• Aucun résultat trouvé

A fix-point theorem with econometric background Part I. The theorem

N/A
N/A
Protected

Academic year: 2022

Partager "A fix-point theorem with econometric background Part I. The theorem"

Copied!
12
0
0

Texte intégral

(1)

A R K I V F O R M A T E M A T I K B a n d 6 n r 12 l~cad 28 October 1964

A fix-point t h e o r e m with econometric b a c k g r o u n d Part I. The theorem

By HERMAN O. A. WOLD

The theorem provides a new approach to a problem t h a t has originated in econometrics, namely the statistical estimation of parameters of so-called inter- dependent systems. We formulate the problem generally as one of orthogonal projection in Hilbert vector space, an interpretation based on the definition of interdependent systems in terms of conditional expectations; [5-7]. The subspace on which the vectors are projected is spanned b y vectors some of which are given, whereas o t h e r s - - a n d this is a nonlinear feature of the p r o b l e m - - a r e un- known and to be determined b y the projection. The problem is solved b y an iterative least squares procedure t h a t rests on a new application of the principle of contraction mapping.

P a r t I presents the fix-point theorem a n d the ensuing iterative procedure.

P a r t I I gives illustrations and comments, taking up three specifications of the components of the given vectors y, z: (i) As vectors in Euclidean space Rh;

(ii) as r a n d o m variates, making y, z a multivariate random distribution; (iii) as statistical data, interpreted as a sample from the distribution under (ii). Ex- tensions in various directions are briefly outlined. I t is emphasized t h a t the assumptions of the approach broaden the scope of interdependent systems.

For the m a t h e m a t i c a l groundwork utilized in P a r t I, see [2 and 4], and, especially as regards contraction mapping, [3].

F r o m October 1963 onwards some t w e n t y numerical experiments with the itera- t i r e procedure have been carried out at the Computing Centre of the R o y a l Poly- technic I n s t i t u t e of Norway, Trondheim. I wish to express m y deep gratitude to Mr. H. Michalsen, Programming Consultant, and Mr. N. Sanders, Director of the Computing Centre, for their valuable help in the numerical work. My theoretical work on the present p a p e r has to a large extent been carried through at the Univ.

of Wisconsin when visiting for six months 1964 at the Mathematics Research Center and the Social Systems Research Institute. I feel greatly indebted to numerous friends and colleagues for valuable discussions and comments. F o r specific amend- ments of the first draft of P a r t I, I a m indebted to Professor T. H. Hildebrandt, Univ. of Michigan; Professor J. K a r a m a t a , Univ. of Geneva and Univ. of Wisconsin;

and Prof. L. Rall, Univ. of Wisconsin.

(2)

a . o. A. WOLO,

A fix-point theorem with econometric background. I

1. W e consider a l i n e a r v e c t o r space H n w i t h e l e m e n t s

X = ={X 1 . . . Xn};

x e H ,

n

w h e r e t h e c o m p o n e n t s x~ b e l o n g t o a H i l b e r t space H w i t h r e a l - v a l u e d i n n e r p r o d u c t s (xi, xk). W e define s p a c e s H a n d H n a s m e t r i c ; t h u s

d(xi,

x k ) = II x , - x k l l = (x,-xk, x , - x ~ ) ~ (I)

is t h e d i s t a n c e b e t w e e n t w o e l e m e n t s xi, xk in H , a n d we t a k e

D ( x , y ) = m a x

( { I X l - y l l l . . . . , I l x = - y = l l ) (2) t o b e t h e d i s t a n c e b e t w e e n t w o v e c t o r s {x I . . . x=} a n d {Yx . . . Yn} in H n. A s is w e n k n o w n , H a n d H n a r e c o m p l e t e in t h e m e t r i c s (1) a n d (2); [3, 4].

2. L e t y = { y ~ . . . y~}, n>~2 (3)

b e a f i x e d v e c t o r in H=; l e t

z - {z~ . . . ~m}, m > 1 (4)

be a f i x e d v e c t o r in Hm; l e t

H(z)

be t h e s u b s p a c e of H s p a n n e d b y t h e com- p o n e n t s z 1 . . . zm; a n d let H ~(z) b e t h e s u b s p a c e of H " s p a n n e d b y v e c t o r s u t h e c o m p o n e n t s of w h i c h b e l o n g t o H(z),

U = { i l l . . .

