIR, Paris, France

d Université Côte d’Azur, Inria, Sophia-Antipolis, France e Parietal, CEA, Inria, Saclay, Île-de-France

f AP-HP, Hôpital Saint-Antoine, Paris, France

g Dept. of Neuroinflammation, University College London, Queen Square Institute of Neurology, University College London, London, UK

a

b

s

t

r

a

c

t

Theintra-axonalwaterexchangetime(𝜏i),aparameterassociatedwithaxonalpermeability,couldbeanimportantbiomarkerforunderstandingandtreating

demyelinatingpathologiessuchasMultipleSclerosis.Diffusion-WeightedMRI(DW-MRI)issensitivetochangesinpermeability;however,theparameterhasso farremainedelusiveduetothelackofgeneralbiophysicalmodelsthatincorporateit.Machinelearningbasedcomputationalmodelscanpotentiallybeusedto estimatesuchparameters.Recently,forthefirsttime,atheoreticalframeworkusingarandomforest(RF)regressorsuggeststhatthisisapromisingnewapproach forpermeabilityestimation.Inthisstudy,weadoptsuchanapproachandforthefirsttimeexperimentallyinvestigateitfordemyelinatingpathologiesthroughdirect comparisonwithhistology.

WeconstructacomputationalmodelusingMonteCarlosimulationsandanRFregressorinordertolearnamappingbetweenfeaturesderivedfromDW-MRIsignals andgroundtruthmicrostructureparameters.Wetestourmodelinsimulations,andfindstrongcorrelationsbetweenthepredictedandgroundtruthparameters (intra-axonalvolumefractionf:R2=0.99,𝜏

i:R2=0.84,intrinsicdiffusivityd:R2=0.99).Wethenapplythemodelin-vivo,onacontrolledcuprizone(CPZ)mouse

modelofdemyelination,comparingtheresultsfromtwocohortsofmice,CPZ(N=8)andhealthyage-matchedwild-type(WT,N=8).WefindthattheRFmodel estimatessensiblemicrostructureparametersforbothgroups,matchingvaluesfoundinliterature.Furthermore,weperformhistologyforbothgroupsusingelectron microscopy(EM),measuringthethicknessofthemyelinsheathasasurrogateforexchangetime.HistologyresultsshowthatourRFmodelestimatesareverystrongly correlatedwiththeEMmeasurements(𝜌 =0.98forf,𝜌 =0.82for𝜏i).Finally,wefindastatisticallysignificantdecreasein𝜏iinallthreeregionsofthecorpus

callosum(splenium/genu/body)oftheCPZcohort(<𝜏i>=310ms/330ms/350ms)comparedtotheWTgroup(<𝜏i>=370ms/370ms/380ms).Thisisinlinewithour

expectationsthat𝜏iislowerinregionswherethemyelinsheathisdamaged,asaxonalmembranesbecomemorepermeable.Overall,theseresultsdemonstrate,for

thefirsttimeexperimentallyandinvivo,thatacomputationalmodellearnedfromsimulationscanreliablyestimatemicrostructureparameters,includingtheaxonal permeability.

1. Introduction

Theintra-axonalwaterexchangetime(𝜏i),aparameterassociated

withaxonalpermeability,isanimportantmicrostructuralpropertyof thetissue,whichhasbeenlinkedwithmyelinationinthecentral ner-voussystem(Nilssonetal.,2013a).Severalneurologicalconditionssuch as MultipleSclerosis(MS) cause a breakdownof themyelin sheath

Correspondingauthor.

E-mailaddress:marco.palombo@ucl.ac.uk(M.Palombo). 1 Theseauthorscontributedequallytothiswork.

throughaprocessknownasdemyelination, whichmaylead toa de-creasein theexchange timeastheintra-axonal watermolecules en-counter lessbarriers. Changesin permeabilityhave alsobeenlinked withpathologiessuchasParkinson’sdisease(Vollesetal.,2001)and cancer Huetal.(2006),leadingtoawidespreadinterestin develop-ingpermeability-basedbiomarkers.Duetoitssensitivitytothemotion ofwatermoleculeswithintissue,modellingofDiffusion-WeightedMRI (DW-MRI)dataenablestheestimationof𝜏i.However,measuringithas

https://doi.org/10.1016/j.neuroimage.2020.117425

Received24July2019;Receivedinrevisedform29September2020;Accepted30September2020 Availableonline6October2020

(3)

beenproblematicduetotheintractabilityofthemathematical expres-sionswhichaccuratelyincorporate𝜏iintoanalyticalmodels.

Sofar,thebiophysicalmodelsthatincorporatepermeabilityrelyon assumptionsthatareeithertoosimplistic(Callaghan,1997, Coddand Callaghan,1999, Vangelderenetal.,1994)ordonotholdinhuman tis-sue(Grebenkov etal.,2014, Kärgeretal., 1988).TheKärgermodel (Kärger et al., 1988) is themost widely used analyticalmodel that incorporatespermeability (Nilssonetal., 2010, Stanisz et al., 2005, Lättetal.,2009).However,itsassumptions(i.e.theindividualpools ofwaterarewellmixedandnotrestricted)donotholdinwhite mat-terandthemodelwasshowntofailwhenappliedtohighlypermeable tissue(Fieremansetal.,2010).Ameasurementtechniqueforaccessing exchangeistheapparentexchangerate(AXR)imaging,however,it re-quiresaspecialisedimagingprotocol(Lasič etal.,2011,Nilssonetal., 2013b).

Computational modelsbypass theneed foranalyticalexpressions andincorporatepermeabilitybycreatingamappingbetween simula-tionsoftheDW-MRIsignalandthegroundtruthmicrostructure param-eters. Nilssonetal.(2010)use MonteCarlosimulationswithknown groundtruthparametersincludingpermeabilitytogenerateasynthetic libraryofDW-MRIsignals.Givenapreviouslyunseensignal,they es-timatepermeabilityviaanearest-neighbouralgorithm.However,their approachrequiresnewlibrariestobegeneratedforeachacquisition pro-tocol-whichinsomecasesmayrepresentaproblem-andthe nearest-neighbouralgorithmingeneraldoesnothaveagoodgeneralisation ca-pacity.

Recently,Nedjati etal.(2017) applyforthefirsttimeamachine learningapproachusingarandomforest(RF)trainedonadatabaseof rotationallyinvariantfeaturesderivedfromtheDW-MRIsignals simu-latedusingsyntheticsubstratesofdenselypackedcylinders. Rotation-allyinvariantmetrics(e.g.MDandFAfromDTI)aremetricscalculated fromDW-MRIdatathatdonotdependontheparticularorientationof theunderlyingtissuewithrespecttothescannerreferenceframe,thus providingvaluablemetricsforinter-subjectandacross-platform anal-yses.ThemodelproposedbyNedjatietal.(2017)usesanRFinstead ofstandardmodel-fittingapproachesbasedon minimizationof (non-linear)least-squaresbecauseitismorecomputationallyefficient;itis lessprone tolocalminimumproblems;anditnaturallyencodeseven complex constraintson parametercombinations throughappropriate choiceof trainingdata, whileguaranteeinggood generalisation.The novelRFmodelisshowntooutperformtheKärger’smodelonsynthetic andin-vivohumandatabyprovidingmorereproducibleandrobust es-timatesof𝜏i(Nedjatietal., 2017).However,theirin-vivoapproachis

testedonlyqualitativelyonjusttwoMSpatients.Furthermore,Nedjati etal.(2017)hypothesisethat𝜏iislinkedwithdemyelinationinMS

le-sions,buttheydonotshowwhetherotherunderlyingprocessessuchas axonalswellingororientationdispersionaffecttheestimates.Here,we aimtoaddresstheselimitations.

Theaimofthisstudyistoexperimentallytestamachinelearning basedcomputationalmodelwithpermeabilityusingahighlycontrolled cuprizone-treated,in-vivomousemodelofdemyelination(CPZ),anda directcomparisontohistology.WeadopttheRFframeworkintroduced in Nedjatiet al(2017) toestimatetissue microstructureparameters. Priortoourin-vivoexperiments,weusesimulationsrepresentativefor ourmousedatatoinvestigatethesensitivityofthePGSEprotocolused toacquirethein-vivodatato𝜏i,andselectthemostinformativebshells

(i.e.bvaluesanddirections)withrespecttothisparameter.We addi-tionallyestablishabenchmarkperformanceforourmodelbytesting itsperformanceonsimulations.Totestthein-vivoperformanceofthe model,weusetwocohortsofmice:CPZandhealthyage-matched wild-type(WT),withDW-MRIscansandhistologydata.Ourdemyelination modelallowsustoinvestigatethedirectcorrelationbetweenthe esti-matedexchange timeandhistologicalmeasurementsofmyelin thick-ness.Furthermore,weinvestigatethepotentiallyconfoundingeffectsof dispersionandaxonalswellingtoeliminateanypotentialbiasinour

estimatesoftheexchangetime.Finally,weanalysethecorrelations be-tweentheestimationsofourmodelandhistologydata.

2. Methods

This sectionfirst describesthe imagingprotocol,in-vivo data ac-quisition,histologyanalysisandthemachinelearningmodelandthen outlinestheprincipalstepsofourexperimentalframework.Firstly,we investigateusingsyntheticdatathesensitivityofourimagingprotocolto changesin𝜏i.Secondly,weoptimiseourcomputationalmodelthrough

ashellselectionprocessandestablishabenchmarkperformanceforour modelinsimulations.Wefirstensurethereisagoodmatchbetweenthe syntheticandin-vivodataandweinvestigateanybiasinourmachine learningpredictionsof𝜏ibylookingattheeffectofpotential

confound-ingfactors. Finally,wetest thein-vivoperformanceof ourmachine learningmodelonacuprizonemousemodelofdemyelinationandwe analysethecorrelationsbetweenthepredictionsandtheex-vivo histo-logicalmeasurementsavailable.

