• Aucun résultat trouvé

Multi-Field Persistent Homology

N/A
N/A
Protected

Academic year: 2022

Partager "Multi-Field Persistent Homology"

Copied!
52
0
0

Texte intégral

(1)

JGA 2013

Multi-Field Persistent Homology

Jean-Daniel Boissonnat & Cl´ ement Maria

(2)

1 Introduction

(3)

Motivation

Homology features:

components, holes, voids, etc.

but... that guy on the right is

“twisting”!

Conformation Space of the Cyclo-octane Molecule Image: [Martin, Thompson,

Coutsias, Watson]

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 3

(4)

Motivation

Homology features:

components, holes, voids, etc.

but... that guy on the right is

“twisting”!

Conformation Space of the Cyclo-octane Molecule Image: [Martin, Thompson,

Coutsias, Watson]

(5)

Homology with Z -coefficients

K p : set of p-simplices of K C p : Abelian group of formal sums of p-simplices with Z -coefficients

{ , , , , , , · · · }

{ e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , · · · } e 1 + e 2 + e 3 + e 4 + e 5 + e 6

e

1

e

2

e

3

e

4

e

5

e

6

∂ p : C p → C p − 1 : Boundary operator ∂ 2 = − + [a, b, c]

C 1 = ( { P

i k i e i } , +)

[ab]

∂ 2 = − [bc] + [ca]

H p = ker ∂ p / im ∂ p+1

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 5

(6)

Homology and Torsion

Fundamental theorem of finitely generated abelian groups:

H p ( Z ) ∼ = Z β

p

( Z ) M

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

vs H p ( F ) = F β

p

( F )

I β p ( Z ) and β p ( F ) are Betti numbers: β p ( Z ) 6 = β p ( F ) in general

I k i > 0 and t(p , q) ≥ 0 over all prime numbers q

I if t(p, q) 6 = 0, q k

1

· · · q k

t(p,q)

are torsion coefficients

Klein bottle:

(7)

Homology and Torsion

H p ( Z ) ∼ = Z β

p

( Z ) M

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

vs H p ( F ) = F β

p

( F )

H 0 ( Z ) = Z β 0 ( Z ) = 1 H 1 ( Z ) = Z ⊕ Z 2 β 1 ( Z ) = 1 H 2 ( Z ) = 0 β 2 ( Z ) = 0 H 0 ( Z 2 ) = Z 2 β 0 ( Z 2 ) = 1 H 1 ( Z 2 ) = ( Z 2 ) 2 β 1 ( Z 2 ) = 2 H 2 ( Z 2 ) = Z 2 β 2 ( Z 2 ) = 1 H 0 ( Z 3 ) = Z 3 β 0 ( Z 3 ) = 1 H 1 ( Z 3 ) = Z 3 β 1 ( Z 3 ) = 1 H 2 ( Z 3 ) = 0 β 2 ( Z 3 ) = 0

Klein bottle:

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 7

(8)

Homology and Torsion

H p ( Z ) ∼ = Z β

p

( Z ) M

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

vs H p ( F ) = F β

p

( F )

H 0 ( Z ) = Z β 0 ( Z ) = 1 H 1 ( Z ) = Z ⊕ Z 2 β 1 ( Z ) = 1 H 2 ( Z ) = 0 β 2 ( Z ) = 0 H 0 ( Z 2 ) = Z 2 β 0 ( Z 2 ) = 1 H 1 ( Z 2 ) = ( Z 2 ) 2 β 1 ( Z 2 ) = 2 H 2 ( Z 2 ) = Z 2 β 2 ( Z 2 ) = 1 H 0 ( Z 3 ) = Z 3 β 0 ( Z 3 ) = 1 H 1 ( Z 3 ) = Z 3 β 1 ( Z 3 ) = 1 H 2 ( Z 3 ) = 0 β 2 ( Z 3 ) = 0

Klein bottle???

o O ???