Un};

US e l l ( z ) , u e H n (Z).

G i v e n a set of e n t r i e s i, k, t o be c a l l e d

positions,

s a y i = 1 ; k = p l ( 1 ) , p1(2) . . . p l ( k i )

i = 2 ; k = p 2 ( 1 ) , p2(2) . . . p2(k2) (5)

i=a;

k = p a ( 1 ) , p a ( 2 ) . . . .

,pa(k~)

t h e m a t r i x l~=[~t~k], i = 1 . . . a ; k = l . . . b is called a

position matrix

if

~ k = 0 for k # p ~ ( 1 ) . . . p~(k~); i = 1 . . . a w h e r e a s ~rik m a y t a k e n o n z e r o v a l u e s in t h e p o s i t i o n s (5).

W e shall r e p r e s e n t y in t h e f o r m

y=~3u+Fz+~, uEH~(z)

(6)

210

(3)

ARKIV FOR MATEMATIK. B d 6 n r 12

subject to the following assumptions 2 a-e. We see t h a t ]3 and F are position matrices, with positions specified by (Sb-c) and (9 b), whereas (10)-(11) specifies the numerical values of the elements fl~, 2~q in these positions.

2 a. The vector u is to be specified later, and z is the fixed vector (4).

2 b. The representation of each component y~ involves a prescribed selection of components u~ a~d zq, as follows,

(7)

where

and

flij=0 for j=~p, ]

p = p , ( 1 ) , p , ( 2 ) . . . P,(ji); J i ~ < n - l ' I (Sa-c) p ~ : i ; hence fli,=0;

~ k = 0 for k 4 q , /

(9 a-b) q=q,(1), q,(2) . . . q,(k,); k , < m .

J

2e. Let H i = H ~ ( u p , zq) be defined as the subspace of H spanned b y the ele- ments up, zq specified in (8 b) and (9 b). Since u E H n (z),

H i g H ( z ) i = l . . . n.

Writing y* = (y~ . . . y * } = ~ u + F z

we define each component y~ as the projection of yi on Hi. Hence y* E H ~ (z)

with Y~=Y*+Si; y*EHi, s~AH~ i = l . . . n.

(,o)

(11)

2 d. The matrix

is assumed to be nonsingular.

2 e. Finally, we assume

k~>~l for at least one i ( i = l . . . n). (12) 3. L e t y and z remain fixed. Taking

to be an arbitrary vector in H'~(z), the projection (10) defines a mapping of H = (z) into itself, say A u , where A is the mapping operator defined b y

A u = ~ u § Fz. (13)

(4)

It. o. A. WOLD, A fix-point theorem with econometric background. I Lemma. For the trans/ormation (13) to be a contraction mapping,

D(Au, A v ) < ~ D ( u , v ) , ~ < 1 (14) it is su//icient that no component y~ belongs to H~.

Proo/. We consider first the special case when representation (6) for each i involves just one element up and one element zq. The contraction principle (14) then is equivalent to the inequality

A- ( u ) ~ ~ ( v ) ,, ( v ) <Z2

m a x ~ l [[fl~)up-y,1 ~q-t+~l "W-y,1 zqll 2<~

max~_lHui--vi[[2;

~ 2 < 1 , (15) where the superscripts indicate t h a t the projection (10) gives coefficients t h a t depend upon u v and v,, respectively. Accordingly, we shall show

Q 2 = N / D < ~ 2 , ~2<1, (16)

where, with some change of notation for easy writing, the n u m e r a t o r is given b y

N = max~=i HfliuUv+yiuZq-fl, vvp-y~vzqH 2 (17)

and the denominator D = m a x L 1 II~,-v~ll 2. (18)

We a d o p t two simplifying devices which involve no loss of generality:

(i) We take uv and v v to belong to the orthogonal complement of zq in H(z),

up, vp ~ H(z)Qzq; i = l . . . n. (19)

To see t h a t this involves no restriction, let u~ and v~ be a r b i t r a r y in H~(z).