2.1. Mousedata

2.1.1. In-vivodataacquisition

Weimagetwocohortsof8-weekoldC57BL/6Jfemalemice,CPZ (N=8)andWT(N=8),usingthesamescannerandacquisition proto-colaspresentedbelow. Allanimalexperiments areperformedin ac-cordance with the European Council Directive (88/609/EEC). Eight mice werefed0.2% cuprizonefor 6weeks,which corresponds toa demyelinationwithoutrecoveryphase,andeighthealthyage-matched wild-type(WT)miceofthesamebackgroundwerefedanormalchow diet andusedascontrols.AllmicearescannedonaBrukerBioSpec 11.7TscannerusingtheprotocoldescribedinSection2.1.2below.The WT data used in this study areavailable in the publicdomain and can be foundat https://zenodo.org/record/996889#.WgH5E9vMx24 (Wassermannetal.,2017).Theauthorsdonothavepermissiontoshare thedatausedinthisstudyfortheCPZtreatedmice.Allthecodeused fortheanalysisisavailableuponrequesttothecorrespondingauthors. Wepost-processtheimagesbycorrectingforeddycurrentsusing FSL-eddy(Smithetal., 2004).Nomotionartefactsareobserved.We restrict our analysisto whitematter voxelswithin the corpus callo-sum(CC).ToselecttheCCvoxels,wecomputemapsoflinearity(CL),

planarity(CP)andsphericity(CS)(Westinetal.,2002)fromthe diffu-siontensor(DT)fittotheshellatb=1241s/mm2.WecreatetheCC

mapsbyselectingthevoxelswithCL>0.3,CP<0.4,CS<0.5andfractional

anisotropy(FA)>0.40(valuechosentodistinguishWMformGMand CSFvoxelsalsointhecuprizonetreatedmice,whereFAvaluescanbe lowerthantheWTones).Followingthisprocedure,weobtainmasks ofthecorpuscallosumwhosethicknessvariesslightlyacrossallmice, randomlyandwithnostatisticallysignificantdifferences.Specifically, themean±s.d.of thenumberofvoxelscomprisingtheCCmaskin theWTgroupis161±13andintheCPZgroupis175±18.Followinga two-tailt-testwefindthisdifferencestatisticallyinsignificant(p>0.05). Previousstudies,suchas Wuetal.(2008),showedstatistically signif-icantincreaseinthevolumeofCCofCPZintoxicatedmicecompared toWT.However,wedonotmeasureastatisticallysignificantincrease andthefurtherinvestigationofthisobservationisoutofthescopeof thepresentstudy.

2.1.2. Diffusionimagingprotocol

WeusethesameDW-PGSEprotocolforsyntheticandin-vivodata, optimised tomaximisesignal reconstructionaccuracyunderrealistic timeconstraints(Filipiaketal.,2019).Our imagingprotocolhas25 shells,each withoneb=0measurementandadifferent combination ofdiffusiongradientstrengthGanddiffusiongradientseparationΔas summarisedinTable 1 .Theresultingprotocolhas345measurementsin total,diffusiongradientduration𝛿=5ms,|Gmax|=500mTm−1andshell

(4)

Fig.1. Schematicpipelineofthestereologicalanalysistocomputegratiosandaxonaldiametersinthecorpuscallosumofthemice.First,Tenequallyspacedslices arecutwithinthe1millimeterfromthemiddleofthecorpuscallosuminthesagittalsectiontowardstheedgeofthebrain(A).Then4slicesaresampledstarting fromarandomnumber.Inthiscase,therandomlychosenstartingnumberis1,andtheselectedslicesare#1,#4,#7and#10(B).Subsequently,theseslicesare usedtolocalisetheareasofinterest(e.g.,genu,bodyorspleniumasshowninC),andeachoneofthoseisslicedultra-thinly.Onarandomlychosenultra-thinslice foreachoftheROIs,30spotsarealsorandomlychosenovertheentireROIatsmallermagnificationtoassurethatimagesarenotintersected(Dshowsjust6ofthose)before acquiringthefinalEMimageat62Kmagnification.Eachofthe30randomspotsareselectedforstereologicalanalysisusingpointgridsof36regularlyspacedcrosses,each onerepresentinganareaof0.5𝜇m2(Eshowstwoofthose30spots,oneforWTandoneforCPZ).ThesepointgridsareusedforquantificationoftheWTandCPZmice.

Table1

DW-PGSEparameters withthe corresponding nominal b-values in s/mm2. 𝚫 (ms) 10.8 13.1 15.4 17.7 20 #grad dirs G (mT/m) 150 358 445 533 620 707 16 200 620 775 930 1086 1241 16 300 1384 1733 2083 2432 2781 8 400 2489 3110 3731 4352 4973 11 500 3892 4862 5833 6803 7773 13

b-valuesasshowninTable 1 .Additionalprotocoldetailsareasfollows: TE=33.6ms,TR=2s,FOV=16×16mm,matrixsize=160×160, num-berofslices=5,slicethickness=0.5mm.Totalacquisitiontime53min. 2.1.3. Histologysamples

TheWT(n=8)andCPZ(n=8)animalsaresacrificedbydeep anaes-thesiaandperfusedintracardiallywith1%paraformaldehydeand2.5% glutaraldehydeinphosphatebuffer0.12M,pH7.4attheendofthe 6-weekCPZtreatment.Theextractedbrainsarethenpost-fixedovernight at4°Cinthesamefixativeandrinsedinphosphatebuffer.Ten 100μm-thicksagittalsectionsarecutwithavibratome(ThermoScientific Mi-cromHM650VVibrationmicrotome)(Fig. 1 A).Theveryfirstsection closesttothebrainmidlineisconsideredas#1andsections#1,#4, #7,and#10 areselected (Fig. 1 B).Sections arepost-fixed with1% osmiumtetroxideinwaterfor1hatroomtemperature(RT°),rinsed

3×5minwithwaterandcontrasted“enbloc” for1hatRT° with2% aqueousuranylacetate.Afterrinsing,sectionsareprogressively dehy-dratedwith50%,70%,90%,and100%ethanolsolutionsfor2×5min each.Finaldehydration isachievedby immersingthesectionstwice in 100%acetonefor10min.Embeddingis performedinepoxy resin (Embed812,EMS,Euromedex,France)overnightin50%resin/50% acetoneat4°Cfollowedby2×2hinpureresinatRT°,and polymer-izationisachievedat56°Cfor48hinadryoven.Semi-thinsections (0.5𝜇m-thick)arecollectedwithanultramicrotomeUC7(Leica,Leica MicrosystèmesSAS,France)andstainedwith1%toluidinebluein1% boraxbuffer(Fig. 1 D).Ultra-thinsections(70nm-thick)arecontrasted withReynold’slead citrate(ReynoldES,1963),andobservedwitha transmissionelectronmicroscope(HITACHI120kVHT7700), operat-ingat70kV.Images(2048×2048pixels)areacquiredwithanAMT41B camera(pixelsize:7.4μmx7.4μm)(Fig. 1 E).

2.1.4. Post-mortemanalysis

Fromtheelectronmicroscopy(EM)samplesobtainedasoutlinedin

Section 2.1.3 ,weestimatethemeanandstandarddeviationofthegratio,

myelinthickness,axonaldiameterandtheintra-axonalvolumefraction oftheWTandCPZmice.Thestereologicalanalysisisperformedin iso-latedregionsoftheCC(genu,bodyandsplenium),where4random sec-tionswithuniformdistancearequantifiedperanimal(Fig. 1 B),with30 randomlylocatedimagesperregionandperanimalacquiredat62,000 magnification. Forvolumefraction(VF)weproceedaccordingtothe Delesseprinciple Mouton(2002):volumefractionsarecalculatedby

(5)

di-vidingthetotal numberofpoints hittingthestructure(P(Y)) bythe totalnumberofpointshittingthereferencevolume(P(ref)),following theequation:𝑉𝐹(𝑌,𝑟𝑒𝑓)= ∑𝑚 𝑖=1𝑃(𝑌)𝑖𝑚 𝑖=1𝑃(𝑟𝑒𝑓)𝑖 .

Agridof36regularlyspacedcrosses(Fig. 1 E)isgeneratedwithFiji, anopen-sourceplatformforbiologicalimageanalysis(Schindelinetal., 2012).Toidentifynon-perpendicularaxonsandremovethemfromthe analysis,wetakeintoaccounttheshapeoftheaxonsandthe micro-tubulesinsidethem.Perpendicularaxonshaveaminimallyelongated shapeandtheirmicrotubulesaresmallperfectlycircularstructures in-sidethem.Incontrast,non-perpendicular axonshavemoreelongated shapes(e.g.moreellipsoid-like)andtheirmicrotubulesappearlikelines, dependingontheangleofthesection.Stereologicalanalysisprovides MyelinVolumeFractions(MVF),Axon VolumeFractions(AVF),and thetotalAxon VolumeFractions(tAVF),whichincludesboth myeli-natedandunmyelinatedaxons.TotalAxonCount(tAxCount)is man-uallyquantified. Thegratio of myelinatedfibers isthencalculatedas

gratio=√ 𝐴𝑉𝐹

(𝑀𝑉𝐹 +𝐴𝑉𝐹) andthemeanaxondiameters(DAX)are

calcu-latedasDAX=2 × √

(𝑡𝐴𝑉𝐹 ×𝑠𝑢𝑟𝑓𝑎𝑐𝑒) (𝜋×𝑡𝐴𝑥𝐶𝑜𝑢𝑛𝑡) .

Theoutliersinducedbythenon-perpendicularaxonsintheimages arenottakenintoconsideration.FromthegratioandtheDAX,myelin

thicknessiscomputedas:myelinthickness= 𝐷𝐴𝑋

2𝑔𝑟𝑎𝑡𝑖𝑜(1−𝑔𝑟𝑎𝑡𝑖𝑜).

WecomparetheestimatesoftheRFwiththeEMmeasurementsby computingthegroup-wisemeanintheCCROIsofthemyelinthickness andintra-axonalvolumefraction(VF) andlookingatthecorrelation betweentheseandtheRFestimationsfor𝜏iandf.

