• Aucun résultat trouvé

Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem

N/A
N/A
Protected

Academic year: 2022

Partager "Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem"

Copied!
10
0
0

Texte intégral

(1)

ESAIM: M

ODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

A IHUI Z HOU

Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem

ESAIM: Modélisation mathématique et analyse numérique, tome 33, no1 (1999), p. 89-97

<http://www.numdam.org/item?id=M2AN_1999__33_1_89_0>

© SMAI, EDP Sciences, 1999, tous droits réservés.

L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com- merciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

Mathematical Modelling and Numerical Analysis M2AN, Vol. 33, N° 1, 1999, p. 89-97 Modélisation Mathématique et Analyse Numérique

MULTI-PARAMETER ASYMPTOTIC ERROR RESOLUTION OF THE MIXED FINITE ELEMENT METHOD FOR THE STOKES PROBLEM

AIHUI ZHOU1

Abstract. In this paper, a multi-parameter error resolution technique is applied into a mixed finite element method for the Stokes problem. By using this technique and establishing a multi-parameter asymptotic error expansion for the mixed finite element method, an approximation of higher accuracy is obtained by multi-processor computers in parallel.

Resumé. Dans cet article une méthode de résolution d'erreurs multi-paramétrique est appliquée à la méthode des éléments finis mixte pour le problème de Stokes. À l'aide de cette technique, et en utilisant un développement asymptotique multi-paramétrique de l'erreur, on obtient une plus grande précision par calcul parallèle sur des machines multi-processeurs.

AMS Subject Classification. 65N15, 65N30.

Received: June 26, 1998. Revised October 21, 1997 and Mardi 3, 1998.

1. INTRODUCTION

The Stokes équations have become an important model problem in computational fiuid dynamics for de- signing and analyzing finite element algorithms. In the context of the Galerkin variational formulation, the computational accuracy for the velocity components can be compared to that known for the Poisson équation.

For the pressure, however, one frequently observes a drastic réduction of the accuracy along the boundary.

Therefore, one has anyway to employ some techniques or arguments to recover and increase the accuracy.

The extrapolation approach established by Richardson in 1926, is an important technique to obtain approxi- mations of higher accuracy. The application of this approach in the finite différence method can be found in [13].

In 1983, Lin, Lü and Shen [10] have applied the technique to the finite element method. Development in this direction can be found in [3,12,14]. However, this approach has a limitation since it requires a global refinement and hence wastes computing time and memory. Recently, a so-called multi-parameter error resolution technique has been introduced to obtain approximations of higher accuracy (see [19,20]). This new approach is based on a multi-parameter asymptotic error expansion and only uses partial refinements. It is shown that a combination of discrete solutions related to such partial refinements can produce an approximation of higher accuracy and the procedure can be done by multi-processor computers in parallel. In this paper, we apply this technique to a mixed finite element method for the Stokes problem.

Consider the homogenous Stokes problem

- A u + Vp = f, in fi,

divu = 0, infi, (1.1) u = 0, on <9Q,

Key words and phrases. Multi-parameter asymptotic error resolution, multi-parameter extrapolation, mixed finite element, Stoke problem, parallel computing.

1 Institute of Systems Science, Academia Sinica, Beijing 100080, China, e-mail: azhou@bamboo.iss.ac.cn.

© EDP Sciences, SMAI 1999

(3)

90 A. ZKOU

where ft — [0, l]2, u = (1*1,^2) is the velocity, p is the pressure and f indicates the external force. We know that (1.1) is equivalent to the variational formulation( [8]): Find (u,p) € (HQ(£1))2 X LQ(Q) such that

B(u,p;v,<z) = (f,v), V(v,g) e (H^iï))2 x Lg(ïl), (1.2) where

i?(u,p; v,g) — (Vu, Vv) — (p, div v) + (g, divu) and other notations are identical to these of références [5,8].

Divide ft into subrectangles ftj(j = 1, • • • , m) whose edges are parallel to the sc-axis and the y-axis respec- tively. On each ftj(j = 1, • • • , m) a uniform mesh is imposed, and globally a quasi-uniform partition on ft is formed. Dénote the mesh sizes on ftj by hj^ in x-direction and hj^ in y-direction (j — 1,--- , m). Among these mesh parameters, some are independent, say /ii, • • • , hs. It can be proved that 2 < s < m + 1 and one can choose s > 2. Let /i — max{/ij, * • • , /is}, Th be the partition on ft and (V^, L^) be a pair of finite element spaces on T^, e,^. the Bernardi-Raugel finite element space or the filtered bilinear-constant finite element space, satisfying the Babuska-Brezzi conditon (see [2,8]). The interpolated finite element approximations correspond- ing to hi, • • - , h$ is denoted by (u(^i, • • • , hs),p(hiy • • • , hs)). Then there exist multi-parameter error résolution expressions on ft (see Sect. 4)