Then two elements u v, vp t h a t satisfy (19) are uniquely determined b y the de- compositions

u ~ = u ~ + ~ z ~ , v'~=vp+2~z~,

where u~, v~ • zr

Hence Aup=Au'v and Avp=Av" v. This gives, in obvious notation, Q,= D(Au" v, Av'p)_ D(Aup, A%) = D(Aup, A%)

D(u'v, v'v) II u p - up + ( x , - ~ ) ~ II D(u~, v~) + II (X~- X:) ~0 II"

Writing Q' (0) for the value t a k e n b y Q' when +~x = +~2 = 0, we infer

Q' ~< Q' (0) = Q (20)

showing t h a t it will suffice to consider elements up, vp t h a t satisfy (19).

(ii) We normalize the components y~ so as to have unit norms,

Ily, II = 1; i = 1 ... ~ (21)

212

(5)

.ARKIV F6R MATEMATIK. B d 6 nr 12 a n d assume

{~ = 1 . . . n (22)

Ilu, II = IIv, II = II~ll = 1; 1, . , m .

T h u s p r e p a r e d , let for z given b y (4) a n d for a r b i t r a r y u, v E H n (z)

y i = f l = u p + f l v % + T z p + ~ i ; 6~• vp, zq (23) be the projection of y~ on the subspace s p a n n e d b y uv, vp, zq. T h e general t h e o r y of o r t h o g o n a l projection gives

1 (Yi, Up) (y. vp) (Yi,%) (y. up) 1 (u~,, vp) 0 (y~, vp) (up, v~) 1 0

(y~, %) 0 0 1

1 (up, vv) (uv, vp) 1

0 0

0 0 ~>0.

1

(24)

H e n c e the following relation, which is p i v o t a l in the proof, (y~, up) 2 + (y~, vp) 2 - 2 (y~, up) ( y . vp) (up, vp)

1 - (up, vv) ~ - 1 - (y~, zq) 2 - II 6i

II 3/>

o. (25)

Our interest will focus on n e a r l y coincident v e c t o r s u, v; t h a t is, vectors with (u~, v~) ~ 1. W e write for b r e v i t y

H e n c e

A t = l - ( u . v ~ ) , i = l . . . n, Ai~>0, i = 1 . . . n.

F o r t h e d e n o m i n a t o r in (25) we o b t a i n

~<2Ap.

T h e s q u a r e d n o r m t h a t a p p e a r s in t h e d e n o m i n a t o r (18) is

[[ u~ - v~ II ~ = (u, - v , u ~ - vi) = 2 [1 - (u,, v~)] = 2 A,. (26) N e x t some p r e p a r a t o r y reduction of t h e n u m e r a t o r (17). T h e general f o r m u l a s for o r t h o g o n a l projection in H i l b e r t space give t h e coefficient v e c t o r

{fl,~, 7~} = [{up, zo} [up, zq]] -1 {(y,, ~p), (y. zq)) (27) a n d t h e projection c o m p o n e n t

(Au), = fl~u up + 7 ~ zq = [up, %] {fl~u, 7~u}. (28) As a n e x a m p l e of the reductions to follow we n o t e

(6)

lit. O. A. WOLD,

A fix-point theorem with econometric background. I ((Au)~, (Av),)

= [(y,, up), (y,, zq)] [{up, zq} [up, %33 -1

{up, zq} [vp, zq] [{vp, zq} [v~, %]] 1 {(y,, vp), (y,, zq)}

=[(y, up), (y~zq) ] [ (UP'oVP) : ] { (y,, vp), (y,,zq) }

= (y,, up) (y,, vp) (up, v~) .4- (y~, zq) 2. (29)

F o r m i n g t h e s q u a r e d n o r m t h a t a p p e a r s in t h e n u m e r a t o r (17), we o b t a i n

II (Au-

Av),

I1'

= ( ( A u ) . (Au),) - 2 ((Au),, (Av),) .4- ((Au),, (Av),)

= ( y . up) ~ -4- (y~, vp) ~

- 2 (y. up) (y~, vp) (up, vp).

(30) M a k i n g use of (25),

l[ (Au - Av), II ~

= (1 - (up. vp) 2) (1 - y,, zq) 2 -

II 8, II ~)

=2Ap ( 1 - ~ ) (1 - (y,, z.)2- II ~,ll~). (31)

T u r n i n g n o w t o Q2 as defined b y (16)-(18), we o b t a i n b y (26) a n d (31)

(y. o) - II ~, II 2)

Q~ _ max~_l Av (1 - A p / 2 ) (1 - z ~ m a x (A 1 . . . An)

~< (max~_l A,) max~_l (1 - ( y , zq) ~ -

II ~,11 ~)

m a x (A 1 . . . An) H e n c e , since all Ap a r e c o n t a i n e d a m o n g A 1 .. . . . An,

Q2 ~< max~_l (1 - (y,, zq) ~ - ]18,

I1~).