2.2. Syntheticdata

Amachinelearningregressorcanbetrainedondifferentdatabases. Inthiswork,weaimtocomparetheperformanceoftrainingdirectly onsimulatedsignalsversustrainingonfeaturesobtainedbymodelling thosesignals.Therefore,weconstructtwotrainingdatabases:one com-prisedofsyntheticDW-MRIsignalsandtheotherofrotationally invari-antfeaturesestimatedfromthosesignals.

Eachentryin thedatabasecorresponds toaunique digital phan-tomwhichmimicsthein-vivodataandforwhichthegroundtruth mi-crostructureparametersareknown.Eachsyntheticdatabaseisusedto traina machinelearningalgorithm,here anRF,tobuilda mapping betweenthesignalorfeaturesandthecorrespondinggroundtruth mi-crostructureparameters.Pleasenotethatinthiscontextwereferto “fea-tures” inamachinelearningsense:measurablepropertiesor character-isticsoftheDW-MRIsignal,andsomeofthefeaturesusedmaydepend onsomeoftheothers.

2.2.1. Syntheticsignalsdatabase

WeuseMonteCarlosimulationsoftheDW-MRIsignaltobuildour synthetictrainingdatabase.Thesignalsaregeneratedusingtheopen source Camino(Cooket al., 2006; http://camino.cs.ucl.ac.uk) simu-lationframework HallandAlexander(2009)togetherwiththe imag-ingprotocolinTable 1 .UsingtheCaminotoolbox,wegenerated syn-theticsignalsbyfirstsimulatingthediffusionofmanyspinsas three-dimensionalrandomwalkusingMonteCarlomethodsforeachsynthetic substratecomposedofrandomlypackedstraightcylinders.Then,from thesimulatedspinstrajectories,thediffusion-weightedsignalwas com-putedusingthephaseaccumulationapproach,accordingtothespecific diffusion-sensitisinggradientschemechosentomatchtheexperimental acquisitionprotocol.Thus,eachsimulatedsignalcorrespondstoa digi-talphantomwhichmimicsthein-vivomousebraindataintroducedin

Section 2.3 .Thedigitalphantomsarerepresentedbysyntheticsubstrates thatmodelwhitematterasacollectionof100,000non-abutting,parallel cylinderswithgamma-distributedradii,acommonchoiceinthebrain literature(Aboitizetal.,1992).Thecylindersarerandomlypackedin thesubstratesasdescribedinHallandAlexander(2009),withexample substratesshowninFig. 2 .Weconstructadatabaseof11,000unique

tissuesubstratesandtheircorrespondingDW-MRIsignalsbyrandomly samplingfromarangeofhistologicallyplausiblesubstrateparameters forwhitemattertissue(Aboitizetal.,1992, Barazanyetal.,2009).A whitemattersyntheticsubstrateisdefinedthroughfiveparameters:the mean𝜇R∈[0.2,1]𝜇mandthestandarddeviation𝜎R∈[min(0.1,𝜇R/5), 𝜇R/2]𝜇moftheaxonradiidistribution,theintra-axonalvolume

frac-tionf∈[0.4,0.7],theintra-axonalexchangetime𝜏i∈[2,1000]msand

theintrinsicdiffusivityd∈[0.8,2.2]𝜇m2ms−1.Toensurethe

conver-genceandthehighprecisionofthesimulatedsignals,wegenerateour syntheticdatabaseusing100,000spinsand2,000timesteps(Halland Alexander,2009).TheMonteCarlosimulationsusedisplacements in continuousspace, withfixedstep sizein threedimensions𝑠=√6𝑑𝛿𝑡 Einstein(1905),with𝛿t=10𝜇s.Thepermeabilityofasubstrateis spec-ifiedwithintheCaminosimulationframeworkviatheprobability pa-rameter p.Thisparameter expressestheprobabilitythataspinsteps throughamembraneencounteredduringtherandomwalk(insteadof alwaysbeingreflectedbackwardsasitisthecaseforimpermeable sub-strates).Theprobabilitypisrelatedtothepermeabilitykthroughthe expression: 𝑝=2 3𝑘 √ 6𝛿𝑡 𝑑,

wheredistheintrinsicdiffusivityand𝛿tisthetemporalresolution.This expressionisobtainedbycombiningtheMonteCarlosteplength equa-tion𝑠=√6𝑑𝛿𝑡(HallandAlexander,2009)withthetransition proba-bilityequationasderivedin(ReganandKuchel,2000, Fieremansand Lee,2018).Here,wemeasurepermeabilitykviatheintra-axonalwater exchangetime𝜏i,whichisinverselyrelatedtokthroughtheexpression 𝑘= 𝑅

2𝜏𝑖 ,whereRistheaxonradius(Fieremansetal.,2010).

Tomaximisetheperformanceofourmachinelearningregressor,we aimtobuildatrainingdatabasethatresemblesascloselyaspossible thein-vivodata.Forthis,wegenerateanadditionalsetofsynthetic sig-nalstoaccountforthenoisepresentinthein-vivodata.WeaddRician noisewithastandarddeviation𝜎 correspondingtoanSNRof40,which reflectsthenoiseleveloftheb=0imageswiththelongest𝚫.

2.2.2. Syntheticfeaturesdatabase

Inordertomakethemethodgeneralizableacrossdifferentscansand scanners,wetraintheRFregressorusingaconvenientdatabaseof fea-turesextractedfromtheDW-MRIsignalsthatareindependentof the specificorientationofthebrainwithinthescanner(i.e.rotationally in-variantfeatures)(Novikovetal.,2018, Reisertetal.,2017).Towards thisgoal,weobtainanequivalentrotationallyinvariantdatabaseby com-putingforeachofthesyntheticsignalsgeneratedinSection 2.2.1 asetof 15rotationallyinvariantfeatures(seeTableA.1),asdoneinNedjatietal. (2017).WecomputetheDTandthe4thordersphericalharmonic(SH)

fitforeachbshellfromthesyntheticsignalsusingtheCaminotoolkit (Cooketal.,2006).Wethenderive15rotationallyinvariantfeatures foreachbshellandbuildanequivalentrotationallyinvariantsynthetic database.Thefirstfivesignal-derivedfeaturesarecalculatedfromthe DTfitandarethethreeeigenvalues𝜆1,𝜆2,𝜆3,themeandiffusivity(MD) andthefractionalanisotropy(FA).Theremainingtenfeaturesare de-rivedfromtheSHfit:themean,peak,anisotropy,skewnessandkurtosis oftheapparentdiffusioncoefficienttogetherwiththepeakdispersion (i.e.thestandarddeviationofthepeaksoftheSHfunctionsoverasetof evenlydistributedpointsinspace)andcombinationsofthefirst,second andfourthorderSH(Nedjatietal.,2017).SectionA.1intheAppendix presentsinmoredetailwhateachofthe15featuresrepresentsandhow itiscomputed.

2.3. Machinelearning 2.3.1. Randomforest(RF)

Due to theirinterpretability, robustnessto noiseand easiness of tuning (Criminisi etal., 2011),RFsarewidely usedasregressionor classificationtechniquesin themedicalfield(Alexanderetal.,2017,

(6)

Fig.2. ExamplesofthesynthetictissueusedforourMonteCarlosimulations.FromtwogivenexemplarGammadistributionsofaxondiameter(firstrow)four exemplardigitalsubstratesaregeneratedbypackingstraightnon-overlappingcylindersuptotwodifferentintra-axonalvolumefractions:0.4(secondrow)and0.7 (thirdrow).

Geremiaetal.,2011, Nedjati-Gilanietal.,2017).AnRFisanensemble technique,builtofacollectionofdecisiontrees,calledweaklearners.An RFregressormakesestimatesbyaveragingtheanswersofallitsdecision trees,whichareindividuallytrainedthroughatechniquecalledbagging. Thistechniqueensuresthediversityofthetreesbytrainingeachtreeon adifferentrandomtrainingsubset.Therandomnessanddiversityofthe treesensuretheirrobustnesstonoiseandgoodgeneralisation, result-ingintheRFactingasastronglearner Breiman(2001).Here,webuild anRFregressorthatlearnsamappingbetweenthesynthetictraining databaseofDW-MRIsignals/featuresandthegroundtruth microstruc-tureparametersofthecorrespondingsubstrates.Themappingislearnt throughagreedysplittingprocessoftheinputspace(thesynthetic sig-nals/features)guidedbytheassociatedtissueparametersprovidedas labelsduringtraining.

Duringthelearningphase,thetrainingdataispassedthroughthe de-cisiontree,startingattherootnodetowardstheterminalnodes.Ateach node,thedecisiontreesearchesforapartitionoftheincomingdatasuch thathavingseparatepartitionsoneithersideofthenodeimprovesthe estimation.Ifsuchapartitionexists,thenodeissplitandtwochildnodes areaddedonthelevelbelow.Thisprocedureisrepeatedforeverychild nodeuntilsplittingthedataintosmallerpartitionsdoesnotimprovethe estimationanymore.Ifnobetterpartitionisfound,thenodebecomes aterminalnode.Mathematically,thetrainingprocessisguidedbythe

optimisationofacostfunction,whichisusedtodeterminethebestsplit ateachnode.Theoptimisationsearchesforthefeature-thresholdpairs (fi,tfi)thatproducethebestsplit.Here,weusetheClassificationand

RegressionTree(CART)algorithmcostfunctionJ,definedas: 𝐽(𝑓𝑖,𝑡𝑓𝑖)=

𝑚𝑙𝑒𝑓𝑡

𝑚 𝑀𝑆𝐸𝑙𝑒𝑓𝑡+ 𝑚𝑟𝑖𝑔ℎ𝑡

𝑚 𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡,

wheremleft/rightisthenumberoftraininginstancesintheleft/right sub-setand‘MSE’standsforthe’mean-squared-error’betweenthe ground-truthmicrostructureparameters(i.e.d,fand𝜏i)knownbydesignand

thepredictedones.