u(hij • • • , hs) ~ u + £ *= 1 dijh2 + O(h3), in H1 — norm,

u(Ai, • • • , hs) = u + £ J= 1 ajft| + O(h4), in L2 - norm, (1.3) p(/ii, • - • , h8) = P + £^=i ^i^j + O(h3), in L2 - norm

where a^, bj(j — 1,-'* ;s) a r e independent of (fti,--- ,/is)- Based on (1.3), a multi-parameter extrapolation yields approximations of higher accuracy

(4 E j = i U3 - (4 s - 3)uo)/3 = u + O(h3), in Hl - norm,

(4 £5=i uj - (4s - 3)uo)/3 = u + O(h4), in L2 - norm, (1.4) (4 EUi Pi ~ (4s ~ 3)^o)/3 = P + ° ^3) ' i n ^2 " n o r m'

w h e r e ( u0, P o ) = ( u ( h i}- - - , / is) , p ( / i i , • • • , / is) ) a n d ( u j , p j ) = ( u ( h i , - - - , ftj_i, / i j / 2 , / i j+ 1 ) • - • , / is) ,

Therefore, a parallel algorithm for approximations of higher accuracy can be designed as follows.

Algorithm.

Step 1. Compute (\ij7pj)(0 < j < s) in parallel.

Step 2. Set

J1 Ui ~ (4s - 3)uo)/3, Pe = (4 E,5 = 1 Pj - (45 - 3)po)/3.

(4)

A MIXED FINITE ELEMENT FOR THE STOKES PROBLEM

2. PRÉLIMINAIRES

For any element e = [xe — heiye — ke]2, we define the interpolation operators U = Qi,2 x $2,1 and jh : £2(e) —> QQ by (c/. [2,8])

(v - i^v)(o;e ± /le, Ve ± *e) = 0, Vv (

/ («^ - ih,i<p)dy = 0, V</? G C(e),

J(x,-h

I e | Je

91

: (C(e))2

(2.2)

where Qr,n — span{xly3 : 0 < i < r, 0 < j < n} and Qr = Qfjr. Introducé two other postprocessing interpolation operators. Let Th be a rectangular partition on O with size h. We assume that Th has been obtained from T^h by dividing each element into nine congruent rectangles. Let r = uf=1ez G T$h with ez ÉT/J, and I3h = (13/1,1^3/1,2) and J3^ are defined as

J = 1,2,

, j = 1,2, (2.3)

l /C I( J 3 H P - P ) = O , Z = l , - - - , 9 ,

where pt (i = 1, • • • , 16) are all vertices of ei, • • • , eg. It can be proved that (cf. [11,17,18])

- w||0 - w]|a < , Vw e H1+r(n), 1 < r < 3,

(2.4)

(2.5)

< c||g||o, Vq£Lh,

\\J3hW - w||o < c/ir||i(;||r, Vw € Hr(Ü), 1 < r < 3.

(2.6)

In order to solve the problem (1.1), many pairs of finite element spaces were introduced (see [2,8]). One of them is the so-called Bernardi-Raugel element, which is defined by

J V f c ^ v É (C(Ü))2, v |ee Qil2(e) x Q2.i(e), v |en= 0, e e Th}, { Lh = {q € L§(fï), ç|e € (30(6), /n q = 0, e G Th}.

We mention here that the Bernardi-Raugel element was presented but not enalysed in [7].

(5)

92 A ZHOU

3. ERROR RESOLUTION FOR INTERPOLANTS We have the following multt-parameter error resolution for interpolants.

T h e o r e m 3 . 1 . For (u,p) G (H4(Ü))2 x H3{Ü), there exist î3 <E (L2(Ü))2,g3 G that

B(u-ihu,p- jhp] v, q)

Jlï

w h e r e T = i 3 8 ^ Proof. Since

(g,div(u-ihu)) it is only necessary to prove two expansions

( V ( U - Ï M I ) , V V ) = \

for v = , and

(p - jfcp,diw) = ^

1 r r

°s,su s , i c r „ J s e-3 Js

j = 1,. • • ,s) such

(3.1)

:yPVl

(3.2)

where TXiTy is the part of F parallel to the z-direction and the y-direction respectively, and se,i = {{x, y) : x = xe - he,ye - ke < y < ye + fce},

<se,2 = {(x, y) : xe - h < x < xe + he) y = ye - A;e}, 5e,3 = {(x,y) '• x = Xe + he,ye - ke < y < ye + ke}, S&A = {(x, y) : xe - he < x < xe + he, y — ye + ke}.

