• Aucun résultat trouvé

Error estimates for a mixed finite element approximation of the Stokes equations

N/A
N/A
Protected

Academic year: 2022

Partager "Error estimates for a mixed finite element approximation of the Stokes equations"

Copied!
9
0
0

Texte intégral

(1)

RAIRO. A NALYSE NUMÉRIQUE

R. V ERFÜRTH

Error estimates for a mixed finite element approximation of the Stokes equations

RAIRO. Analyse numérique, tome 18, no2 (1984), p. 175-182

<http://www.numdam.org/item?id=M2AN_1984__18_2_175_0>

© AFCET, 1984, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

(vol 18, n° 2, 1984, p 175 a 182)

ERROR ESTIMATES FOR A MIXED FINITE ELEMENT APPROXIMATION OF THE STOKES EQUATIONS (•)

by R. VERFÜRTH (*)

Commumcated by J NITSCHE

Abstract — We consider a mixed finite element method for the Stokes problem in a polygonal domain Q cz U2 An inf-sup condition is established which fits into the abstract jramework oj Babuska and Brezzi Using hnear finite éléments, we obtain O{h*)-error estimâtes for the energy norm of the velocity and the L2-norm of the pressure The exponent a only dépends on thegreatest intenor angle at a corner of Cl andequals 1 ifCl is convex The analysis can be extended to the use of quadratic finite éléments for the velocity

Resumé — Nous considérons une méthode d'éléments finis mixtes pour les équations de Stokes dans un polygone Q c R2 On établit une condition du type inf-sup qui permet Vapplication des résultats abstraits de Babuska et Brezzi Pour les éléments finis linéaires, nous démontrons une majo- ration d'erreur d'ordre O(ha)pour la norme H1 du champ de vitesse et pour la norme L2 de la pression Le nombre a dépend seulement du plus grand angle intérieur aux sommets de Q, et a = 1 si Q est convexe L'analyse s* étend aux éléments finis quadratiques pour la vitesse

1. INTRODUCTION

We give a refined analysis of a mixed finite element method proposed by Bercovier, Pironneau [2] for the Stokes équations

- v Au + V^ = f in Q

div u = 0 in Q (1.1) u = 0 on dQ

in a simply connected bounded polygonal domain Q c i2 where v > 0 dénotes the viscosity. The velocity u = (ul9 u2) and the pressure/? are approxi- mated by conforming linear finite éléments with mesh size h/2 and h resp.

(*) Received in May 1982, revised in November 1982

l1) Institut fur Mathematik Ruhr-Universitat Bochum Postfach 10 21 48 D-4630 Bochum 1, RFA

R AIR O. Analyse numérique/Numencal Analysis, 0399-0516/84/02/175/8/$ 2 80

(3)

1 7 6 R. VERFÜRTH

Bercovier, Pironneau [2] use an inf-sup condition (see Lemma 3.1 below) which does not fit into the abstract framework of Babuskaand Brezzi. Therefore, a crucial point of our analysis is the discrete analogue of the Brezzi-type condition

i„f SUp .<**"*> > o (1.2)

ueiïè(Q)2 II P II O/R I U 11

(cf. Theorem 3.7 in [9]) where

I « lx == f \Vu\

2

dx,

\\P II O/M := i n f \\P + C | |L2( Q ).

C Ë R

We obtain the discrete version of (1.2) for the appropriate function spaces by combining the inf-sup condition of Bercovier and Pironneau [2] and an approxi- mation argument.

The discrete inf-sup condition allows us to apply the abstract error analysis of Brezzi [4] for mixed problems. Combining it with the regularity results of [3, 11] we immediately get an O(ha) error estimate for the energy norm of the velocity and the L2-norm of the pressure. The exponent a only dépends on the greatest interior angle at a corner of Q and equals 1 when Q is convex. A Stan- dard duality argument yields an O(h2*) error estimate for the L2-norm of the velocity.

For convenience, we perform the analysis only for piecewise linear functions.

The results can easily be extended to quadratic finite éléments. When using piecewise quadratic functions for the velocity we get improved error estimâtes provided f e H1(Q)2 and Q is convex.

The advantage when compared with Bercovier and Pironneau [2] are error estimâtes for the pressure under weaker regularity assumptions for the solution.