There aretwoimportantparametersthatneedtobeoptimisedto improvethelearningperformanceofanRF:thenumberoftreesandthe maximumtreedepth.Thenumberoftreesdeterminesthesmoothness of thedecisionboundary,andthetree depthparameterspecifiesthe maximumlevelsthateachdecisiontreecanhave.Toolargeavaluecan leadtooverfittingwhiletoolowavalueleadstounderfitting,depending onthecomplexityofthedata.Here,werunpreliminaryexperiments andoptimisethesetwoparametersforourtaskin ordertomaximise theperformanceofourmodel.

2.3.2. Trainingandtesting

WeimplementanRF regressorusingthescikit-learnopensource Pythontoolkit(Pedregosaetal.,2011).Followingpreliminary

(7)

experi-ments,webuildanRFwith200treesofmaximumdepth20andbagging, asthesettingthatmaximisestheperformanceofthemodel.More gen-eralimplementationdetailscanbefoundathttp://scikit-learn.org/.We traintheRFforamulti-parameterregressiontask:weestimatethe intra-axonalexchangetime𝜏itogetherwiththeintra-axonalvolumefraction fandtheintrinsicdiffusivityd.UnliketheapproachinNedjatietal. (2017),wedonotfittheaxonradiusindex(Alexanderetal.,2010)due tothelackofsensitivityofthesignaltothisparameterforourimaging protocol(Burcawetal.,2015,Drobnjaketal.,2016).

Thedimensionalityofoursyntheticdatabasesis11,000by345for thesignaldatabaseand11,000by375forthefeaturedatabase.Weset thesizeoftrainingsetto11,000aswedidnotfindanyimprovementsin performanceabovethisnumber.Thelengthofeachsynthetictraining sampleisreducedfurtherduringtrainingaccordingtothenumberof bshellsselectedineachtrainingscenario.WetrainandtesttheRFon thesyntheticdatabasesusingtheassociatedgroundtruthparametersas labelsforthesupervisedregressiontask.Whenpredictingtheparameter mapsforthein-vivodata,wetraintheRFusingthenoisydatabasesas theyareamoreaccuraterepresentationofthein-vivodata.Wesplit oursyntheticdatabaseintoatrainingsetof9,500randomlyselected signal/featurevectorsandatestsetformedoftheremainingpreviously unseen1,500signal/featurevectors.AsshowninNedjatietal.(2017), theRFis notbiasedbytherandomselectionofthetrainingdataas longasthereissufficientcoverageoftheparameterrange,whichwe alsoensure.Tobuildthetrainingset(tobe doneonlyonce) ittook approximately3days,using50nodesonourhigh-computingcluster ofCPUs.Thetrainingofthemachinelearningmodel(tobedoneonly once)took~1minandthepredictionofthemodelparametersfor~104

exemplarvoxelstook~1min,ona1.6GHzdual-coreIntelCorei5.Note thatthese times arejust indicative,andtheydependonthespecific hardwareused.

Inthisworkweexploretwopossiblewaysofusingmachine learn-ingformicrostructureestimation:usinga)signalsorb)featuresofthe signaltocreatethetrainingdatabase.The“signalstrainingdatabase” consistsofstandardDW-MRIsignalintensities(normalizedbytheb=0) forarangeofbvaluesandgradientdirections.The“Featurestraining database” iscreatedbyreplacingeachsignalatagivenbvalueinthe “signaltrainingdatabase” with15features,e.g.DTIandSHmetrics, cal-culatedusingallthegradientdirectionsforthatvoxelatthatbvalue, asdescribedinSection 2.2.2 .Whilethefirstapproachbuildsadirect mappingbetweentherawsignalsandthegroundtruthmicrostructure parameters,thesecondapproachintroducesanadditionalstepofmodel fittingandconstructsamappingbetweenDTandSHfeaturesoftheraw signalsandthemicrostructureparametersofinterest.Becausewechose touserotationallyinvariantfeatures,thesecondapproachis generaliz-ableacrossdifferentscansandscanners.

2.4. Experiments 2.4.1. Sensitivityanalysis

Firstly,weassessherethatintheanalyseddatathereissufficient in-formationaboutthetargetedmicrostructuralparameters,inparticular 𝜏i.Toensurethatthereisenoughinformationinthedata,we

investi-gatethesensitivityofourPGSEprotocoltotheintra-axonalexchange timebylookingattherangeof𝜏i valuesforwhich theDW-MRI

sig-nalcan be distinguishedfrom thatof animpermeablesubstrate.For this,weconsidertwosyntheticsubstratesrepresentativeofmousewhite mattertissue,withthefollowingproperties:themeanaxonaldiameter 𝜇D=0.4𝜇mand𝜇D=2𝜇m,mimickingsmallandlargeaxonsintheCC,

theintra-axonalvolumefractionf=0.7(Barazanyetal.,2009),andthe intrinsicdiffusivity=1.2𝜇m2ms−1(Wuetal.,2008).Thesesubstrates

areagoodrepresentationofourin-vivomicedata,asshownbythe his-tologicalmeasurementsof𝜇DinSection 3.5 ,allwithintherangeofthe

gamma-distributionsabove.Notethatthechoiceoffixingthediffusivity to1.2𝜇m2/msisonlymadeforthepurposeofthesensitivityanalysisto

assessthesuitabilityoftheprotocol.Foralltheothersimulationsinthe

machinelearninganalysis,thediffusivityisvariedintheinterval[0.8, 2.2]𝜇m2/ms,asdoneinNedjatietal.,2017,andasshowninWuetal.,

2008and Barazanyetal.,2009appropriateforrodents’brain.For ap-plicationonhumanbrain,higherdiffusivityof~2.2𝜇m2/msshouldbe

usedforthesensitivityanalysis,accordingtorecentestimatesof intra-axonalaxialdiffusivityin-vivointhehumanbrain(Dhitaletal.2019). UsingtheCaminotoolbox,wegeneratesyntheticsignalsforeach substrateanddifferentvaluesof𝛿,ΔandG,correspondingtothebshells inourPGSEprotocol.Thediffusiongradientsaresetperpendicularto thecylindersinthesubstratetomaximisesensitivityto𝜏i.We

inves-tigatewhetherexchangetimeeffectscanbedetectedinthesignalby lookingatthedifferenceinthenormalisedDW-MRIsignalbetween im-permeable(𝜏i=∞)andpermeablesubstrates.Moreover,weanalysethe

effectofnoisebylookingatarangeofdifferentSNRs:SNR=∞,SNR=40 andSNR=20,whereSNR=40correspondstothelevelofnoisepresent inourin-vivodata.Byusingsyntheticsubstratesrepresentativeofour in-vivodataandthesameimagingprotocol,weexpecttheanalysisin thissectiontoprovideanindicativerangeofexchangetimevaluesfor whichthereisreasonablesensitivityinourin-vivodata.

2.4.2. Shellselection

Asourimagingprotocolusesanexplorativerangeofimaging pa-rameters,weselectthebshellsthatmaximisetheperformanceofour RFmodelwithrespectto𝜏i.Forthis,weevaluatetheperformanceof

ourRFmodelforeverypossiblecombinationof4,9and16shellsoutof the25inourprotocol.Wefirstevaluatecombinationsof4shellsusing asabenchmarkthe4-shellSTEAMprotocol(Nedjatietal., 2017) opti-mised Alexander(2008)foratwo-compartmentmodelwithexchange andbiophysicallyplausibletissueparameters.Asthereare12650 pos-sible combinationsof4shells,wetraintheRF12650times,onceon eachdifferentshellcombination.Then,foreachtrainingscenario corre-spondingtoauniquecombinationofshells,wecomputethecorrelation coefficientR2forf,𝜏

ianddbetweenthegroundtruthandtheestimated

valuesinthetestset.Finally,wesortthedifferentshellcombinations accordingtotheirR2scorefor𝜏

iandchoosethecombinationwiththe

highestscoreastheonethatmaximisestheperformanceofthemodel. Furthermore,weinvestigatetheeffectofincreasingthenumberof shellsusedfortraining.Forthis,wealsolookatcombinationsof9shells, astheminimumnumberofshellsrequiredtosampleindependently ev-eryuniqueGand𝚫 valueinourPGSEprotocol.Additionally,welook atcombinationsof16shellsasamiddlevaluebetweenthe9-shelland thefullprotocolscenario.Forthisanalysis,weusethesynthetic feature-baseddatasetdescribedinSection 2.2.2 .Finally,weinvestigatetheeffect ofnoiseontheperformanceofourmodel.Forthis,welookatarange ofdifferentSNRs:SNR=∞,SNR=40andSNR=20.

2.4.3. Syntheticexperiments

ToassessthequalityoftheRFestimatesaftertrainingiscompleted, wecomputethePearsoncorrelationcoefficientR2betweentheground

truthvaluesandtheRFestimatesoftheparametersinthepreviously unseentestset.Toevaluateanypotentialbiasintheestimates,weuse Bland-Altmanplotsshowingthemeanoftheestimatedandgroundtruth valuesagainsttheirdifference.Wefirstanalysetheperformanceofthe modelonthenoise-freesyntheticdatabasestoestablishabenchmark givenourdataandimagingprotocol.Next,weapplyourmachine learn-ingmodeltotheSNR=40databaseforamoreaccurateapproximation of theperformanceweexpect,giventhenoisepresentin ourin-vivo data.Foreachexperiment,weanalysebothtrainingscenariosoutlined inSection 2.4.2 (signal-basedandfeature-based)totestwhetherthere areanydifferencesinperformancebetweenthetwoapproaches. 2.4.4. In-vivoimagingexperiments

Beforegeneratingin-vivoparametermapsusingourtrainedmachine learningmodel,wefirstperformadataqualitymatchtocheckthatthe datasetusedtotrainourmachinelearningmodelrepresentswellthe characteristicsofthein-vivodataset..Inadditiontothis,weinvestigate

(8)

Fig.3.DifferencesintheDW-MRnormalizedsignalbetweenimpermeable(𝜏i=∞)andtheequivalentpermeable(𝜏i∈[20,1000]ms)substratesatdifferentbvalues, fordifferentmeanaxonaldiameterandSNRsandintra-axonalvolumefractionf=0.7.A)resultsforasubstratewithmeanaxonaldiameter𝜇D=2𝜇m,representing largeaxonsinthemousebrain.B)resultsforasubstratewith𝜇D=0.4𝜇m,mimickingsmallaxonsinthebrain.Thelevelofsignaldetectabilityisdisplayedforthree SNRlevels(∞,40and20),representedbytheblackplanes,belowwhichanychangeinsignalisundetectable.

anypotentialbiasinourin-vivoestimatesof𝜏iduetochangesinthe

orientationdispersionbycomputingmapsoftheNODDIorientation dis-persionindex(ODI)(Zhangetal.,2012a)usingtheNODDIMatlab(The MathWorks,Inc,Natick,MA)Toolbox1.UsingtheCaminotoolbox,we additionallygenerateDTI mapsatb=1241s/mm2 ofaxialdiffusivity

(AD),fractionalanisotropy(FA)andradialdiffusivity(RD)asmeasures oftissuepropertiesthatcanbecomparedwithalreadypublishedworks incuprizonemodel(Boretiusetal.,2012,Songetal.,2005,Zhangetal., 2012b).