We employ the technique in [11,17,18] and introducé the two error functions

F = Fe = \{{y - yef - - xe)2 - h2e), then, it is obvious that F (y) = 0 on se^ and se ) 4, £?(a;) = 0 on se>i and 56}3.

== g \-^ Jxxxi

(6)

A MIXED FINITE ELEMENT FOR THE STOKES PROBLEM 9 3

F = - U ? +

Let u = (ui, ^2), we only need to go to prove

~~ IHUIIvlli. (3-3)

A Taylor expansion yields

dxvx = dxvi(x,ye) + -(F^yyydxyV^x^ye) + {-^{F3)yyyy + — k2e)dxyyvi.

The définition (2.1), intégration by parts and inverse estimâtes lead to ƒ öa;(ui -ih,iui)dxvi(x,ye) = 0,

t/e

g / (F2)yyydx(ui ~ ih,iUi)dxyvi(x,ye) = - - J F2dxyyyuidxyvl{x,ye

J dx(u! - »fc,l«l)(gö(F3)vwwi/ + jQkî)dxyyvl = ~^ J ( ^ y

Thus, we obtain

x(ui-iMWi)^xVi)=O(ft3)||u||4||v||i (3.4)

For (dy(ui — ih,iv>i),dyVi)j using the définition (2.1),

ôyUi = Exxdyv1{xe,y) + -(^2)xa:xöa;yi;i, and intégration by parts,

/ 9y(îxi -2fc1iui)(^)xxoyî;i(a:e,2/) Je

= ( / - / )Exdy{u1-ihliu1)dyV1(xe,y)dy- ƒ Exdxy(ui - ihtiui)dyvi(xe, y)

J Se,3 Jse,l Je

= - ( / - ƒ )Sa;(ui - 4 , 1 ^ 1 ) ^ ^ 1 (xe,y)dy+ Ed^yindyViixe.y)

Jse,3 Jse,i Je

= ~hl f ÔxxyU^dyV! - ExdxyVl) + i J(E2)xxdxxyUldyv(xe,y)

= ~\h2e J d^yUidyVi + f dXXXyUl(~hlEdxyVl - ^(E2)XdyVl + £ ( ^ ) XExdXyVl )

= -ô^e( f - f )d

xxy

u

lVl

dx + -hl l d

xxyy

u

lVl

+ O(/i

3

)t|u||

4

||v||i,

6 Jse4. J Se,2 ó Je

(7)

94 A. ZHOU

- / {E2)xxxdy{ux — ihUi)dxyvi

b Je

= l(f - f ){E

2

)

xx

d

y

{

Ul

- i

h

u

1

)d

xy

v

l

- \ [(

O JSe.3 J^e.! b ie

= i f(E2)xdxxyu1dxyv1

/le(( ƒ - ƒ )OœxyWiVidx + / Therefore, we have

||u||4||v||i. (3.5)

By the quasi-uniformity of T^, one sees that line intégrais in (3.5) disappear during the summation, thus (3.3) folïows from (3.4, 3.5).

We turn to prove (3.2). Similar to the proof of (3.1), we only need to prove ( P - JhP^dxVx) = - Y^ k\ / dxyypv! - - Yl fce( / - ƒ

eeTh J e ó sË,4U5ei2crx J s ^ J s

+ O(/»3)lb|||3||v||i. (3.6)

By the Taylor expansion, we have

J{P ~ JhP)OxV1 - ƒ (p ~ jhpXdvV^X, ye) + FydvyV^X, Ve

(3.7)

The définition (2.2) shows that / = 0 and II = - Fdypdxyvi(x,ye)

Je

= 3^e / dy/

*2(

= \kl( [ - [ )dyPdyv1(x,ye)dy - \k2e \ dxyVdvvl + OC/*3)|i

= ^ e ( / - / )dypdyvl(x,ye)dy-\k2e([ - [ )dxypv1dx + Ik2e^dxyypv1+O(h3)\\p\\\3\\v\\u

(8)

A MIXED FINITE ELEMENT FOR THE STOKES PROBLEM 95

III = ^ Jj2dyyPdxyyV1

= fiW ~ / ) F 2 d

0 J$e>3 J5e,1

Similarly, line intégrais along y-direction in the above terms will disappear during the summation of e G T^.

