• Aucun résultat trouvé

Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation

N/A
N/A
Protected

Academic year: 2022

Partager "Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation"

Copied!
12
0
0

Texte intégral

(1)

M2AN. M

ATHEMATICAL MODELLING AND NUMERICAL ANALYSIS

- M

ODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

O. B ESSON M. R. L AYDI

Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation

M2AN. Mathematical modelling and numerical analysis - Modéli- sation mathématique et analyse numérique, tome 26, no7 (1992), p. 855-865

<http://www.numdam.org/item?id=M2AN_1992__26_7_855_0>

© AFCET, 1992, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and nume- rical analysis - Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

(Vol 26, n° 7, 1992, p 855 à 865)

SOME ESTIMATES FOR THE ANISOTROPIC NAVIER-STOKES EQUATIONS

AND FOR THE HYDROSTATIC APPROXIMATION (*)

by O. BESSON O and M. R. LAYDI (l) Communicated by M CROUZEDC

Abstract — This paper is devoted to the study of the Navier~Stok.es équations descnbing the flow of an incompressible fluid in a shallow domain and to the hydrostatic approximation of these équations Wefirst study the behaviour of solutions of the Navier-Stokes équations when the depth of the domain tends to zero We then dérive the existence of solutions for the hydrostatic approximation

Résumé — Ce papier est consacré à l'étude des équations de Navier-Stokes décrivant Vécoulement d'un liquide incompressible dans un bassin peu profond et à Vapproximation hydrostatique de ces équations Nous étudions tout d'abord le comportement des solutions des équations de Navier-Stokes lorsque la profondeur du bassin tend vers zéro, puis nous en déduisons l'existence de solutions pour l'approximation hydrostatique

1. INTRODUCTION

In geophysical fluid dynamics the anisotropic Navier-Stokes équations are widely used (see e.g. [Pe]). They describe the movement of a fluid by mean of a turbulent viscosity model. When the horizontal and vertical dimensions of the domain in mind are very different, the turbulent viscosity coefficient has no reason to be isotropic. We then get the anisotropic Navier-Stokes équations. Moreover when our domain is shallow, the hydrostatic approxi- mation of the Navier-Stokes équations is a basic model, in current use for the description of the fluid motion (see e.g. [Pe], [Pi]), and many programmes have been developed to solve these équations (see for example [ZD], and the références in [Pi], [Sc], [FEF], ...).

(*) Received June 1991

(') Université de Neuchâtel, Institut de Mathématiques et d'Informatique, Chantemerle 20, CH-2007 Neuchâtel, Suisse

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/92/07/855/ll/$ 3 10 Mathematica! Modelling and Numencal Analysis © AFCET Gauthier-Villars

(3)

8 5 6 O. BESSON, M. R. LAYDI

In this paper we study both of these models. In [BLT] the Stokes case was investigated and in [La] some numerical experiment s have been performed.

This section is devoted to some notations, in paragraph 2 we study the anisotropic Navier-Stokes équations in a shallow domain and finally in paragraph 3 we give the existence of a solution for the hydrostatic approximation.

1.1. Basic équations

Let us first introducé some notations. Let 120 be the domain in R3 with Lipschitz boundary (see [Ne]) defined by

O0= { £ = ( ^ ) e R3, (Éj, £2) e G* - Mf i, €i) < é3 < 0}

where Go is a bounded domain in R2 and h is a positive Lipschitz map from Go into R. We dénote by Gb = 8 / 20- Go where 3/20 is the boundary of J20, and we assume that h0 = sup {/i(£i» £2)» (f i, è%) e Go} is small compared to the diameter d of Go and we put

with 0 < e <: 1.

In this paper we study the motion of some incompressible fluid in O0, governed by the anisotropic stationary Navier-Stokes équations and subject to Coriolis forces :

Find v = (vt ), vl : J20 -^ R, / = 1, 2, 3 and p : i70 -> R such that p (t; | V) P — Av v + 2 pa> x v + S7p = pg (la)

div t; = 0 (lfe) where the operators (t; | V) and Av are defined by

C | V ) = X " .

3

'

and A

n= £ ^<

S

»

1 = 1 t = 1

and where p is the density, 17 = ( ^ j , 172, ^3) is the dynamic turbulent viscosity vector, - 2 pa> x v is the Coriolis force where <u = (0, 0, a>3) dénotes is the angular velocity induced by the rotation of the Earth and g = (0, 0, & ) is the gravity vector.

Moreover the velocity v is subject to the boundary conditions

t? = 0 on Gb (\c)

V3hv\ = PTi> V303v2 = pr2, vz^0 o n G0 (ld) w h e r e rx a n d r2 are g i v e n functions on Go.