UsingtheRFtrainedonthenoisydatabase,wegenerateparameter mapsfortheCCsofthe16miceforthreeparametersofinterest:𝜏i,f

andd.Toinvestigatethedifferencebetweenthetwogroups(CPZand WT),wecomputebox-and-whiskerplotsofregion-specificcomparisons betweenWT(8mice)andCPZ(8mice)fortheDTIandNODDImetrics aswellasfortheRFestimates.Statisticalsignificanceisassessedbya two-tailedt-test,consideringp-values<0.05.Weruntheseexperiments usingthesignalsdatabase.TheCaminofeatureextractionofthein-vivo datadidnotproducehistologicallyplausibleresultsfortheshellswith veryhighgradientstrengths(G>300mT/m)inourprotocol,andwe thereforeexcludethistrainingapproachfromtheanalysisinthis sec-tion.Wediscussthepotentialexplanationsandtheimplicationsofthis inSection 4.1 .

3. Results

3.1. Sensitivityanalysis

Fig. 3 showstherangeofexchangetimevaluesforwhichtheDW-MRI signalS(𝜏i)canbedistinguishedfromthatofanimpermeablesubstrate

S(𝜏i=∞)inthepresenceofnoise.Forthis,wecalculatethechangein

sig-nal|S(𝜏i=∞)-S(𝜏i)|betweenanimpermeableandanequivalent

perme-ablesubstrate.Toillustratepracticallyachievablesensitivities,weplot thisdifferenceagainstthreenoiselevels,denotedbytheblackplane: SNR=∞(1stcolumn),SNR=40(2ndcolumn)andSNR=20(3rdcolumn).

Fig. 3 Aillustratestheresultsforasubstratemimickinglargeaxonsin thewhitematter(𝜇D=2𝜇m),whileFig. 3 Bcorrespondstoasubstrate

withsmalleraxons(𝜇D=0.4𝜇m).Thesecondcolumn showsthat,for

substrateswithlargeaxons(rowA)andanSNRof40,matchingthatof ourin-vivodata,itispossibletodistinguishexchangetimeeffectsfor valuesof𝜏i≤400ms.Forsubstrateswithsmallaxons(rowB),wecan

distinguishonlypermeablesubstrateswithexchangetimesupto𝜏i≤

250ms.Asexpected,whentheSNRdropsto20,itbecomesharderto distinguishbetweenimpermeableandpermeablesubstrates.Thistrend

1 http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab.

canbeobservedinthe3rdcolumn,wheretherangefordistinguishable

permeablesubstratesnarrowsfrom𝜏iϵ[0,400]msto𝜏iϵ[0,200]ms

forlargeaxonsandfrom𝜏iϵ[0,250]msto𝜏iϵ[0,140]msforsmall

axons.

3.2. Shellselection

Asouroriginal25-shellPGSEprotocolusesanexplorativerangeof imagingparameters,wechoosetheshellsmostsensitivetotheexchange time(seeSection2.5.2forfurtherdetails).InFig. 4 ,eachpointonthe x-axisrepresentsoneuniqueshellcombinationandthecorresponding y-axisvalueindicatestheR2scorewhentheRFistrainedonthat

par-ticularshellcombination.Forexample,thex-axisinFig. 4 Awillhave 12650points,eachonecorrespondingtooneofthe12650unique 4-shellcombinations.Asweareinterestedintheperformanceofthemodel withrespectto𝜏i(1stcolumn),werearrangetheshellcombinationsin

increasingorder accordingtotheirR2for𝜏

i. Thisresultsin a

mono-tonicallyincreasingcurvefor𝜏i,asseeninthefirstcolumn.Forf(2nd

column)andd(3rdcolumn),wekeepthex-axisorderingconsistentwith

theresultsfor𝜏iinthe1stcolumn.

TheR2scorescurvesinthe1stcolumnofFig. 4 showthatonlya

lim-itednumberofshellcombinationshaveagoodcorrelationcoefficient andareoptimalforestimating𝜏i,whiletheR2scoresinthe2ndand3rd

columnshowthatthemajorityofshellcombinationsprovidegood esti-matesoffandd.Forexample,inthenoisefree(bluecurves)4-shellcase inthetoprow,wenoticethatthedifferenceinR2scorefor𝜏

ibetween

thebestandtheworstperformingshellcombinationsisapproximately 0.5.Incontrast,thisdifferenceismuchnarrowerforfandd:≈0.02forf and≈0.01ford.WeobservethesametrendsforSNR=40(orange)and SNR=20(green).

BycomparingthebestR2scoresonthebluecurvesinFig. 4 Aand

Fig. 4 B,wecanseethatthereisnodifferenceinperformanceinthenoise freescenariobetweenusingthebestcombinationof4or9shells. How-ever,thischangeswiththeadditionofnoise.Forexample,forSNR=40 (orangecurves)theR2scoreofthebest9-shellcombinationis0.67,0.07

higherthanforthebest4shells.ThistrendissimilarforSNR=20(green curves),withadifferenceof0.1between9and4shells.Forthe16-shell scenario,wefindnoimprovementinperformanceoverusing9shells.

Fig.4alsoshowstheeffectofnoiseontheestimationofeach param-eter.Asexpected,theadditionofnoiseresultsinlowerR2scores,atrend

thatholdsforallparametersandacrossthe4and9-shellcase.However, theestimationof𝜏iisthemostaffectedbythepresenceofnoise:the

maximumcorrelationcoefficientdropsfrom0.82inthenoisefreecase to0.67forSNR=40andevenfurtherto0.52forSNR=20.Forf(2nd

(9)

Fig.4. PerformanceoftheRFmodelpredictionof𝜏i,fandd,trainedondifferentcombinationsof4(A)and9(B)shells.EachcurveshowstheR2score(y-axis)of theRFtrainedonadifferentcombinationofshells(x-axis).TheshellcombinationsaresortedinincreasingorderaccordingtotheirR2score.Weshowtheresults forthreelevelsofnoise:SNR=∞(bluecurve),SNR=40(orangecurve)andSNR=20(greencurve).TheR2scorefor𝜏

iiscalculatedonlyforvalues≤400msasthis istherangeoverwhichwearesensitivetothisparameter(seeSection3.1).

SNR=∞to0.94forSNR=20.Theestimationoftheintrinsicdiffusivityd isveryrobusttonoise:thecorrelationcoefficientsremainingveryhigh (0.99)evenwhentrainingthemodelontheSNR=20dataset. Further-more,wefindthatallthetop100combinationscontainthetwohighest b-valueshells(6,803and7,773smm−2)withthetwolongestΔs.

Addi-tionally,wefindthathighb-valueshellsonlymaximisetheperformance oftheRFincombinationwithlowb-valueshells(775and930smm−2).

ForSNR=40(orangecurves),whichweusewhenpredictingonthe in-vivodata,wefindthattheoptimalcombinationof9shellssortedby b-valueis[620,775,930,1241,1384,2489,4973,6803,7773]smm−2

withanR2scoreof0.67,andthebestcombinationof4shellsis[775,

930,6803,7773]smm−2withanR2scoreof0.60.Theseresultsshow

thattheoptimalb-valuesforboth4and9shellsareacombinationof lowandhighvalues,whichsamplebothshortandlong𝚫s.Similar re-sultswerealsoobtainedforthe“signalstrainingdatabase” (notshown). Sincewearelookingtooptimiseourframeworkforin-vivoestimation onthemousedata,werunthein-vivoexperimentsusingthebest9-shell combinationintheSNR=40scenario,asthenoiselevelwhichmatches ourin-vivodata.

3.3. Syntheticexperiments

Fig.5showstheRFresultsobtainedusingthefeature(toprow)and thesignal(bottomrow)noisefreedatabases.Toassessthequalityof ourfit,wedisplaytheresultsusingBland-Altmanplotsandcoloureach datapointaccordingtohowclosetheestimatesaretothegroundtruth values.Toaidvisualinterpretation,wecapthepercentageerrorat50%. Themeandifferencebetweenthegroundtruthandtheestimated val-uesisshownbytheblacklineandthe95%upperandlowerlimitsof agreementbythedashedlines.Forallthreeparametersofinterest,we observenooverallestimationbiasastheestimatesarespreadequally aroundthezero-differenceblackline.However,for𝜏i,theparameter

recoveryis notperfectandtheBland-Altmanplotsshow an overesti-mationbiasforsmallvaluesof𝜏iandanunderestimationbiasforlarge

values.TheR2scoresshowastrongcorrelationbetweentheestimatesof

ourmodelandthegroundtruthparametervalues:R𝜏i2=0.82/0.84

(fea-tures/signalsdatabase),Rf2=0.99(bothdatabases),andRd2=0.99(both

databases).Whenassessingthemodel’sperformancewithrespecttothe twotrainingdatabases(features/signals),weobservenosignificant dif-ferencebetweenthetwoapproaches.TheR2scoresremainunchanged

forfanddandshow onlyaminordifferencefor𝜏i:R2features=0.82

/R2

signals=0.84.Theadvantagesofeachapproacharediscussed

fur-therinSection 4 .Thenoise-freeresultsinFig. 5 provideabenchmark performanceofthemodelgivenourdataandimagingprotocol.