(32)

O n t h e a s s u m p t i o n s of t h e l e m m a Yi does n o t b e l o n g t o H,. H e n c e

II~tll~>o,

s a y

II~,ll~>c>0,

w h i c h establishes (14) w i t h

= V1 - c < 1. (33)

T h e l e m m a is p r o v e d in t h e special case of o n e up a n d one zq.

P r o c e e d i n g t o t h e g e n e r a l case, t h e l e m m a will be e s t a b l i s h e d if we c a n a g a i n s h o w (15), this t i m e i n t e r p r e t i n g t h e t e r m s as v e c t o r p r o d u c t s , as follows,

(..) ~ = ~?k, .(u) zq; 7~y ) zq

= ~k, (') z- | (34)

~ t l ~q /*--*k=l yik k=l ~ik q.j 2 1 4

(7)

ARKIV FOR MATEMATIK. B d 6 nr 12 W i t h o u t impairing the generality, we a d o p t the following normalizations a n d assumptions: (i) T h e t w o v e c t o r s up, vp are of d i m e n s i o n a l i t y j~. (ii) W e impose (19), (21), (22 a) a n d (22 c), all of which allow s t r a i g h t f o r w a r d extension to t h e general case (34). (iii) Making use of a s t a n d a r d device in t r a n s f o r m a t i o n theory, [1], we a s s u m e in generalization of (22) t h a t up a n d vp h a v e been subjected to two linear t r a n s f o r m a t i o n s t h a t m a k e

II~p,~)l[=l, maxllvp,a, ll<l;

a = l . . . j~ (35 a - b ) (%(~), %(0)) = (vp(.), vp(b~) = 0; a # b; a, b = 1 . . . j~ (36 a - b ) (Up(a), Up(b)) =/a" (~ab a , b = 1 . . . ?'i (37) where ~ is K r o n e c k e r ' s delta, a n d / 1 . . . . ,/j~ are scalar factors.

On t h e a p p r o p r i a t e v e c t o r i n t e r p r e t a t i o n , (23)-(25) e x t e n d to the general case.

I n (24) the d e t e r m i n a n t s are to be i n t e r p r e t e d as partitioned. T h e inner pro- ducts either b e c o m e vectors, for e x a m p l e

{ ( y . % ) } , p = p ~ ( 1 ) . . . p~ (]~)

i n s t e a d of (y~, up); or matrices, for e x a m p l e the ]i • diagonal m a t r i x [(Up(a), Vp(b))] , p = p i (1) . . . Pi (ii)

i n s t e a d of

(up, vp),

T h e u n i t in the middle of t h e d e n o m i n a t o r m a t r i x becomes t h e diagonal m a t r i x [(up(~), up(0))], a n d similarly in the n u m e r a t o r m a t r i x . On this i n t e r p r e t a t i o n , relation (24) e x t e n d s to the general case, a n d m a k i n g use of (37) we o b t a i n t h e following generalization of (25),

( y . up) 2 + (y~, vp) 2 - 2 (y~, up) (y~, vp) (up, vp) _ ~ Np =

p p Dp (y''zo) -11 'll2 (38)

This relation gives, m a k i n g use of (35 b) in the t h i r d inference,

~v ((y" up)~ + (y~' vp)2 - 2 (y~, up) (y~, vp) (up, vp)) = . Dp Dp

~< 2 (1 - ~ (y~, %)2 _ II 8, II 2) m a x A.. (39)

q p

F o r m u l a (26) r e m a i n s t h e same. I n (27)-(29) t h e v e c t o r i n t e r p r e t a t i o n calls for no f o r m a l change. I n s t e a d of (29) we o b t a i n in the general case

(8)

H. O. A. WOLD, A fix-point theorem with econometric background. I

( ( A u ) , , ( A v ) i ) = yakS:__1 (Yt, Z q ( a ) ) 2 + ~ = " 1 ~b = 1 (Y" %(~) ) (Yi, v,(b)) (U,(a), v,(~) ) t,

a n d (30) generalizes as follows,

11 ( A u - Av)~ It 2 = ~.~ (y~, %(,,)2 + ~ (y~, %(~))~

- 2 ~ (Yi, Up(a)) (Y~, %(b)) (up(a), %(b)).