Naturally, when peH1(Q) (i.e. Cl convex) our results coincide with those obtained by Glowinski, Pironneau via a duality argument [10]. In this context we note that using other finite element spaces, Crouzieux, Raviart [7] obtain optimal error estimâtes for convex domains. Using the stream function for- mulation of (1.1) an 0{hlj2 | In /z |) L2-error estimate for the velocity and pressure has been established in [3,8].

Moreover, the discrete analogue of (1.2) is interesting in itself. It is crucial for the analysis of a multigrid method for the numerical solution of the mixed finite element approximation (2.6) of (1.1).

R.A.I.R.O. Analyse numérique/Numerical Analysis

(4)

2. MIXED FORMULATION OF THE STOKES EQUATIONS

We dénote by i/m(Q), m > 0, H^(Q) and L2(Q) = H°(Q) the usual Sobolev and Lebesgue spaces, equipped with the norm

II u L ==

and the semi-norm

(2.2) Since no confusion can arise, we use the same notation for the corresponding product norm and semi-norm of Hm(Q)2. For ease of notation put

r

,(*)<& = < n . (2.3)

Given f e L2(Q)2 we consider the following weak formulation of (1.1) : Find (u9p)sX x M such that

v(Vu, Vv) - (div v, p) = (f, v) Vv G X (divu, q) = 0 VqeM,

where (a, b) := a(x).b(x) rfx dénotes the scalar product of L

r

2(Q)", n = 1,2,4.

According to [9, 12, 13] problem (2.4) has a unique solution in X x M.

Let TSh, /z > 0, be a séquence of triangulations of Q which satisfy the usual regularity assumptions :

(i) Any two triangles in T3h may meet at most in whole common sides or in vertices.

(ii) Each triangle has at least one vertex in the interior of Q.

(iii) Each triangle contains a circle with radius c0 h and is contained in a circle with radius CQ : h.

Hère and in the sequel, c0, cl s... dénote generic constants which do not depend on h. The triangulation "6fc/2 is obtained from cÜh by dividing each T oî^Gh into 4 equal triangles, the vertices of which are the vertices and midpoints ofT.

(5)

178 R. VERFÜRTH

Let Sh dénote the space of continuous, piecewise linear finite éléments defined by nodal values at the vertices in the triangulation Vh. Put

Xh>=(SktJ2nX9 Mh:=ShnM. (2.5) The finite element approximation of (2.4) then leads to the following mixed problem :

Find (uh, ph) e Xh x Mh such that

v(Vuh, Vv„) - (div vh, Ph) = (t v„) Vv„ eXh

(div nh, qh) = 0 MqheMh. 3. THE INF-SUP CONDITION

Recall that Q <= M2 is a simply connected bounded polygon. First we provide two prepository lemmata

LEMMA 3.1 (Bercovier, Pironneau [2]) : There is a constant cx > 0 inde- pendent of h such that

M sup £ Ï Ï ? f

qheMh\{0} vheXh\{0} II yh II0 I Vh 11

Lemma 3.1 immediately follows from Proposition 1 in [2] by partial inté- gration. In the framework of Brezzi [4] it is not appropriate for the mixed problem (2.6) since the wrong norms occur in the denominator of (3.1).

The next Lemma is an immédiate conséquence of Lemma 3.2 in [9].

LEMMA 3 . 2 : For every pe M there is an e X such that

divu - p9 (3.2)

l « l i < c2\\p\\0, (3.3) where c2 > 0 is independent of u and p. D

Now we can establish an inf-sup condition which is well suited to (2.6).

PROPOSITION 3 . 3 : There is a constant c3 > 0 independent of h such that

taf j£ft#

qheMh\{0} vh€Xh\{0} I yh 11 II Vh Ho

Proof: Let qh e Mh, \\ qh ||0 = ls and put for abbreviation

T p = * l « * l i . (3.5) R.A.I.R.O. Analyse numérique/Numerical Analysis

(6)

Since

for every vft G Xh9 Lemma 3.1 implies

sup

{àl

Y

vh

\

qh)

>c

1

cSh\

qh

\

l

=c

5

y\ (3.6)

vheXh\{0] I *h 11

where c5 := q c^ \

According to Lemma 3.2 there is a w e X satisfying div w = qh,

(3.7)

| w |x < c2 \ \ qh\ \0 = c2.