Fig.6showstheequivalentresultsforSNR=40.Thepresenceofnoise resultsinwiderlimitsofagreementandaffectsdifferentlytheestimation ofeachparameter.Themeandifferencelinesforallthreeparameters remainatzero,showingnogeneralbiasintheestimates.Intra-axonal volumefractionanddiffusivitycontinuetobeverywellestimatedand theircorrelationcoefficientsareonlyverymildlyaffectedbythe pres-enceofnoise:Rf2=0.97andRd2=0.99,equalforbothtrainingdatabases.

Incontrasttothis,thepresenceofnoisehasastrongereffectonthe es-timationof 𝜏i,resulting inalowerR2score andamore pronounced

overestimation/underestimationbiasforsmallandlargevalues respec-tively.Despitethis,wefindthattheRFworkswellwithinthe sensitiv-ityrangecomputedinSection 3.1 ,withaverygoodcorrelation coeffi-cientbetweenthemodel’sestimationsandgroundtruthfor𝜏i≤400ms

(R2=0.68).Outsidethisindicativesensitivityrange,thecorrelation

co-efficientisveryweak:R2=0.07for𝜏

i≥400ms.Inlinewiththenoise

freecase,wecontinuetoseenosignificantdifferencebetweenthesignal andthefeatureapproach:R2

features=0.67/R2signals=0.68.

3.4. In-vivoimagingexperiments

Toshowthatourinvivodataiswellrepresentedbyoursynthetic trainingdatabase,weperformadataqualitymatch(Fig. 7 ).Weplotthe signalintensityasafunctionoftheanglebetweenthediffusion gradi-entsandthecylindricalfibres’axis𝜃 (indegrees),fordifferentdiffusion

(10)

Fig.5.Bland-AltmanplotsfortheRFestimatesoff,𝜏ianddusingthefeatures(toprow)andsignals(bottomrow)noise-freesimulateddatabase.Toaidvisual interpretation,theplotsarecolor-codedwiththepercentageerrorcappedat±50%.

Fig.6. Bland-AltmanplotsfortheRFestimatesoff,𝜏ianddusingthefeatures(toprow)andsignals(bottomrow)simulateddatabasewithSNR=40,matchingthe noiselevelinourin-vivodata.Toaidvisualinterpretation,theplotsarecolor-codedwiththepercentageerrorcappedat±50%

gradientstrengths(G1-5=150–500mT/m)andforΔ={10.8,20.0}ms.

Fig. 7 providesacomparisonbetweenoneofoursimulatedsignals(at differentgradientstrengthsanddiffusiontimes)andtheexperimental signalsmeasuredfromavoxelinthecentreofthespleniumofaWT mouse.Wefindaverygoodmatchbetweenthesimulatedandin-vivo DW-MRIsignals,demonstratingthatourtrainingdatasetisagood rep-resentationofthein-vivomousedataset.Thisisanecessarycondition

foroursupervisedlearningapproachtobevalidandensuresthatduring thesupervisedlearningwelearnatrainingdatasetwhichissimilarto thetestdataset.However,pleasenotethatsimilarDW-MRIsignalsdo not necessarilyimply similarunderpinning microstructure.This very knownambiguity(Jelescuetal,2016b,Novikovetal,2019)isoneof themainchallengesinmicrostructureimaging,leadingtohigher uncer-taintyinthemodelparameterestimation.

(11)

Fig.7. Comparisonbetweenthein-vivo(left)andsimulated(right)signalintensityasafunctionoftheanglebetweendiffusiongradientsandthecylindricalfibres’ axis𝜃 (indegrees),fordifferentdiffusiongradientstrengths(G1-5=150-500mT/m)andtwoΔs:10.8ms(bluelines)and20.0ms(greenlines).Thedashedblackline intheexperimentaldatarepresentsthenoisefloorlevel.

Fig.8. RepresentativeDW-MRIb=0imagesof:A)aWTmousescaninourcohortandB)aCPZmousescaninourcohort.C)ROIsoftheCCoverlaidonthezoomed inb=0imageoftheWTmousescan.ThethreeROIsaregenu(G-CC),body(B-CC)andsplenium(S-CC).TheyellowsquareindicatestheregioninwhichtheCCis found.

Fig.8showsexamplesofDW-MRIb=0imagesforaWT(Fig. 8 A) andforaCPZ(Fig. 8 B)mouse.Wecanobservetheappearanceofthe CCintheCPZscanisdifferentfromtheWT,showingtheeffectof de-myelination.Fig. 8 CshowsthethreeROIsoftheCCoverlaidontheb=0 imageoftheWTscan.WemanuallydefinethreeROIsontheCCmasks ofeachmousescan:splenium(S-CC),body(B-CC)andgenu(G-CC)by followingthedistributionoftheRDvaluestohelplocalizethecentral voxelsofthesethreemainregions:thegenuandspleniumofthecorpus callosumshowalowerRDthanthebody.Wethencalculatethemean parameterestimatesforNODDI(ODI),DTI(AD,RD,FA)andRF(f,𝜏i,

d)ineachROIforeverymouse,andstudythedifferencesbetweenthe WTandtheCPZgroups.Wepresenttheseresultsintheremainderof thissection.

Fig.9showsCCmapsforNODDIandDTIparametersforone ex-emplarhealthyWTmouse(firstcolumn)andoneexemplarCPZmouse (secondcolumn).AvisualinspectionoftheCCmapsrevealsno signif-icantchangesinODIandADbetween thetwomice,togetherwitha significantincreaseinRDanddecreaseinFA.

Weobservethesametrendsin theDTIandNODDIparametersat grouplevel,asshowninFig. 9 B.Weillustratethedifferencebetween

theWT groupandtheCPZ groupthrough boxandwhiskerplotsin thethreeROIsoftheCC:genu(G-CC),body(B-CC)andsplenium (S-CC).We findtheestimates ofODI inthetwogroupstobe between 0.15and0.29,suggestingverylowdispersion,inlinewithrecently re-portedvaluesinliterature(Wangetal.,2019).Furthermore,wefind no statisticallysignificantdifferenceinNODDIODIbetween thetwo groupsinthethreeregionsoftheCC,afindingthatisalsoinlinewith Wangetal.(2019).TheDTIestimatesshownegligiblechangesinAD, asignificantincreaseinRDandasignificantdecreaseinFA.These re-sultsareconsistentwithalreadypublishedresults(Boretiusetal.,2012, Songetal.,2005, Zhangetal.,2012b).

Thein-vivoRFestimatesoff,𝜏ianddobtainedusingtherawsignal

databasearepresentedinFig. 10 .

TheparametricCCmapsshowninFig. 10 Acorrespondtothesame WTmouse(firstcolumn)andCPZmouse(secondcolumn)inFig. 9 A. TheCCmapsshowastatisticallysignificantdecreaseinf(firstrow)and 𝜏i(secondrow),andnosignificantchangeind(thirdrow).Toprovidea

morequantitativeanalysis,weplottheboxandwhiskerplotsof region-specificparametercomparisonsbetweentheWTandtheCPZgroupover thethreeCCROIs(Fig. 10 B).ThetrendsobservedvisuallyinFig. 10 A

(12)

Fig.9. A)ParametricmapsoftheCCinahealthyWTmouse(firstcolumn)andaCPZmouse(secondcolumn)obtainedfromconventionalDTIatb=1241s/mm2 andfromNODDIODI.B)Boxandwhiskerplotsofregion-specificcomparisonbetweenWT(N=8)andCPZ(N=8).DTImetrics(AD,RD,FA)areevaluatedwithin thegenu(G-CC),body(B-CC)andsplenium(S-CC)oftheCC.Statisticalsignificanceisassessedbyusinga2-tailedt-testwithequalvarianceandsignificancelevel: ∗=0.01,∗∗=0.005,∗∗∗=0.001.‘n.s.’standsfornon-significant.

Table2

MeanandstandarddeviationofRFestimatesforf,𝜏ianddinthethreeCCROIsfortheWTandCPZ group.CPZregionsthatarestatisticallydifferentfromWTregionsaremarkedwith∗forp<0.01,∗∗ forp<0.005and∗∗∗forp<0.001.

f 𝜏i d

WT CPZ WT CPZ WT CPZ

S-CC 0.443 (0.005) 0.428(0.003) ∗∗∗ 370 (7) 310 (15) ∗∗∗ 1.12 (0.07) 1.18 (0.07) B-CC 0.430 (0.002) 0.424(0.001) ∗∗∗ 370 (9) 330 (10) ∗∗∗ 1.10 (0.05) 1.15 (0.03) G-CC 0.440 (0.006) 0.429(0.003) ∗∗ 380 (14) 350 (12) ∗∗ 1.15 (0.02) 1.11 (0.04)

holdforthegroup-wisequantitativecomparison(WTversusCPZ):we observestatistically significantdecreasesinfand𝜏i andanegligible

andstatisticallyinsignificantincreaseind.Thesetrendsareconsistent acrossallthreeregionsoftheCC.Themeanandstandarddeviationsof theRFparameterestimatesforeachROIarereportedinTable 2 . 3.5. Correlationwithpost-mortemanalysis

ThehistologicalEMmeasurementsinthesplenium,bodyandgenu oftheCCoverthecohortofWT(blue)andCPZ(black)micearereported inthehistogramsofFig. 11 .Ourhistologicaldatashowsnoaxonalsize changes(Fig. 11 C)andnosignificantaxonalloss(datanotshownhere) betweenthetwocohorts.TheaxonaldiametermeasurementsinFig. 11 C

do nottakeintoaccount thecommonlyaccepted shrinkagefactorof 30%(Barazanyetal.,2009,Innocentietal.,2015),afterwhichthe dif-ferencesbetweenthetwogroupscontinuetoremainstatistically non-significant. Wealsofindastatistically significantdecreasein myelin thickness(Fig. 11 B)correlatedwithanincreaseinthegratio(Fig. 11 A) andadecreaseintheintra-axonalvolumefraction(Fig. 11 D).Finally, wemeasureaweakbutnotstatisticallysignificantcorrelationbetween axonaldiameterandintra-axonalvolumefractionfromtheEManalysis (ϱ =0.34andp=0.51>0.05).