(9)

Homology and Torsion

H p ( Z ) ∼ = Z β

p

( Z ) M

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

vs H p ( F ) = F β

p

( F )

H 0 ( Z ) = Z β 0 ( Z ) = 1 H 1 ( Z ) = Z ⊕ Z 2 β 1 ( Z ) = 1 H 2 ( Z ) = 0 β 2 ( Z ) = 0 H 0 ( Z 2 ) = Z 2 β 0 ( Z 2 ) = 1 H 1 ( Z 2 ) = ( Z 2 ) 2 β 1 ( Z 2 ) = 2 H 2 ( Z 2 ) = Z 2 β 2 ( Z 2 ) = 1 H 0 ( Z 3 ) = Z 3 β 0 ( Z 3 ) = 1 H 1 ( Z 3 ) = Z 3 β 1 ( Z 3 ) = 1 H 2 ( Z 3 ) = 0 β 2 ( Z 3 ) = 0

Klein bottle:

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 9

(10)

Remember Persistence?

A

A B

A

B A

B A

Death

Birth

Very useful!

General

Stable w.r.t noise Efficient Algorithm BUT

Strictly restricted to FIELD coefficients!

(algebraic reason)

(11)

Remember Persistence?

A

A B

A

B A

B A

Death

Birth

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 11

(12)

Remember Persistence?

A

A B

A

B A

B A

Death

Birth

B B B

x

y

(13)

Remember Persistence?

A

A B

A

B A

B A

Death

Birth

B B B

1 cycle alive ”during”

[x : y]

y

x

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 13

(14)

Remember Persistence?

A

A B

A

B A

B A

Death

Birth

B B B

x y

2 cycles alive ”during”

[x : y]

(15)

Cl´ement Maria - Multi-Field Persistent Homology

2 Multi-Field Persistence Diagram

(16)

Multi-Field Persistence Diagram

Z 2

Z 3

only in Z 2 only in Z 3

in Z 2 and Z 3

(17)

Multi-Field Persistence Diagram

Z 2

Z 3

only in Z 2 only in Z 3

in Z 2 and Z 3

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 17

(18)

Multi-Field Persistence Diagram

Z ⊕ Z 2

Z 3 ⊕ Z 2

Z 2

Z 2

Z 3

only in Z 2 only in Z 3

in Z 2 and Z 3

(19)

Homology Group Reconstruction

We compute the Multi-Field Persistence Diagram for the fields:

{Z q

1

, · · · , Z q

r

} for the family of first r distinct primes q 1 , · · · , q r

Suppose we know β p ( Z q

s

), ∀ 1 ≤ sr (with H p ( Z q

s

) ∼ = Z β q

sp

( Z

qs

) ).

H p ( Z ) ∼ = Z β

p

( Z ) L

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

H p−1 ( Z ) ∼ = Z β

p−1

( Z ) L

q prime

Z q

k10

⊕ · · · ⊕ Z

q

k

0 t(p−1,q)

The Universal Coefficient Theorem of Homology allows to compute H p (K, F ) from H p (K, Z ) and H p−1 (K, Z ).

With q r “big enough”, we partially reverse the computation:

t(p, q s ) = β p ( Z q

s

) − β p ( Z q

r

) − t(p − 1, q s )

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 19

(20)

Homology Group Reconstruction

We compute the Multi-Field Persistence Diagram for the fields:

{Z q

1

, · · · , Z q

r

} for the family of first r distinct primes q 1 , · · · , q r

Suppose we know β p ( Z q

s

), ∀ 1 ≤ sr (with H p ( Z q

s

) ∼ = Z β q

sp

( Z

qs

) ).

H p ( Z ) ∼ = Z β

p

( Z ) L

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

H p−1 ( Z ) ∼ = Z β

p−1

( Z ) L

q prime

Z q

k10

⊕ · · · ⊕ Z

q

k

0 t(p−1,q)

The Universal Coefficient Theorem of Homology allows to compute H p (K, F ) from H p (K, Z ) and H p−1 (K, Z ).