F r o m [6] we know that there is a n operator Rh : X -> Xft such that

I • — Jïk v |fc < ce A1"* | • |x, k = 0 , l , ( 3 . 8 ) for ail v e X. Put wh -.= i?ft w. Then we have

( i v vA, qh) ^ 1 (div wft, qh)

S UP —rr—; ^ rrri

I V 1 I W 1

> 1 (div w, qh) - (div (w - wh), qh)

c6)

q

h

\\l ~ II w - w , ||

0

|| Vq

k

Ilo }

- c2 c6 h \qh\1 } = c7 - c8 r | ( 3 . 9 )

Equations (3.6), (3.9) imply (div vfc, qh)

sup — j — : ^ max { c5 r\, cn — c8 r|

vheXh\{0} I Yh 11

^ min max { c5 t, cn — c8 / } = — — — . (3.10)Cc C

tZO C5 "•" C8

Now a simple homogeneity argument complètes the proof. •

(7)

180 R. VERFÜRTH

4. ERROR ESTIMATES FOR THE VELOCITY AND PRESSURE

The spaces X, Xh equipped with | . |t and M, Mh equipped with || . ||L2/R are Hubert spaces. The bilinear form (Vu, Vv) is elliptic, and the bilinear form (div v, p) satisfies by (1.2) and Proposition 3.3 an inf-sup condition. Hence the abstract results of Babuska and Brezzi [1, 4] yield the existence of unique solutions (u, p) e X x M and (ufc, ph) e Xh x Mh of problems (2.4) and (2.6), resp. and the error estimate

| u - u j , + || p - ph || 0 < c9 < inf | u - yh\1 + inf || p - qh ||

^ vheXh qneMh J

(4.1) To estimate || u — uh ||0 we use a duality argument due to Aubin-Nitsche.

Dénote by S£ : L2(Q)2 - • X x M the solution operator of the Stokes problem (2.4). Let v e L2(Q)2 and (z, r) - J5f(u). From (2.4), (2.6) we then obtain for a n y zh e Xh, rh e Mh

(v, u - u J = v(Vz, V(u - u J ) - (div (u - uh), r)

= v(V(z - z„), V(u - u,)) - (div (u - uh\ r - r j -

- (div (z - z j , p - ph).

H e n c e w e have

II « - «* Ho < c1 0 yft { | u - uh\x + || ^ - ph || 0 } (4.2) w i t h

y, = s u p inf { | z - z j , + || r - rh ||0 } . (4.3) l|v||o=l zheXh

{z,r)= 5?(y) rheMh

In order to formulate the regularity results for the Stokes problem, which together with (4. l)-(4.3) yield the final error estimâtes, we use an additional notation.

Let CD dénote the greatest interior angle at a vertex of Q, 0 < CD < 2 7i, co # n.

Then co < n if and only if Q is convex. Put

r|0(co) — inf { r| e U% : z = Ç + ir\ is a solution of

sinh2 (coz) = z2 sin2 co, z ^ i } . (4.4) R.A.I.R.O. Analyse numérique/Numerical Analysis

(8)

According to [3] the fonction T|0(CÛ) is decreasing and satisfies r)0(œ) > — > 1 , i f O < c o < 7 i ,

°! (4-5)

1 < - < T|O(CO) < — < 1 , lf 7Ï < 00 < 2 71 .

The values of r|o(0.05 kn\ 1 < fc ^ 40, are listed in [3].

Finally put

P := max { 0, 1 - r|0(ö>) + s } (4.6) with an arbitrary 8 > 0.

From [11] and Theorem 2.1 in [3] we then know that i f is a continuous operator from L2(Q)2 to the weighted Sobolev space H g (G)2 x HX(Q). (For an exact définition of H™(Q) see for example [3]. If P = 0, Hg(Q) coincides with Hm(Q),) Combining this with (4.1)-(4.3), the standard approximation theorems for finite éléments and Lemma III. 3, III. 4 in [3], we obtain the final error estimate.

THEOREM 4 . 1 : Let (u, p) and(uh, ph) dénote the solution ofproblem (2.4) and (2.6), Y esp. Then :

|| u - u j |o + h- | u - nh \x+/f\\p- Ph ||0 < Cn h2* || ƒ ||0 (4.7) where Cx x is independent oj h, u and p and

a = 1 , if co < % , a = r|0(a>) - e ^ - , z / 7 i < œ < 2 7 t ,

with 8 > 0 arbitranly small. Q

5. REMARK ON QUADRATIC FINITE ELEMENTS

Let Sh dénote the space of continuous, piecewise quadratic finite éléments defined by nodal values at the vertices and at the midpoints in the triangulation loh. There are only a few changes necessary when the discrete problem (2.6) is solved with Sh instead ofSh/2.