a b

I n v i r t u e of (37) this gives

II(Au-Av)~lls=~[(y.%)~+(y~,%)~-2(y~,up)(y~,vp)(uv, vp)]. ( 4 0 ) P

F o r m i n g n o w @, m a k i n g use of (26) a n d (40), w e o b t a i n Q2 m a x ~ ~ v [(y~, u~) 2 + (y~, vp) 2 - 2 (y,,up) (y~, v~) (uj,, vp)]

2 m a x (A 1 .. . . . An)

B y (39), t h e n u m e r a t o r is b o u n d e d u p w a r d s b y t h e m a x i m u m of 2 Ap m u l t i p l i e d b y t h e m a x i m u m of t h e l a s t m e m b e r in (38). This c o n c l u s i o n links u p w i t h t h e a r g u m e n t in (32), a n d so t h e rest of t h e p r o o f is a s t r a i g h t f o r w a r d e x t e n - sion of (33). W e o b t a i n r e l a t i o n (14), specified as in (33) w i t h 0 < c ~ II ~ II 2.

T h e l e m m a is p r o v e d .

4. Theorem. Let y and z be given vectors (3)-(4), and let the relation (6) be subject to the specifications 2 a-d, where ~, I' are position matrices with u n k n o w n positional coe//icients fliv, 9%. Then there exists one and only one representation y = ~ y * § 2 4 7 y * ~ H n ( z ) , s~Ly*,zq (41)

with y* = 13y* + Pz. (42)

The vector y* is uniquely determined by the ]ollowing iterative procedure, where the initial vector y(O) can be chosen arbitrarily in H n (z),

y = ~(1) y(0) + pa) z + e (1) s(~) • ~ (o) i ~ p ~ Zq,

ya) = ~ ( 1 ) y(0) + 1~(1) z, i = 1, .. , n ; y = ~(2) y(1) + F~2) z + e (2), ,~ A- bSp ~ ~,q~ _(~) ~ .(1) _ y(e) = ~(2) y(1) + F(z) z, i = 1 . . . n;

. . . ~ . . .

y = ~(s) y(~ 1) + I~(s) Z + e (s), ~(s) ! ~,(s 1)

y<~) = ~<~) y<~-x) + F<S) z, i . . . n; (43)

y* = lims_. ~ y(S). (44)

2 1 6

(9)

ARKIV FOR MATEMATIK. B d 6 n r 12

I / we disregard the exceptional case when the elements

y*,zq with p = p ~ ( 1 ) . . . p~(j,); q = q ~ ( 1 ) . . . q~(lc~) (45) are linearly interrelated /or some /ixed i ( i = 1 . . . n), the matrices are ~, F are uniquely determined by

~ l i m s ~ p D(S) ; F = l i m s _ ~ ~ . o ( s ) ( 4 6 a - b ) Proof. U p to (45) the t h e o r e m follows f r o m our l e m m a as a n i m m e d i a t e corollary of t h e general fix-point t h e o r e m of contraction m a p p i n g : T h e e q u a t i o n

y* = Ay* (47)

has one a n d only one solution in H n (z), a n d t h e solution is given b y the i t e r a t i v e procedure (43)-(44). F o r t h e sake of completeness we r e c a p i t u l a t e t h e proof, following [3].

L e t y(0) be a n a r b i t r a r y v e c t o r in Hn(z). Set y(1)=Ay(~ y(2)=Ay(1)=A2y(~

a n d in general let y(S)=Ay(S-1)=ASy(O)" W e shall show t h a t t h e sequence y(S) satisfies t h e C a u c h y criterion. I n fact, for a n y t > s

D ' t y (~), y(t)) = D (A s y(0), A t y(0)) < as D (y(0), y,-S))

<~ ~s [D(y(O), y(1)) + D (y(1), y(2)) + . . . + D (y,-S -1), y(t--s))]

s D o (0) o (1)/ + a t - s 1)

~<a (V , y J ( 1 + ~ + ~ 2 + . . . -~SD(y(~ (48) Since ~ < 1 this q u a n t i t y is a r b i t r a r i l y small for sufficiently large s. H e n c e t h e sequence y(S) is f u n d a m e n t a l , a n d since H n (z) is c o m p l e t e it follows t h a t l i m s _ ~ y(S) exists, W e set y* = l i m s _ ~ y(S). T h e n b y virtue of t h e c o n t i n u i t y of t h e m a p p i n g A we infer Ay* = A lims-~oo y(S) = l i m s _ ~ A y (s) = lims_~ ~ y(S+l) = y*.