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(4)

1.2. Transformation of the problem

Let us do the following change of variables and functions x1 = f j/d, x2 = £2/d, x3 = £3/h0

« i W = Vi(€), u2(x) = v2d)f u3{x) = v3{£)/e,

{2a)

{2b) Then if

To = {x = (jclf x2) e R2, ( f lf f2) e Go} we get the problem :

Let £2 be the domain in R3» independent of e, with Lipschitz boundary df2 defined by

n = {x = {x,)s R3, (xl5 x2) e r0, - y (Xi, x2) < i3< 0 }

with ||JC]| ^ 1 and y = A/Ao, so 0 ^ j(xl 5 x2) ^ 1 for all {xl3 x2) e r0. The bottom rb is defined by rb = 3/2 - r0 {see fig. 1).

Figure 1. — Schematic représentation of the domain

If y = ( j /b j>2) Ï>3) is the cinematic turbulent viscosity vector with vt = -qj{pd), we let i>e = (ylf v2, v3/s2). With the notations {2a) and (2&)>

the problem (la)-(l/) becomes : Given rl5 r2, we seek M = (w(), ut : i? ^ R and P : D ->R such that

J ) - AV»UX - fu2 + djF = 0

vol 26, n* 7, 1992

{u\Vu2)- Ap*u2

s2[{u\Vu3)~Av

div u

+ ƒ«! + £ .•«3] + a3

= 0

\2P = 0 P = 0

(3a) (3b) (3c)

(5)

8 5 8 O. BESSON, M. R. LAYDI with ƒ = 2 dm 3. The boundary conditions are

u = 0 on rb (3e)

v3 83Mj = £Tj, y3 83w2 = ^r2 ' % = 0 o n f0. (3/)

1,3. The hydrostatic approximation

The hydrostatic approximation of the Navier-Stokes équations in the domain O, has the following form. Let /* = (/i,j, /JC2, M3) be a turbulent cinematic viscosity vector, given ru r2, we seek u = (ut), ut : O -» R and F : H -* R such that

(ii|Va1)-AMUi-/u2+alP =0 (4a) (« I VM2) - A ^ ^ + ƒ « ! + $2? = 0 (46)

83F = 0 (4c)

div M = 0 (4rf)

with the boundary conditions

Wj = 0, M2 = 0» M3 «3 = 0 on Fb (4e) T2i w3 = 0 o n f0. (4/) Our aim in this paper is to explain how we can get problem (4) from problem (3) when e -+ 0.

1.4. Basic functional spaces

As usual WSiP(O ) dénotes the Sobolev space of order s in LP{O) with norm || . \\ws.P(oy In particularHs(&) = Ws*\ü)9 Hm(dD)i$ the space of traces of functions in Hl(O) and Hl(O) is the closure of D(O) in Hl(f2) etc.. {cf. [Ad]).

L e t F2 = {<p eHx(n), <p = Oon rb], V2 = V1 and V3 = H^(n). These spaces are equipped with the norm

1/2

which is equivalent to the usual norm. Then we put V = Vl@V2®V3 and

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

(6)

Finally for i = 1, 2, 3, let /f (3|t O) be the Hilbert space H(Bt, n)= {<p eL\n\ 9^eL2(/2)}

equipped with the graph norm and let

H0(bl9 Ü) = L sH(bn n\ f (<p 3> + ^3Iç>)dbc = O V ^ e H ( 9l >

which can be interpreted as

H0(dn O) = {<p e / / ( ôp ƒ3), «jon, - 0 on 8/2}

where n = ( n j is the outward unit vector on 912.

1.5. Weak formulation of the anisotropic Navier-Stokes équations Consider now the following functionals

where v is as above.

9<p9&)= <p(u\V#)dx (ueV, <p e L2(f2\ $ e Hl(I2)) Ja

Ja

£>,(^, ^) = f (Pt^dx (<p sL\ü\

Then a weak formulation of problem (3) is :

Given rl 5 r2 e //1 / 2(ôi7), s > 0, find M = (a,) e V and P e L$(f2 ) such A.(«!, PO - 5 (a, uu v,)-C (w2, i?0 - DX(P, vx) = El TU ^ j (5a)

2, v2) - B (M, M2, I>2) + C (M1S V2) - D2( />, ü2) = E I r2, — j (5fc)

£2(AB(u3, i?3) - fi(w, M3, ü3)) - D3(P, v3) = O (5c)

<? div u dx = O (5d) Ja

for all v = ( » , ) e V and for all <? e L ^ ( / 2 ).

vol. 26, n° 7, 1992

(7)