Since Bercovier and Pironneau [2] have established their results also for this choice of Xh, the proof of Proposition 3.3 remains unchanged, Therefore, the abstract error estimâtes (4. l)-(4.3) still hold. Obviously, the approximation of u

(9)

182 R VERFÜRTH

by piecewise quadratic functions only gives an improvement of (4.7), if (u, p) have a higher regulanty.

We therefore assume that in addition Q is convex and f e Hl(ÇÏ)2. From Theorem 2.2 in [3] we then know that if is a continuous operator from i/1(Q)2

'to H?(Q)2 x H2(Q) where

y := max { 0, 2 - T\0(<Q) 4- e } (5.1)

with an arbitrary s > 0. If œ ^ 0.7 n, we have y = 0 (cf. [3]). Together with (4. l)-(4.3) and Lemma 3.3, 3.4 in [3] this implies the error estimate

(5.2)

REFERENCES

1 I BABUSKA, The fimte element method with Lagrangian multipliers, Numer Math 20, pp 179-192, 1973

2 M BERCOVIER, O PIRONNEAU, Error estimâtes jor jinite element method solution of the Stokesproblem in the primitive variables, Numer Math 33, pp 211-224,1979 3 C BERNARDI, G RAUGEL, Méthodes d'éléments jinis mixtes pour les équations de

Stokes et de Navier-Stokes dans un polygone non convexe, Calcolo 18, pp 255-291, 1981

4 F BREZZI, On the existence, uniqueness and approximation of saddle-point problems ansing jrom Lagrangum multipliers, RAIRO Anal Numér 8 (R-2), pp 129-151, 1974

5 Ph G CIARLET, The fimte element method jor elhptic problems, North Hoilanci Pubhshing Company, 1978

6 Ph CLÉMENT, Approximation by f mite element junctions using local regulanzation, RAIRO Anal Numér 9 (R-2), pp 77-84, 1975

7 M CROUZIEUX, P -A RAVIART, Conforming and nonconjorming fimte element methods for solving the stationary Stokes équations, RAIRO Anal Numér 7 (R-3), pp 33-76, 1973

8 V GIRAULT, P -A RAVIART, An analysis of a mixed jinite element method jor the Navier-Stokes équations, Numer Math 33, pp 235-271,1979

9 V GIRAULT, P -A RAVIART, Fimte element approximation of the Navier-Stokes équations, Springer Verlag, 1979

10 R GLOWINSKI, O PIRONNEAU, On a mixed jinite element approximation oj the Stokes problem I Convergence oj the approximate solutions, Numer Math 33, pp 397-424, 1979

11 R B KELLOGG, J E OSBORN, A regulanty resuit jor the Stokes problem in a convex polygon,} Funct Anal 21, pp 397-431,1976

12 O LADYZHENSKAYA, The mathematical theory oj viscous incompressible jlows, Gordon & Breach, 1963

13 R TEMAM, Navier-Stokes équations, North Holland Pubhshmg Company, 1977 R A I.R O Analyse numénque/Numencal Analysis

Références

Documents relatifs

This paper deals with a non-overlapping domain decomposition method (DDM) for solving the continuous- pressure mixed finite element formulations of the Stokes equations.. The

By using this technique and establishing a multi-parameter asymptotic error expansion for the mixed finite element method, an approximation of higher accuracy is obtained

— Local error estimâtes are derived which apply to most stable mixed finite element discretizations of the stationary Stokes

Abstract — A Petrov-Galerkin mixed fimte element method based on tnangular éléments for a self-adjoint second order elhptic System ansing from a stationary model of a

M AN Modélisation mathématique et Analyse numérique.. — Equal-order quadratic éléments for a beam with both ends clamped subjected to unit uniform load.. vol.. —

Résumé — Cet article est consacre a l'étude d'un problème de Dinchlet avec poids, nous donnons une formulation mixte de ce problème admettant une solution unique, nous obtenons

In this paper we analyze the three-dimensional scheme where the velocities are approximated by piecewise tnlmear functions The analysis proceeds following closely the lmes of [7]

The subject ofthis paper is the study of a finite element method of mixed type for the approximation of the biharmonic problem.. This problem is a classical one and it has been