With q r “big enough”, we partially reverse the computation:

t(p, q s ) = β p ( Z q

s

) − β p ( Z q

r

) − t(p − 1, q s )

(21)

Homology Group Reconstruction

We compute the Multi-Field Persistence Diagram for the fields:

{Z q

1

, · · · , Z q

r

} for the family of first r distinct primes q 1 , · · · , q r

Suppose we know β p ( Z q

s

), ∀ 1 ≤ sr (with H p ( Z q

s

) ∼ = Z β q

sp

( Z

qs

) ).

H p ( Z ) ∼ = Z β

p

( Z ) L

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

H p−1 ( Z ) ∼ = Z β

p−1

( Z ) L

q prime

Z q

k10

⊕ · · · ⊕ Z

q

k

0 t(p−1,q)

The Universal Coefficient Theorem of Homology allows to compute H p (K, F ) from H p (K, Z ) and H p−1 (K, Z ).

With q r “big enough”, we partially reverse the computation:

t(p, q s ) = β p ( Z q

s

) − β p ( Z q

r

) − t(p − 1, q s )

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 21

(22)

Homology Group Reconstruction

We compute the Multi-Field Persistence Diagram for the fields:

{Z q

1

, · · · , Z q

r

} for the family of first r distinct primes q 1 , · · · , q r

Suppose we know β p ( Z q

s

), ∀ 1 ≤ sr (with H p ( Z q

s

) ∼ = Z β q

sp

( Z

qs

) ).

H p ( Z ) ∼ = Z β

p

( Z ) L

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

H p−1 ( Z ) ∼ = Z β

p−1

( Z ) L

q prime

Z q

k10

⊕ · · · ⊕ Z

q

k

0 t(p−1,q)

The Universal Coefficient Theorem of Homology allows to compute H p (K, F ) from H p (K, Z ) and H p−1 (K, Z ).

With q r “big enough”, we partially reverse the computation:

t(p, q s ) = β p ( Z q

s

) − β p ( Z q

r

) − t(p − 1, q s )

(23)

Homology Group Reconstruction

H 0 ( Z ) = Z H 1 ( Z ) = Z ⊕ Z 2 H 2 ( Z ) = 0

Z ⊕ Z 2 Z 3 ⊕ Z 2

Z 2

only in Z

2

only in Z

3

in Z

2

and Z

3 Death

Birth

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 23

(24)

Multi-Field Persistence Diagram

We compute the Multi-Field Persistence Diagram for the fields:

{Z q

1

, · · · Z q

r

} for a family of distinct primes q 1 , · · · , q r , with q r strict upper bound on the primary divisors of torsion coefficients.

H p ( Z ) ∼ = Z β

p

( Z ) M

q prime

Z q

k1

⊕ · · · ⊕ Z q

kt(p,q)

Let:

I K be a filtered simplicial complex with m simplices

I | D(K, F ) | = Θ(m) be the number of points in the persistence diagram for any F (field) coefficients

I | D(K, Z q

1

· · · Z q

r

) | be the number of distinct points in the

superimposition of diagrams D(K, Z q

1

), · · · D(K, Z q

r

)

(25)

Multi-Field Persistence Diagram

Usually:

I q 1 , · · · , q r are the first r prime numbers, and r ≤ 100

I m is huge!

I m ' | D(K, F ) | '

| D(K, Z q

1

· · · Z q

r

) | r × m

Z ⊕ Z 2

Z 3 ⊕ Z 2

Z 2

only inZ2

only inZ3

inZ2andZ3 Death

Birth

We design algorithms such that:

O(f ( | D(K, F ) | )) becomes O(f ( | D(K, Z q

1

· · · Z q

r

) | ) × A) for some small A.