Thus we complete the proof,

Fr om the proof of Theorem 3.1, we can also obtain the following

Theorem 3.2. For (u,p) G [H^(p)f x HS(Ü), there exist ïó G (L2(^))2 ) g j- G (H1/2^))2^ = 1, • • • , s) such that

B(u-ihu,p-jhp;v,q) = ^h){ i fj-v + / gj-v

||w||2), V(v, q)eVhx Lh, (3.8) where w G (ftf(£l) n H4{Ü))2.

4. E R R O R R E S O L U T I O N F O R F I N I T E E L E M E N T S O L U T I O N S

A mixed finite element method based on (1.1) reads as follows: Find (uh,,Ph) ^ ^h x Lh such that

B(uhyPh-v,q) - (f,v), V(v,g) G V„ x Lh. (4.1) or

B(uh -u,ph- p; v, g) = 0, V(v, q) e Vh x Lh. (4.2) One has the following error estimate (see [2,8])

h^Wu - UfcHo + ||u - UfcHi + ||p - phllo < cMI|u||2 + HPIII). (4.3) Now, we shall present the multi-parameter error resolution for the numerical solution.

Theorem 4.1. If (u,p) G (H^(ü) D H4(Ü))2 x (L§(îî) n ^3( ^ ) ) is the exact solution of (1.1), then there exist

^ 2 2 lx that

Proof. Let (a^, 6j) E (H^(Q))2 x L0(fi) (j = 1, • • • , s) satisfy

Bi^b^q) - (/,,v) + / "g iv , V(v,g) e ( ^ ( î î ) )2 x ig(fi) (4.4) and (ajihl bjih) G Vh x Lh (j = 1, • • • , s)

,-, v) + / gj-v, V(v,g) G Vh x Lh, (4.5) Jv

(9)

96 A ZHOU then we have

Taking v = u^, — ihn — J2*=i a.j,hh2 and q — Ph — JhP — YLS3=i bj,hh2 in the above équation, we obtain by (4.2) and the Babuska-Brezzi condition (see e.g. [1,2,4])

(4.6) Ph~ 3hP = E * = i 6 J , ^ J + Ö(/i3), in L2(tt).

Regularity results imply that (a^fcj) G ( ^ ( n ) fl i72(f2 \ T))2 x (L§(fi) x i fx( ^ \ r ) ) ( j = 1,--- , s) (see [9]) and a similar estimate to (4.3) yields

lia, - a^Hx + \\b3 - b3ih\\0 < ch(\\*3\\'2 + H^Hi), j = 1, • • • ,s, (4.7) where || • \\ft means piecewise H%— norm(i=l,2). Thus, (4.7) together with (2.5, 2.6, and 4.6) complete the proof.

T h e o r e m 4 . 2 . If (u,p) G ( # o ( ^ ) H #4( H ) )2 x (Zg(fi) H i73(Q)) Z5 iAe exac^ solution of (1.1), then there exist SL3 G ( ^ ( f i ) fi iï"2(O \ T))2(j = 1, • • • , s) such that

s

- u = 5 3 a,^2 + O(h4), m L2(Q \ T). (4.8)

3=1

Proof. Let a,, 6 ^ ^ ^ ^ and b3ih satisfy (4.4, 4.5) and set r] = u^ - i^u - Y^Sp=i a3,hh23 as well as ^ = ph - j ^ p - E " = i Khh], then there exists (w, ip) € (fi3(n) n F2( O ) )2 x (Z,2(O) n f f1^ ) ) satisfying

,<^; v,g) = (77, v), V(v,q) € ( ^ ( ) ) (),

(4.9) Thus

= B(w-ihMr,<p-jh<p;r),Ç)+B(T),£;ih-w,-jh<p). (4.10) Prom Theorem 3.1, Theorem 3.2, (4.6, 4.9), we have

< ch4\\r,\\o (4.11)

and

\B(r},£;ihvr,-jh<p)\ < ch4(h'1 \\w - ihw\\i + \\w\\2)

< e/i4||w||2

< ch'\\r)\\0. (4.12)

Combining (2.5, 4.10, 4.11) and (4.12), we achieve the proof.

(10)

A MIXED FINITE ELEMENT FOR THE STOKES PROBLEM 97 5. REMARKS

Only the multi-paramemter error resolution for the Bernardi-Raugel finite élément spaces has been discussed above. In fact, the error résolution arguments présentée in this papcr can bc applied to other pairs of finite élément spaces with similar results, for instance, the filtered bilinear-constant finite élément spaces. Moreover, if the Green-function technique as in [6] is adapted, then maximum norm estimâtes can also be obtained.