Next,westudythecorrelationbetweenthesechangesandthe esti-matesoftheRFmodelinFig. 12 .Weassessthestatisticalsignificance ofthelinearcorrelationbetween𝜏iandmyelinthicknessfromEMwith

(13)

Fig.10. A)ParametricmapswiththeRFestimatesforf,𝜏ianddintheCCofahealthyWTmouse(firstcolumn)andaCPZmouse(secondcolumn).B)Boxand whiskerplotsofregion-specificcomparisonbetweenWT(N=8)andCPZ(N=8).RFestimatesforf,𝜏ianddarecomputedindependentlyforallvoxelswithinthe genu(G-CC),body(B-CC)andsplenium(S-CC)oftheCC.Statisticalsignificancewasassessedbyusinga2-tailedt-testwithequalvarianceandsignificancelevel: ∗=0.01,∗∗=0.005,∗∗∗=0.001.‘n.s.’standsfornon-significant.ThedifferenceinthemorphologyoftheCCbetweentheWTandtheCPZmiceismostlyduetodifferent masking,subjecttodifferentpartialvolumewithintheCSFofeachmouse.

Fig.11. Histologyresults.ThemeanandthestandarddeviationoftheEMmeasurementsinthesplenium,bodyandgenuoftheCCforthecohortofWT(blue)andCPZ (black)mice:thegratio(A),myelinthickness(B),meanaxonaldiameter(C)andintra-axonalvolumefraction(D).

(14)

Fig.12. Statisticalsignificanceandcorrelationsbetween:A)theexchangetimefromDW-MRI(y-axis)andmyelinthicknessfromEM(x-axis)andB)theintra-axonal volumefractionfromDW-MRI(y-axis)andEM(x-axis).EachpointrepresentsthemeanoveroneregionoftheCCfortheWT(bluesquares)andCPZ(blackcircles) group.Errorbarsindicatethestandarddeviationovertheregion.

ofeachCCROIoftheWT(bluesquares)andCPZ(blackcircles)group (Fig. 12 A).WefindaPearsonlinearcorrelationcoefficient ϱ of0.82 andap-value<0.05for𝜏i,showingagoodcorrelationbetweentheRF

estimatesoftheexchangetimefromDW-MRI(y-axis)andhistological measurementsofmyelinthickness(x-axis).

Similarly, we investigate thestatistical significance of the linear correlationbetweenintra-axonalvolumefractionfasestimated from DW-MRI (y-axis) and from EM (x-axis) (Fig. 12 B). We find a Pear-soncorrelationcoefficientϱ of0.98andap-value<0.001,showinga strongcorrelationbetweentheRFestimatesandthehistological mea-surementsof theintra-axonalvolume fraction.Notethatthelowerϱ

valuefortheanalysisinFig. 12 Aislikelydue tothesensitivitylimit ofthecurrent experimentalprotocoltochangesin 𝜏i. Moreover,the

factthatEMmeasurementsofintra-axonalvolumefractionare consis-tentlyhigherthantheRFestimationfrominvivoDW-MRImaybedue tounaccountedshrinkageeffects, whichaffect mostlythe extracellu-larspaceandthuscanleadtoanincreaseintheintra-axonalvolume fraction.

Discussion

Inthiswork,wefocusontheexperimentalstudyofaRFbased com-putationalmodelforaxonalpermeabilityestimationusinganin-vivo cuprizonemousemodelofdemyelination.Becausenoanalyticalmodel isavailableforpermeabilitycharacterisationinthegeneralcaseof nei-therveryfastorveryslowexchange,here weusethecomputational approachproposedinNedjatietal.(2017).Specifically,weuseMonte Carlosimulationsof theDW-MRI signalandtrainourmodelto esti-matemicrostructureparameterswithafocusontheintra-axonal wa-terexchange time𝜏i,aparameterinverselyrelatedtoaxonal

perme-ability.Usingsyntheticsubstratesmimickingourin-vivodata,weshow thatourimagingprotocolhasgoodsensitivitytoexchangetimes𝜏i

400msforlargeaxons(meandiameterof2𝜇m)andto𝜏i ≤250ms

forsmallaxons(meandiameterof0.4𝜇m)underthenoiseconditions ofourin-vivodata(SNR=40).Followingfromthis,wefindthattheRF modelwedevelopedworksverywellinthisrange:wefindagood cor-relationbetweenRF estimatesandthegroundtruthfor𝜏i ≤400ms

(R2=0.87forSNR=infandR2=0.68forSNR=40),andaweak

correla-tionfor𝜏i >400ms(R2=0.3forSNR=infandR2=0.07forSNR=40)

due tothelow sensitivityin our protocol forvalues above 400 ms. Inourin-vivoimagingexperiments,wefindthattheRFestimates of 𝜏iarewithinthesensitivityrangeandinlinewithliteraturevaluesof

theexchangetimereportedinhealthyratbraintissue(Prantner,2008, Quirketal.,2003).Furthermore,wefindthattheRFestimatesof𝜏iin

theCPZgrouparesignificantlylowerthanintheWTgroup,afinding

thatonewouldintuitivelyexpecttoseeinamodelofdemyelination. Furthermore,wefindthatourintra-axonalvolumefractionestimates inCPZmicearealsosignificantlylowerthanincontrols.Theseresults arein strongagreement(ϱ𝜏i = 0.82,ϱf = 0.98)withour EM

histol-ogy resultsof myelinthicknessandintra-axonalvolumefraction, re-spectively.Finally,weshowthatpotentiallyconfoundingfactorssuch asaxonalswellinganddispersionhaveanegligibleeffectonthe esti-mateddifferencesbetweentheWTandCPZgroup.Theseresults sug-gestforthefirsttime,quantitativelyandin-vivo,thatmachinelearning basedcomputationalmodelscouldactasasuitablebiomarkerto de-tectandtrackchangesindemyelinatingpathologies.Furthermore,they supporttheapplicationof𝜏i asmoresensitiveandspecificmarkerof

demyelination.

4.1. Simulations

Sensitivityanalysis.Oursensitivityanalysisshowsthatourimaging protocolhasgoodsensitivityforexchangetimesintherange𝜏i ∈[0,

400]msforsubstrateswithlargeaxons(meandiameter𝜇D=2𝜇m)and

in therange𝜏i ∈[0,250] msfor substrateswithsmallaxons(mean

diameter𝜇D=0.4𝜇m),undernoiseconditionsmatchingthatofour

in-vivodata(SNR=40).Generallyspeaking,thenoiseinthedataaffects thesensitivitydifferently,dependingonthemeanaxondiameterinthe substrate. Forsubstrates withlargeaxons (𝜇D=2𝜇m), thesensitivity

halvesfrom𝜏i∈[0,400]msforSNR=40to𝜏i∈[0,200]msforSNR=20.

Forsubstrateswithsmalleraxons(𝜇D=0.4𝜇m),decreasingtheSNRfrom

40 to20 hasasmallereffectonthesensitivityrange,reducingitby 44%from𝜏i ∈[0,250]ms(SNR=40)to𝜏i ∈[0,140]ms(SNR=20).

Furthermore,wefindthatthelargertheaxonsinthesubstrate,thebetter thesensitivityrange.Substrateswith𝜇D=2𝜇mhaveasensitivityrange

widerby60%(forSNR=40)andby43%(forSNR=20)thansubstrates with𝜇D=0.4𝜇m.

Shellselection.Tooptimisetheperformanceofthemachinelearning model,weexplorethewiderangeofparametersinourPGSEprotocol andselectthebestcombinationof4and9shells.Weshowthatforour in-vivodatawithSNR=40thenumberofshellsthatmaximisesthe per-formanceofthemodelis 9,withtheb-values[620,775,930,1241, 1384,2489,4973,6803,7773]smm−2andanR2scoreof0.67.When

analysingthebestcombinationsof4and9shells,weobservethatthey sampleeveryvalueof𝚫 inoursequence,resultinginacombinationof lowandhighb-valueshells.Thisfindingisinaccordancewiththe opti-misedSTEAMprotocolinNedjatietal.(2017),whichcontainstwolong

𝚫 andtwoshort𝚫 shells.Thissuggeststhattomaximisesensitivityto theintra-axonalexchangetime,itisnecessarytoincludeacombination ofshortandlong𝚫s.

(15)

Weshowthatnoiseisanimportantfactorfortheperformanceofour model.Wefindthatinthenoisefreecase,itissufficienttouseonly4 shellsasintroducingmoreshellsdoesnotimproveperformance. How-ever,inthepresenceofnoise,wefindthatincreasingthenumberof shellsfrom4to9improvestheR2scorebetweentheestimatedandthe

groundtruth𝜏i.Apotentialexplanationforthisisthattheadditionof

noisecorruptstheinformationineachshell,andhavingmoreshellsto corroborateinformationfromhelpstheRFmodellearnbetter.Our anal-ysisalsorevealsthatincreasingthenumberofshellsabove9doesnot offeranyadditionalbenefitseveninthepresenceofnoise.Moreover,we showthatnoisehasastrongereffectontheestimationof𝜏i,forwhich

theR2scoredropsfrom0.84inthenoisefreecaseto≈0.5forSNR=20.