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 25

(26)

3 Modular Reconstruction

for Gaussian Elimination

(27)

Remember the Persistent Cohomology Algorithm?

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7

K 0 ⊆ K 1 ⊆ K 2 ⊆ K 3 ⊆ K 4 ⊆ K 5 ⊆ K 6 ⊆ K 7

I Insert the simplices in the order of the filtration

I Update the cohomology groups accordingly

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 27

(28)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∈ Z q

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

Inverse in Z q

a ∂σ i+1

0 6 =

0 0

Algo overview in Z q

(29)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∈ Z q

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

Inverse in Z q

a ∂σ i+1

0 6 =

0 0

Algo overview in Z q

Gaussian Elimination in a field

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 29

(30)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

Multi-Field? ← Algo in Z q 1 × · · · × Z q r

∈ Z q 1 × · · · × Z q r

(u 1 , · · · , u r ) × (v 1 , · · · , v r ) + (w 1 , · · · , w r ) (u 1 × v 1 + w 1 , · · · , u r × v r + w r )

=

(31)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

Multi-Field? ← Algo in Z q 1 × · · · × Z q r

∈ Z q 1 × · · · × Z q r

(u 1 , · · · , u r ) × (v 1 , · · · , v r ) + (w 1 , · · · , w r ) (u 1 × v 1 + w 1 , · · · , u r × v r + w r )

=

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 31

(32)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

Multi-Field? ← Algo in Z q 1 × · · · × Z q r

∈ Z q 1 × · · · × Z q r

(u 1 , · · · , u r ) × (v 1 , · · · , v r ) + (w 1 , · · · , w r ) (u 1 × v 1 + w 1 , · · · , u r × v r + w r )

=

(33)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

Multi-Field? ← Algo in Z q 1 × · · · × Z q r

(u 1 , · · · , u r ) × (v 1 , · · · , v r ) + (w 1 , · · · , w r ) (u 1 × v 1 + w 1 , · · · , u r × v r + w r )

=

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 33

(34)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

Multi-Field? ← Algo in Z q 1 × · · · × Z q r

c k = (u 1 , · · · , u r ) with u s lowest 6 = 0

in Z q s for s ∈ S ⊆ [r] of a ∂σ (u 1 S , · · · , u r S ) = c k 1

u s −1 if s ∈ S

0 o.w.

partial inverse

w.r.t. S

(35)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

Multi-Field? ← Algo in Z q 1 × · · · × Z q r

c k = (u 1 , · · · , u r ) with u s lowest 6 = 0

in Z q s for s ∈ S ⊆ [r] of a ∂σ

(u 1 S , · · · , u r S ) = c k 1 u s S =

u −1 s if s ∈ S

0 o.w.

partial inverse w.r.t. S

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 35

(36)

Z q

1

× · · · × Z q

r

∼ = Z q

1

×···× q

r

Theorem (Chinese Remainder Theorem)

For a family q 1 , · · · , q r of r distinct prime numbers, there is a ring isomorphism

ψ : Z q

1

× · · · × Z q

r

→ Z q

1

×···×q

r

s.t. the restriction ψ × : Z × q

1

× · · · × Z × q

r

→ Z × q

1

×···×q

r

is a group isomorphism.

for

I Z q

1

×···×q

r

with pointwise addition/multiplication

I R × the multiplicative group of invertible elements of ring R

Moreover, ψ is easily constructible.