860 O BESSON, M R LAYDI

Usmg similar arguments as m [Li, GR], one can prove that for any TX, r2 e Hm(BI2) and any s > 0, there exists at least one pair (u9 P) e V x LQ(Ü) which satisfy équations (5a) to (5d)

2. SOME ESTIMATES OF THE SOLUTION OF THE ANISOTROPIC NAVDER-STOKES EQUATIONS

We now give some sufficient conditions to « neglect » the velocity terms m équation (3c) We assume that v^ v2>-0 are constant and v3 = v0s2s>0 Moreover we assume that there exist T?, T^G Hm(bÜ) such that rl = et T?, I = 1, 2

In the sequel, we dénote by C some constants which do not depend on

2.1. Estimate of the viscosity terms

Let v — u and q — P m équations (5), then» usmg équation (5d), after the summation of équations (5a) to (5c) we get

-f V, ^ ) ( )

^ s

f

-

l

( ^ ( ^ ? , u^ + Eirl u

2

)) (6)

But from the mequality

II m

<pr dy

for any f e V j and r e H (èû), we deduce1/2/

Therefore usmg équation (6) we get

(7)

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numencal Analysis

(8)

From this inequality we obtain

LEMMA 1 : We have the following estimâtes

(SL) ! 31 u I 2 ** C s i — 1 , 2 and 1^1 W-i 2 ^ C^ £ i

/•t \ II »\ || ^^ s-t t — S * 1 ^ svvtsi II A II . = - - Z^1 ^ — ^ — ^

Proof: Inequalities (a) and (b) as well as the first of (c) are a straightforward conséquence of (7). We deduce the last inequality of (c) from (a), (b) and from équation div u - 0. •

2.2. Estimate of the convective terms

Let us first estimate the velocity in LP(I2 ) with p = 2, 3, and 6. With the above notations we have

LEMMA 2 :

(a) |KIIL2( / 2 )*=Ce' + 1~2 5, i = 1, 2 and \\^\\L2(a) ^ C sl ~s,

/n\ ii M /-» (3 / + 1 — 4 J ) / 3 ; 1 1 ^ « W II w II ^ - / ^ « (3 ï — 2 — 3 5)/3

^ c j ^ i r 6 / / ^ , / — i , z anci j [ i / 3 | |/6 „ ^ L - c

Proof : The assertion (a) is a straightforward conséquence of lemma 1 (c) and of the inequality

for all <p e V v

For the assertion (c) we use the Gagliardo inequality (see e.g [Ne])

I M I ^ ) ^ ft W

ö

>

v

\\

L

\ay

i = 1

which gives, with v — <p 4 and owing to the Cauchy-Schwarz inequality

and the result follows from lemma 1.

We deduce the part (b) from (a) and (c) and from

We are now ready to study the non linear-terms.

vol. 26, n° 7, 1992

(9)

8 6 2 O. BESSON, M. R. LAYDI LEMMA 3 (a) For i = l,2we have

\\(u \VUl)\\H.l(n)^C(e"^-^+ and

(b) We have the estimâtes for u3

Proof : Let us remark first that

thus

3 3

/ = 1 y = 1

Since / / o ( ^ ) <= L 6(/2 ) we have also

In the same way we get

3 3

II(« I ^ ^ I L - ^ i i ) * I

I I ^ ^ I I L ^ ^ ^

I

WUJ\\L\Ü) WU^L\Ü)' thus lemma 3 follows from lemma 2. •

2.3. Behavior of the équations when e -• 0

We are now able to study the behavior of équation (3) when e -• 0. Indeed since

we deduce from équation (3)

\y_-\a) * e* "ill9iM3llH-.

M2 AN Modélisation mathématique et Analyse numénque Mathematical Modelling and Numerical Analysis

(10)

so by lemma 1 and 3 there exists a constant C such that

In the same way, using the estimate

for the Coriolis term whieh follows from lemma 2, there exists a constant C such that

i = 1, 2

£(6^1-7,)/3x

i = 1, 2 . In particular if 5 = f = 1 we have

and therefore by [AG], P is uniformly bounded in L3 / 2(/2). Thus we have proved the

THEOREM 1 : (a) Assume that in équation (3), v% = v0 e2s, s => 0, T, = £r T,0, 2 = 1 , 2 wiï/ï f => - 1 anrf 5 < 5/6(t + 1),

-\û)~* a s e "* #

(b) If more over s = t = 1 ?/?e/î F is bounded in L3i2(fi) uniformly in e.

3. EXISTENCE OF SOLUTIONS FOR THE HYDROSTATIC APPROXIMATION

Let us now dérive the existence of a solution for the hydrostatic approximation (4). Let

and

Wo= {ve W;divv = 0} . Finally we define

Z = {o = (tï,)G W, 83^, e L3( / 2 ) , 1 = 1, 2, anddivt;

vol. 26, ne 7, 1992

(11)

864 O. BESSON, M. R. LAYDI

From now we assume that s = t = 1 in the previous section and we define

Mi = v\, Pi = v2, JLL3 = v0 and

For any e > 0 let u£ = (^e) and P e be a solution of problem (5). By lemma 1 and 2, M £ is bounded in W and P£ in L 3/2(/2 ), so we can assume that ue converges weakly in W to some u e WO, that «ƒ converges strongly to ut in L4( / 2 ) (i = 1, 2) and F e converges weakly to ƒ> in L3/2(&) when e -> 0. Hence by lemma 1, 2 and 3 for any u e Z we get

(8) which is the weak formulation of the hydrostatic approximation.

We have thus proved the theorem.

THEOREM 2 : For any rf, r ^ e H 1/2(3/3) ?^r^ exww « e f0 P G L 3/2(/2 ) which satisfies équation (8), Moreover this solution is the limit when s -+0 of a solution of problem (5). •

ACKNOWLEDGEMENTS

We are grateful to F. Nyffeler, R. Touzani, E. Zuur for helpful conversations to M. Crouzeix for his comments and suggestions and to the

« Fond National Suisse de la Recherche Scientifique » for financial support.

REFERENCES

[Ad] R. A. ADAMS, Sobolev Spaces ; Academie Press, New York (1975).

[AG] C. AMROUCHE, V. GIRAULT, Propriétés fonctionnelles d'opérateurs, Applica- tion au problème de Stokes en dimension quelconque ; Preprint Université P.

& M. Curie, Laboratoire d'Analyse Numérique (1990).

[BLT] O. BESSON, M. R. LAYDI, R. TOUZANI, Un modèle asymptotique en océanographie ; C. R, Acad. Sri. Paris, t. 310, Sériel, p. 661-665 (1990).

[FEF] Finite éléments in fluids ; Gallagher & al. (Ed.) J. Wiley, Chichester.

[GR] V. GIRAULT, P. A. RAVIART, Finite element methods for Navier-Stokes équations, theory and algorithms ; Springer-Verlag, Berlin (1986).

[La] M. R. LAYDI, Sur l'influence de l'hypothèse hydrostatique dans la modélisa- tion du lac de Neuchâtel ; Rapport interne Université de Neuchâtel (1989).

M2 AN Modélisation mathématique et Analyse numérique Mathematica! Modelling and Numerical Analysis

(12)

NAVIER-STOKES EQUATIONS : HYDROSTATIC APPROXIMATION 865 [Li] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non

linéaires ; Dunod Gauthier-Villars, Paris (1969).

[Ne] J. NECAS, Les méthodes directes en théorie des équations elliptiques ; Masson, Paris (1967).

[Pe] J. PEDLOSKY, Geophysical fluid dynamics ; Springer-Verlag, New York (1987).

[Pi] O. PIRONNEAU, Méthodes des éléments finis pour les fluides ; Masson, Paris (1988).

[Se] Schweizerische Zeitschrift fur Hydrologie, Vol. 45, no. 1 (1983).

[Te] R. TEMAM, Navier-Stokes équations ; North-Holland, Amsterdam (1985).

[ZD] E. ZUUR, D. E. DIETRICH, The SOMS model and its application to lake Neuchâtel ; Aquatic Sri. 52 (1990) 115-129.

vol. 26, n° 7, 1992

Références

Documents relatifs

In order to prove the above existence and uniqueness results for (IN S ) supplemented with data satisfying just (1.8), the main difficulty is to propagate enough regularity for

It is proved in [5] that all of them are gradient discretisation methods for which general properties of discrete spaces and operators are allowing common convergence and

We consider a family of weights which permit to generalize the Leray procedure to obtain weak suitable solutions of the 3D incom- pressible Navier–Stokes equations with initial data

The best result we know about (partial) regularity of weak solutions has been given in 1982 by Caffarelli, Kohn and Nirenberg [Ca, La].. Their result is based on the notion of

We prove the global wellposedness of the 2D non-rotating primitive equations with no- slip boundary conditions in a thin strip of width ε for small data which are analytic in

Under reasonable assumptions on the growth of the nonhomogeneous term, we obtain the asymptotic behavior of the solutions.. as t --~

Mimicking the previous proof of uniqueness (given in Sec. 2.2) at the discrete level it is possible to obtain error esti- mates, that is an estimate between a strong solution (we

An essential feature of the studied scheme is that the (discrete) kinetic energy remains controlled. We show the compactness of approximate sequences of solutions thanks to a