The author would like to express his appréciation to the référées for careful corrections and suggesting several im- provements. This work was supported in part by the Chinese National Science Foundation and the Educational Center for Mathematical Research sponsored by the Ministry of Education of China.

REFERENCES

[1] I. Babuska, The finite élément methods with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192.

[2] C Bernardi and G. Raugel, Analysis of some finite éléments of the Stokes problem. Math, Comp. 44 (1985) 71-79.

[3] H. Blum, Asymptotic error expansion and defect correction in the finite élément method. Heidelberg (1990).

[4] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.

RAIRO Modèl. Math. Anal. Numer. 2 (1974) 129-151.

[5] P.G. Ciarlet, The Finite Elément Method for Elliptic Problems. North-Holland (1978).

[6] R. Duran, R.H. Nochetto and J. Wang, Sharp maximum norm error estimâtes for finite élément approximation for the Stokes problem in 2-d. Math. Comp. 51 (1988) 491-506.

[7] M. Fortin, Old and new éléments for incompressible flows. Int. J. Numer. Meth. Fluids 1 (1981) 347-367.

[8] V. Girault and P.A. Raviart, Finite Elément Method for Navier-Stokes Equation, Theory and Algorithms. Springer-Verlag, Berlin and Heidelberg (1986).

[9] R.B. Kellogg and J.E. Osborn, A regularity resuit for the Stokes problem in a polygon. J. Func. Anal. 21 (1976) 397-413.

[10] Q. Lin, T. Lu and S. Shen, Asymptotic expansions for finite élément approximations. Research Report IMS-11, Chengdu Branch of Academia Sinica (1983).

[11] Q. Lin, N. Yan and A. Zhou, A rectangle test for interpolated finite éléments in Proc. of Sys. Sci. & Sys. Eng. Great Wall (H.K.), Culture Publish Co. (1991) 217-229.

[12] Q. Lin and Q. Zhu, The Preprocessing and Postprocessing for the Finite Elément Method. Shanghai Scientific & Technical Publishers (1994) (in Chinese).

[13] G. Marchuk and V. Shaidurov, Différence Methods and their Extrapolation. Springer, New York (1983).

[14] R. Rannacher, Extrapolation techniques in the finite élément method (A Survey) in Proc. of the Summer School in Numer.

Anal Helsinki (1988).

[15] R. Temaxx.Navier-Stokes Equations. North-Holland, Amsterdam (1979).

[16] R. Verfùrth, Error estimâtes for a mixed finite élément approximation of the Stokes équations. RAIRO Modèl. Math. Anal Num. 18 (1984) 175-182.

[17] A. Zhou, Global super convergence approximations of the mixed finite élément method for the Stokes problem and the linear elasticity équation. RAIRO Modèl Math. Anal Num. 30, 4 (1996) 401-411.

[18] A. Zhou and J. Li, The full approximation accuracy for the stream function-vorticity-pressure method. Numer. Math. 68 (1994) 427-435.

[19] A. Zhou, C.B. Liem and T.M. Shih, A parallel algorithm based on multi-parameter asymptotic error expansion in Proc. of Conférence on Scientific Computing, Hong Kong (1994).

[20] A. Zhou, C.B. Liem, T.M. Shih and T. Lu, A parallel multi-parameter asymptotic error expansion and a parallel algorithm.

Research Report IMS-61, Inst. Math. Sci., Academia Sinica (1994), see also Sys. Sci. & Math. Scis. 10, 3 (1997) 253-260.

Références

Documents relatifs

It has been shown that these techniques and arguments are powerful for convergence analysis especially for improving accuracy analysis in mixed finite element methods for solving

— Local error estimâtes are derived which apply to most stable mixed finite element discretizations of the stationary Stokes

Wilson's nonconformmg element One could perform a direct analysis by means of the usual techniques for nonconformmg éléments (cf [9]) However, we prefer to statically condense

We will focus our study on the approximation of Problem 1.1 with piecewise linear éléments, including numerical intégration, and obtain rates of convergence.. The layout of the paper

M AN Modélisation mathématique et Analyse numérique.. — Equal-order quadratic éléments for a beam with both ends clamped subjected to unit uniform load.. vol.. —

The techniques of this paper have also been used previously by the present authors to analyze two mixed finite element methods for the simply supported plate problem [5] and by

Abstract — We consider a mixed finite element method for the Stokes problem in a polygonal domain Q cz U 2 An inf-sup condition is established which fits into the abstract jramework

Résumé — Cet article est consacre a l'étude d'un problème de Dinchlet avec poids, nous donnons une formulation mixte de ce problème admettant une solution unique, nous obtenons