(37)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

=

Multi-Field? ← Algo in Z q 1 ×···× q r

ψ(u 1 , · · · , u r ) × ψ(v 1 , · · · , v r ) + ψ(w 1 , · · · , w r ) ψ (u 1 × v 1 + w 1 , · · · , u r × v r + w r )

ψ ψ

∈ Z q 1 ×···× q r

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 37

(38)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

=

Multi-Field? ← Algo in Z q 1 ×···× q r

ψ(u 1 , · · · , u r ) × ψ(v 1 , · · · , v r ) + ψ(w 1 , · · · , w r ) ψ (u 1 × v 1 + w 1 , · · · , u r × v r + w r )

ψ ψ

∈ Z q 1 ×···× q r

(39)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

=

Multi-Field? ← Algo in Z q 1 ×···× q r

ψ(u 1 , · · · , u r ) × ψ(v 1 , · · · , v r ) + ψ(w 1 , · · · , w r ) ψ (u 1 × v 1 + w 1 , · · · , u r × v r + w r )

ψ ψ

∈ Z q 1 ×···× q r

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 39

(40)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

with u s lowest 6 = 0

in Z q s for s ∈ S ⊆ [r] of a ∂σ

(u 1 S , · · · , u r S ) = c k 1 u s S =

u −1 s if s ∈ S

0 o.w.

partial inverse w.r.t. S

Multi-Field? → Algo in Z q 1 ×···× q r

c k = ψ(u 1 , · · · , u r )

ψ

ψ

ψ

(41)

Multi-Field Persistent Cohomology

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

with u s lowest 6 = 0

in Z q s for s ∈ S ⊆ [r] of a ∂σ

(u 1 S , · · · , u r S ) = c k 1 u s S =

u −1 s if s ∈ S

0 o.w.

partial inverse w.r.t. S

Multi-Field? → Algo in Z q 1 ×···× q r

c k = ψ(u 1 , · · · , u r )

ψ ψ ψ

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 41

(42)

Partial Inverse Construction

Define Q S = P

s∈S q s for S ⊆ [r ]. We prove that:

Data: x, Q S

Q R ← gcd(x, Q S ); via the euclidean algorithm: O(A

÷

(Q));

Q

T

Q

S

/Q

R

;

v ← Extended-Euclidean-Algorithm (x, Q

T

); such that;

vx + wQ

T

= 1;

vv mod Q

T

;

L

T

D(Q

T

); some preprocessed constant;

x

S

← (v × L

T

) mod Q;

return x

S

;

computes the partial inverse of x w.r.t. S. Cost: O(A) in Z q

1

···q

r

(43)

Partial Inverse Construction

Define Q S = P

s∈S q s for S ⊆ [r ]. We prove that:

Data: x, Q S

Q R ← gcd(x, Q S ); via the euclidean algorithm: O(A

÷

(Q));

Q

T

Q

S

/Q

R

;

v ← Extended-Euclidean-Algorithm (x, Q

T

); such that;

vx + wQ

T

= 1;

vv mod Q

T

;

L

T

D(Q

T

); some preprocessed constant;

x

S

← (v × L

T

) mod Q;

return x

S

;

computes the partial inverse of x w.r.t. S. Cost: O(A) in Z q

1

···q

r

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 43

(44)

3 Complexity Analysis

and Experiments

(45)

Arithmetic Complexity

I For an integer z, let λ(z) = b log 2 z /w c + 1 the number of w-bits memory words to store z.

I Let Q = q 1 × · · · × q r be the product of the first r primes

I For B = λ(z), we have:

Addition A + (z ) = O(B)

Multiplication A × (z) = O(M(B))

Division A ÷ (z ) = O(M (B) log B) with M (B) = O(B log B 2 O(log

B) ) Moreover:

λ(Q) <

1.46613r ln(r ln r) w

+ 1

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 45

(46)

Complexity Analysis

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∈ Z q

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

Inverse in Z q

a ∂σ i+1

0 6 =

0 0

Algo overview in Z q

C a

C G

Complexity: O( | D(K, Z q ) | × [ C a + C G ])

(47)