Thus, the iteration (43) converges, a n d t h e r e b y t h e existence of a f i x - p o i n t y*

is p r o v e d . W e shall n o w p r o v e its uniqueness. I f Ay* =y*, Ay** = y , t h e n **

D (y , y ) < ~ D ( y * , y * * ) , * ** where ~ < 1 ; this i m p l i e s D " * **" ( y , y ) = 0; t h a t is, y*= y**

T h e general fix-point t h e o r e m t h u s ensures t h e limiting relation (44). I t r e m a i n s to p r o v e ( 4 6 a - b ) . These relations readily follow if we disregard t h e case w h e n t h e variables (45) are interrelated. First, the inner p r o d u c t s

9 Z * *

(y , ), (y , y ), (y*, y) (49)

will be uniquely d e t e r m i n e d b y t h e limiting e l e m e n t y*. Second, writing y = ]3* y* + F* z + ~*, e* • y*, z

for the o r t h o g o n a l projection of y on t h e linear m a n i f o l d s p a n n e d b y y* a n d z, t h e ensuing n o r m a l e q u a t i o n s will give us ]3* a n d F* in t e r m s of t h e inner p r o d u c t s (y~, zk), (zj, zk) a n d (49), a n d in t h e case u n d e r consideration t h e coef- ficients fl*, ~'q will for e v e r y i be u n i q u e l y determined. Finally, t h e resulting ]3* a n d F* will be t h e limits of ~(8) a n d r (s), giving

(10)

H. O. A. WOLD, .,4 fix-point theorem with econometric background. I ]3=]3*; P = P *

since the elements of matrices ]3 and F are continuous functions of y*.

theorem is proved.

The

Remark. Once the limiting vector y* has been obtained b y (44)~ G r a m ' s criterion c a n be used to find out for a n y fixed i whether or not the elements (45) are linearly interrelated. Forming the (j~ + kt) • (?'~ + k~) matrix or inner prod- ucts of the elements (45), the criterion for linear independence is t h a t the m a t r i x should be of r a n k ?i + k~.

As to criteria t h a t can be applied prior to the iterative procedure, we note t h a t the following obvious a n d v e r y simple conditions are necessary for linear independence.

d~=k~; d~>j~+k~ i = l . . . n, (50) where d~ is the dimensionality of vector zq [q=qt (1) . . . q~ (/ci)], and d the dimen- sionality of vector z.

5. The iterative procedure (43) can be exploited for further information on the representation (41)-(42). We note:

(i) According to assumption 2d the m a t r i x ( I - ] 3 ) is nonsingular. Hence our theorem gives as an immediate corollary

y* = ~ z with ~) = {(D~k} = ( I - 13) -1 r . (5l) F u r t h e r we note the following formula, which follows from ( 4 2 ) b y iterated substitutions of the right-hand m e m b e r into itself,

y * = F z + ] 3 F z + . . . + ] 3 ~ 1 F z + ]3~y*. (52) I t is instructive to compare with the following relation, which follows b y sub- stitution from the iterative formula (43),

y(S)= r(s) Z + ]~(s) F(s 1) Z _{_ ... + ]~(s) ]~(s-1) ... ]~(2)r(1)z + ]~(s) ]3(s-l) . . . ]3(1)y(O). (53) I n case all eigenvalues of ( I - ]3) lie inside the periphery of the unit circle, (5I) gives

y * = l i m s _ , : c ( F z + ] 3 F z + . . . + ] 3 ~ F z ) = F z + ] 3 F z + . . . + ] 3 ~ F z + . . . . (54) The limiting relation y(S)_> y , is then a m a t t e r of t e r m b y t e r m convergence in (53) and (54).

The following inner products involving y* are readily obtained from (51), (y*, ~k) = 5Y-1 (D,~ (zo, zk),

(Y*, Yk) = ~'2=1 (D~ (Za, Yk), (55 a-c)

(Y~, Y~) = ~ , b = l (Dia (Dab (Zb, Zk), where i, k = 1, ..., n.