Theestimationoffanddisconsiderablymorerobust:R2

noise-free=0.99

versusR2

SNR=20=0.94forfandnodropford.ThissuggeststhatSNR

playsanimportantroleinaprotocol’ssuitabilityforpermeability esti-mationusingourapproach.

Featureextraction. Whenextracting therotationally invariant fea-turesfromoursyntheticsignals,weobtainmeaningfulvaluesforallb shellsinthesyntheticdata.Whenweapplythesamemethodtoin-vivo data,thefeatureextractionbecomesdifficultanddoesnotgive mean-ingfulresultsforbshellswithhighgradientstrength(above300mT/m) andhighb-values.Webelievethatthisdifferenceismostlikelydueto theeffectoffibredispersion,presentinthein-vivodatabutnotincluded inoursimulations.Asthegradientstrengthincreases,thedispersed fi-breswouldcauselargerdropsinthesignal,ascanalsobeseenin(Fig. 7 ), wherewenoticethatthedropinthesignalintensityrelativetothe gra-dientdirection is lessprominentin thesyntheticsignalsthanin the in-vivodata.Moreover,wenotethattheoreticallythediffusiontensor featuresatbvalueshigherthan2000s/mm2losetheirphysical

mean-ing.However,herewedonotinterpretthediffusiontensorfeaturesat highbvaluesintermsoftissuemicrostructure,butweratherusethem justasconvenientmetricstorepresentthesignal.Notethatweinclude allofthediffusiontensorfeaturesevenifsomeofthemarenotmutually independent.Weprefertoworkwithacomprehensivesetoffeaturesto ensurethatourmachinelearningalgorithmfindsthemostinformative splitcriteria.

Syntheticdataexperiments.TheRFmodelestimatesinthenoisefree casehaveverystrongcorrelationswiththegroundtruthvalues, pro-vidinganexcellentbenchmarkperformanceforourmodelandimaging protocol(f:R2=0.99,𝜏

i:R2=0.84d:R2=0.99).Weshowthatthe

addi-tionofnoisewithSNR=40,matchingourin-vivodata,doesnotaffect muchtheestimationof fandd(f:R2=0.97,d:R2=0.99),however,it

hasastrongereffectontheestimationof𝜏i.Inlinewithoursensitivity

results,for𝜏i<400mstheeffectispresent,however,theperformanceis

stillsufficientlygood(R2=0.68),whilefor𝜏

i>400mstheperformance

ofthemodelisseverelyaffected(R2=0.07).Theestimationoffandd

isconsiderablymorerobustthanthatof𝜏idue totheuseof arange

ofgradientstrengthsfrom50to300mT/m,whichhasbeenshownto improvethesensitivitytofandd(Huangetal,2015,Sepehrbandetal 2016).Moreover,therobustestimationoffanddisinagreementwith whathasbeenshownby Fieremansetal.(2011)abouttheestimation offanddinthecaseofparallelfibres.Indeed,thecaseofparallelfibers issolvableanalyticallyusingonlyfourestimatedparameters:diffusivity andkurtosisinthedirectionsparallelandperpendiculartothefibres. Sincealltheinformationforcomputingtheseparametersispresentin thedata,thisexplainsthehighfidelityoftheprediction.However,we notethatFieremansetal.’smodelisconfoundedbythefiberorientation dispersion,whichisknowntobepresentinwhitematter(Ronenetal., 2014)andtherefore,inthecaseofnon-negligiblefibredispersion,our parameterestimatesmaybebiased.

Inadditiontothis,wecompareforthefirsttimethesignaland fea-turetrainingapproachesandshowthatthereisnosignificantdifference intheRFperformanceaccordingtowhichdatabaseisusedfortraining. Thisisasignificantresultasitshowsthatwhenextractingthe rotation-allyinvariantfeaturesfromtherawsignalswedonotloseinformation thatisessentialfortrainingourmodel.Consequently,wecanusethe

featuresdatabasewithoutaffectingtheperformanceofourmodel.The advantage ofarotationallyinvariantfeature approachisthatitdoes notrequirethegenerationofanewlibraryforeverynewacquisition protocol aslong astheb-valuesandthe TEof theprotocolsmatch. Nevertheless,asdiscussedabove,cautionshouldbe appliedwiththis approach whentheacquisitionprotocoluses highgradientstrengths (G≥300mT/m)andtheSNRislow,suchasconditionsoftenfoundin thepre-clinicalsetting,andthenusingsignalsdatabasemightbe the preferablechoice.Ontheotherhand,intheclinicalsetting,imaging protocolshavemuchlowergradientstrengthsandsufficientSNRtofit theDTIandSHmodelparametersinthefeatureextractionapproach, andconsequently,weexpecttherotationallyinvariantfeatureapproach tobeabetterchoice(asusedinNedjatietal.(2017)).Irrespectiveof thetrainingapproach,weexpectourmodel’sperformancetobesimilar inboththeclinicalandpreclinicalsetting.

4.2. In-vivomousedataandcorrelationwithpost-mortemanalysis Ourdataqualitymatchshowsthatoursynthetictrainingdataisa goodrepresentation ofthein-vivodata.Our DTIresults showan in-creaseinRDandadecreaseinFAbetweenthetwogroups.Thiscould beexplainedbythebreakdownofthemyelinlayerwhichallows wa-tertodiffusemoreintheradialdirection,leavingADunchangedand having theoveralleffect ofreducing FA.These changesin DTI met-ricsareinagreementwiththosereportedinseveralstudiesoftheCPZ mousemodelofdemyelination(Boretiusetal.,2012,Songetal.,2005, Zhangetal.,2012b).Nevertheless,theDTImetricsarenotspecific be-causetheyprovideonlyindirectmeasuresoftheunderlying microstruc-turalchangesintheCPZmodel.Forinstance,theobservedincreasein RDmaybeduetotheincreasespacesbetweentheaxonsandnottothe higherpermeabilityoflessmyelinatedaxons.

Ontheotherhand,ourRFestimatesof𝜏iprovideamoredirectand

specificmeasureofpermeability.Infact,inourcomputationalmodel, diffusivity(viad)andpermeability(via𝜏i)aredecoupledand

individ-ually estimatedfrom thedata. Wefindthat ourestimationsof 𝜏i in

thehealthymicecomparewellwithliteraturevalues.Studieson sph-ingomyelinmembranesfoundinaxonalmembranessuggestvalues be-tween300msand600msforaxonswithradiibetween0.5and1𝜇m (Finkelstein,1976).Contrastagentandrelaxometrystudiesintherat brainestimatetheintracellularwaterexchangelifetimeintheratbrain tobebetween200ms(Prantner,2008)and550ms(Quirketal.,2003). Itisworthwhiletonotethatourexperimentalprotocoldoesnot pro-videenoughsensitivitytodetectexchangetimes >0.4s.Hence,our methodwouldestimate𝜏i~ 0.4sforanyactualexchangetime≥0.4s.

Nevertheless,wehavehighsensitivitytoreliablymeasureanychanges in 𝜏ioccurringbelow0.4sduetodemyelination.Asaccurate

histol-ogymeasurementsof𝜏iarenotavailableduetotissuefixationaltering

themembranepermeability,wecompareourestimatesof𝜏iwithEM

measurementsofmyelinthickness.Wecomputemyelinthicknessfrom myelinatedaxonsonly,anditincludesboththeeffectofdemyelination inducedbyCPZandsomeremyelinationthathappensspontaneouslyin theCPZmodel(MatsushimaandMorell,2001).Wefindastrong corre-lationbetweentheRFestimatesof𝜏iandmyelinthickness(ϱ𝜏i=0.82).

This isin verygoodagreementwitharecentlypublishedsimulation workinvestigatingthelinkbetweenexchangetimeandmyelinthickness (Brusinietal.,2019),furthersupportingthefindingsthatmyelin wrap-pingcanmeaningfullycontributetothesignalinDW-MRIandimpact𝜏i.

Furthermore,ourRFestimatesofdlieintherange1–1.3𝜇m2sm−1,an

expectedrangeforthemouseCC(Wuetal.,2008),andourestimates offcorrelateverystronglywiththeEMintra-axonalvolumefraction measurements(ϱf=0.98).

Whencomparingthetwogroups,weobservethefollowinggeneral trends: a statisticallysignificant decreasein the intra-axonalvolume fractionfandintheintra-axonalexchangetime𝜏i,togetherwitha

neg-ligibleandstatisticallyinsignificantincreaseintheintrinsicdiffusivity d.WeexpectftobelowerintheCPZgroupasthereisanincreasein

Figure

Fig. 1. Schematic pipeline of the stereological analysis to compute g ratios and axonal diameters in the corpus callosum of the mice
Fig. 2. Examples of the synthetic tissue used for our Monte Carlo simulations. From two given exemplar Gamma distributions of axon diameter (first row) four exemplar digital substrates are generated by packing straight non-overlapping cylinders up to two di
Fig. 3. Differences in the DW-MR normalized signal between impermeable (
Fig. 4. Performance of the RF model prediction of
+6

Références

Documents relatifs

Once the tumours were established, the biodistribution and localisation of intravenously injected DNA LNCs in this orthotopic melanoma mouse model were traced via in vivo

A key finding of the present study was that erosion of nacre screws occurred only during their intraosseous course, in contact with the bone marrow; on the contrary, no erosion

Reconstruction of a longitudinal image of the radius obtained, (a) if the anisotropic model for the wave-speed in cortical bone (equation (1)) and the optimal values (table 2)

Elle me répond qu’effectivement elle avait été intriguée par une fille d’une vingtaine d’années qui partait à pied sur la route de LABAROCHE, sans

Super-resolution microscopy, Two-Photon (2P-) STED microscopy, in vivo brain preparation, dendritic spines, FRAP, spine compartmentalization, dual color imaging, glial

Figures highlight a tight relationship between sediment TEs input, spring freezing level, precipitation and freezing day frequencies, supporting thus the hypothesis of an

This allows us to draw a full evolutionary sequence for the incubators in the Trifid Nebula, from the early stage when they are embedded in low-density material of the parental