Complexity Analysis

φ

gp

φ

1

τ

1

τ

n

∂σ

i+1

a

∂σi+1

=

X

τ∈∂σi+1

1 ( ) a

τ

φ

gp

φ

1

τ

1

τ

n

φ

k

0 0 0 0 0 0 0 τ

j

6

= 0

= 0

ψ

1

ψ

gp+1

σ

1

σ

i+1

0

0

0 0 1

σ

i+1

∀ j

φ j ← φ j − a ∂σ

i+1

[j]c

k 1

× φ k

c k

a ∂σ i+1

0 0

C a

C G

Algo overview in Z q 1 ×···× q r

O( | D(K, Z q 1 · · · Z q r ) | × [ C a + C G ] × A)

∈ Z q 1 ×···×q r

Partial inverse

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 47

(48)

Experiments

0 2 4 6 8 10 12 14 16 18 20

0 1,000 2,000 3,000 4,000 5,000

number of primes r

time (s.)

modular reconstruction naive

0 6 12 18 24 30

ratio

ratio x = y

Figure: Timings for the modular reconstruction algo vs naive.

O( | D(K, Z q

1

· · · Z q

r

) |× [ C a

+ C G ] × A) vs O(r ×| D(K, Z q ) |× [ C a

+ C G ])

(49)

Cl´ement Maria - Multi-Field Persistent Homology

Conclusion

(50)

Why Multi-Field Persistence?

Not for today but: we also have

I Multi-Field Bottleneck Distance between diagrams

I Generalized algorithm for maximal point set matching

I Efficient algorithm in O(m 03/2 log m 0

tA) (instead of O(m 3/2 log m))

1 4

{1, 2, 3}

{1,2}

{ 1, 3, 4 } { 4 } {2}

{ 1,3 } {4}

1 3 2

{1}

G G

f

(51)

Why Multi-Field Persistence?

The Multi-Field Persistence Diagram

I is more accurate:

characterizes torsion

I admits a fast construction algorithm

I admits a generalized bottleneck distance with a fast algorithm

Z ⊕ Z 2

Z 3 ⊕ Z 2

Z 2

only inZ2

only inZ3

inZ2andZ3 Death

Birth

Code available soon.

Cl´ement Maria - Multi-Field Persistent Homology December 17, 2013- 51

(52)

Thank you!

Question?

Références

Documents relatifs

Propagation of electrical atrial activity (AA) during atrial fibrillation (AF) is a process characterised by dif- ferent short- and long-term recurrence behaviours [1].. A

زﻔﺤ قﻴﻘﺤﺘ ﻲﻓ ﺎﻤﻬﻤ ارود زﻓاوﺤﻝا بﻌﻠﺘ ﻬﺌادأ ةدﺎﻴز و لﻤﻌﻝا ﻰﻠﻋ نﻴﻠﻤﺎﻌﻝا م , بﺠﻴ نﺎﻴﺴﺎﺴأ نﻼﻤﺎﻋ كﺎﻨﻫ و ﻪﻓدﻫ قﻘﺤﻴ ﻰﺘﺤ زﻓاوﺤ مﺎظﻨ يأ ﻲﻓ ﺎﻫدوﺠو , زﻓﺎﺤﻝا نﻴﺒ قﻓاوﺘ

J’ai contribué ainsi à la mise en place d’un système instrumental Doppler multicapteurs multiprofon- deurs (Cetu Althais-UMRS &#34;Imagerie et Cerveau&#34;-CHU Tours), doté

In this section we utilize the qualitative choice model of Section 1 and in particular the utility specification of equation (1.5) to estimate the parameters

PHom-WAE minimizes the Wasserstein distance between the true distribution and the reconstructed distribution and uses persistent homology, the study of the topological features of

We state in this paper a strong relation existing between Mathematical Morphology and Discrete Morse Theory when we work with 1D Morse functions.. Specifically, in

The effect of δ on the computation time is analyzed in Figure 5 where the six meshes shown in Figure 2 are used, and our method of persistent homology computation based on the

A review of recent studies on the behaviour of structures in fire is provided and includes: past fire collapses of buildings, effects of structural thermal expansion on the behaviour