218

(11)

ARKIV FOR MATEMATIK. Bd 6 nr 12 As to the exceptional case when assumption 2 d is not fulfilled, we note t h a t if ( I - ] 3 ) is singular, the representation (41)-(42) will not be unique. In fact, let in this case ~t be an eigenvalue of ( I - ~ ) and y(~) the corresponding eigen- vector, giving

where

Ilyr

is an arbitrary positive number. Hence y allows a plurality of representations of type

y = ~ ( ~ ) z with ~ ( ~ ) = 2 - ~ l l y ( ~ ) l l r ~ . (56) Further we note t h a t (56) m a y be interpreted as a plurality of representations of type (41), say

y = ~ * y * + F * z + e

with ] 3 * = 0 ; F * = 2 -llly(~)llr~.

(ii) Having obtained the limiting element y*, the orthogonal complement will be given b y

~ y - y*. (57)

As to inner products t h a t involve s~, we know from (11)

for i = l , . . . , n . Hence

(ei, % ) = 0 ; q =q~ (1) . . . qi (]ci), /

(58

a - b )

(e~,y*)=O; p = p ~ ( 1 ) , .,P~(i3, J f

* (59)

( . y ~ ) = 0 ; i = l . . . n

since we know from (42) t h a t y* is linear in the elements * y~, zq that appear in (58). According to (51), the inner products (59) are the same as

By (57),

(e~, ~ - 1 to~ Za) = 0; i = 1 . . . n.

(~i, zk)= (y~, zk)- (y~, zk),

(~,, Yk) = ( Y . Y~) - (Y *, Yk), (e~, y*) = (y. * Yk) - (Y*, Y~), *

9 ~- * *

(ei, ek) = (y,, Yk) - (Y~, Y k ) , - (Y*, Yk) (Y, , Yk),

(60 a-d)

where i, k - ~ 1 . . . n. According to (59), formula (60 c) simplifies for i = k. For- mula (60d), too, becomes simpler for i = k :

ll ,ll =lly,II 2-11y?ll i = 1 . . . n. (61)

(12)

H. O. A . W O L D , A

fix-point

theorem w i t h econometric

background

R E F E R E N C E S

1. ANDERSON, T. W., A n introduction to multivariate statistical analysis. New York, Wiley a n d Sons, 1958.

2. FADDE'EVA, V. N., Computational methods o] linear algebra. New York, Dover Publ., 1959.

3. KOLMOGOROV, A. N., a n d FoMI~, S. V., Elements o/ the theory o] ]unctions and Junctional analysis, 1-2. Rochester, N. Y., Graylock, 1957, 1958.

4. THRALL, R. M., a n d TORN~EIM, L., Vector spaces and matrices, New York, Wiley a n d Sons, 1957.

5. WOLD, H., " E n d s and means in econometric model building. Basic considerations reviewed."

I n Probability and statistics. The Harald Cram@r volume, ed. U. Grenander, pp. 355- 434. Stockholm, Almqvist a n d Wiksell, 1959; New York, Wiley a n d Sons, 1960.

6. - - , "Unbiased predictors." Proceedings o/ the Fourth Berkeley S y m p o s i u m o] Mathema- tical Statistics and Probability. Voh 1, pp. 719-761. Berkeley, Univ. of California Press, 1961.

7 . - - , "Forecasting b y the chain principle." I n Econometric model building. Essays on the causal chain approach, ed. H. Wold, pp. 1-34. Amsterdam, North-I-Iolland Publication Company, 1964.

220

T r y c k t den 27 juli 1965

Uppsala 1965. Ahnqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

In our joint paper [3] we presented an index theorem for a certain class of operators analogous to Toeplitz operators. The index which appeared there was real-valued and it

It is my opinion that in order to understand the original or the present proof of the theorem of Ivasev-Musatov, it is necessary not merely to know but also to understand the lemma

space n as an integral with respect to a signed measure in n assuming n satisfies the axiom of local proportionality.. This can be written as the difference of two

We obtain an integral representation for the relaxation, in the space of functions of bounded deformation, of the energy.. with respect to L

The problems to which the Vessiot theory can be applied are of the following kind: For a given integer p and a given noncomplete vector field system:F defined on

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention