• Aucun résultat trouvé

Deep learning onto graph space: application to image-based insect recognition

N/A
N/A
Protected

Academic year: 2022

Partager "Deep learning onto graph space: application to image-based insect recognition"

Copied!
82
0
0

Texte intégral

(1)

Deep learning onto graph space: application to image-based insect recognition

Maxime Martineau

Advised by Donatello Conte, Romain Raveaux and Gilles Venturini Jury: Luc Brun, Pierre Héroux, Kaspar Riesen and Christel Vrain 13 November 2019

LIFAT (EA 6300)

(2)

Table of contents

1. Introduction

2. State of the art of insect image recognition

3. Convolutional neural networks and transfer learning 4. Graph neural networks

5. Experiments on insect image recognition Datasets

Results

6. Conclusions and perspectives

1

(3)

Introduction

(4)

Why arthropod identification

• Applied entomology

• Estimation of the insect populations

• Biodiversity assessment

• Integrated pest management

2

(5)

Arthropod identification

• Trap-based harvest

• Human identification procedure

• Use of taxonomical keys

Wings

Color ?

yes

Shape yellow

Bumblebee round

Bee thin

Ladybug red

Nb legs ?

no Cockroach

6

Spider 8

(6)

Why automation?

• Complex task

• Lots of individuals to identify (population estimation)

• Needs a lot of qualified workforce

4

(7)

Arthropod identification

How to automate the task ?

• 3D images

• sound

• genomics

• 2D images

• cost effective

• available

• easy capture

(8)

Theoretical context

Image classification

Let an imagex∈Rw×h×3andy∈ Yits class (in the class setY).

We are searching for the classifier functionfs.t.:

f : Rw×h×3 → Y

x 7→ y

Image-based insect classification

• Multi-granularity

• High intra-class variability

• Low inter-class variability

• Different sceneries (lab, field, …)

order family genus species

6

(9)

State of the art of insect image

recognition

(10)

State of the art

• No quality survey

• Study of 44 papers on insect image identification

• Analysis through several axes:

• Image capture

• Feature extraction

• Classification

7

(11)

State of the art

1

colour SIFT shape

...

...

MLP BoW

Sparse

stacked auto-encoders

SVM DTreeMLP

...

...

kNN

entomart Gassoumi 2000

janzen.sas.upenn.edu

bagging boosting ...

1Maxime Martineau et al. “A survey on image-based insect classification”.In:Pattern Recognition65 (2017), pp. 273–284.

(12)

Feature extraction in insect image recognition

Category Levels Nb approaches

Handcrafted features

Domain-dependent Wing’ Venations

25 Geometry

Global and generic image features

Shape Color Texture Raw Pixel Local features SIFT

Others

Mid-level features

Unsupervised representations

BoW PCA 17 Supervised representationsMLP

Sparse Coding Hierarchical repre-

sentations Auto-encoder 1

Table 1:Feature taxonomy for insect recognition from images

9

(13)

Contributions

Scientifical lock Contribution No deep learning based ap-

proach

Applying CNN on insect image recognition

Almost no structural approach Graph-based representation and classification

No standard benchmark dataset ImageNet-derived dataset

(14)

Research directions

Directions Statistical

CNN

Structural

Graph-based

Application to insect image recognition

11

(15)

Research directions

Directions Statistical

CNN

Structural

Graph-based Application to insect image recognition

(16)

Convolutional neural networks

and transfer learning

(17)

Convolutional Neural Networks

Model:

Image apriori CNN character- istics

Layer Translation in-

variance

Shared weights Convolution Compositionality Multi-scale Pooling Spatial local-

ization

Spatial local- ization

Convolution

& Pooling

Learning problem

min

Θ

1

|X|

(x,y)(X,Y)

L(fΘ(x),y) Optimization method:

Θt= Θt1−α∂L(fΘ(x),y)

∂Θ

(18)

a Convolutional Neural Network architecture : VGG-16

3x3 conv, 64 3x3 conv, 64 maxpool/2 3x3 conv, 128 3x3 conv, 128 maxpool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv,512 maxpool/2 flatten fc, 4096 fc, 4096 fc, 1000

Extraction

Classification

• Good example of CNN architecture close to state of art

• Extraction-Classification pattern

13

(19)

Convolutional Neural Networks

• State of the art in image classification

• Can learn complex mapping between images and classes

• Sensitive to class-cardinality balance

4

! Needs a lot of data

ImageNet-10002 Target entomological set

# images 1 000 000 3 000

# classes 1000 30

avg # images/class 1 000 100

min cardinalities 732 33

max cardinalities 1300 370

2Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.In:

International Journal of Computer Vision115.3 (Dec. 2015), pp. 211–252. ISSN: 1573-1405.

DOI:10.1007/s11263-015-0816-y.

(20)

Proposed method

Limitation Solution

Sensitivity to imbalance Weighting loss

Too few data Reduce number of parameters

Transfer learning

15

(21)

Reduce number of parameters

Flattening Average pooling3

I/O l1:R7×7×512R25088 l2:R7×7×512R512 Translation

invariance

No Yes (1 scalar per filter)

Next layer complexity (nneurons)

O(25088n) O(512n)

3Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”.In:CoRR abs/1312.4400 (2013).

(22)

Reduced VGG-16

3x3 conv, 64 3x3 conv, 64 maxpool/2 3x3 conv, 128 3x3 conv, 128 maxpool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv,512 maxpool/2 flatten fc, 4096 fc, 4096 fc, 1000

138M parameters

3x3 conv, 64 3x3 conv, 64 maxpool/2 3x3 conv, 128 3x3 conv, 128 maxpool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 global avgpool

fc, 256 fc, 1000

15M parameters

90% reduction 17

(23)

Transfer learning

4

3x3 conv, 64 3x3 conv, 64 maxpool/2 3x3 conv, 128 3x3 conv, 128 maxpool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv,512 maxpool/2 flatten fc, 4096 fc, 4096 fc, 1000

3x3 conv, 64 3x3 conv, 64 maxpool/2 3x3 conv, 128 3x3 conv, 128 maxpool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 global avgpool

fc, 256 fc, n 4S. J. Pan and Q. Yang. “A Survey on Transfer Learning”.In:IEEE Transactions on Knowledge and Data Engineering22.10 (Oct. 2010), pp. 1345–1359. ISSN: 1041-4347.

(24)

How much do we have to learn ?

5

3x3 conv, 64 3x3 conv, 64 maxpool/2 3x3 conv, 128 3x3 conv, 128 maxpool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 global avgpool

fc, 256 fc, 1000

Frozen

Learnt

5Jason Yosinski et al. “How transferable are features in deep neural networks?”In:

Advances in neural information processing systems. 2014, pp. 3320–3328.

19

(25)

Mitigating the imbalance problem

Weighting the loss depending on class cardinalities:

minΘ

1

|X|

(x,y)(X,Y)

wy.L(fΘ(x),y)

wy= maxy∈CCard(y) Card(y)

(26)

Research directions

Directions Statistical

CNN

Structural

Graph-based

Application to insect image recognition

21

(27)

Graph neural networks

(28)

Introduction to graph neural networks

Classic NN operate on euclidean spaces

→ Find replacement layers and operators to work on non-euclidean spaces

22

(29)

Graph classification

Searchingfsuch that:

f:G → Y

• Embedding

• Explicit (G →Rn) (ex. Graph NN/Graph convolution)

• Implicit (⟨G,G⟩ →R)

• Graph space

• Graph matching (G × G →R)

(30)

Graph classification

Searchingfsuch that:

f:G → Y

• Embedding

• Explicit (G →Rn) (ex. Graph NN/Graph convolution)

• Implicit (⟨G,G⟩ →R)

• Graph space

• Graph matching (G × G →R)

23

(31)

Graph matching

a c b

1 2

ϵ1 ϵ2

ma,1= 1

mc,ϵ2 = 1

mb,2= 1

G1 G2

minm d(G1,G2,m)

d(G1,G2,m) =

mi,k=1

d(i,k) + ∑

mi,k=1

mj,l=1

d(ij,kl) (1a)

=d(a,1) +d(b,2) +d(c, ϵ2) +d(ab,12) +d(cb, ϵϵ2) (1b)

(32)

Graph-perceptron

7

Perceptron6 I hI, βi Heaviside

Graph-perceptron GI

minmd(GI,GM,m, β) Heaviside

6F. Rosenblatt. “The Perceptron – a perceiving and recognizing automaton.”.In:

Cornell Aeronautical Laboratory.(1957), Report 85-460–1.

7Maxime Martineau et al. “Learning error-correcting graph matching with a multiclass neural network”.In:Pattern Recognition Letters(2018). ISSN: 0167-8655.

25

(33)

Parameterizing graph matching

a c b

1

2

ϵ1 ϵ2

ma,1= 1

mc,ϵ2 = 1

mb,2= 1

GI GM

d(GI,GM,y, β) =

mi,k=1

βkd(i,k) +

mi,k=1

mj,l=1

βkld(ij,kl) (2a)

= β1d(a,1) +β2d(b,2) +βϵ2d(c, ϵ2) (2b) +β12d(ab,12) +βϵϵ2d(cb, ϵϵ2) (2c)

(34)

Graph classification

Searchingfsuch that:

f:G → Y

• Embedding

• Explicit (G →Rn) (ex.Graph NN/Graph convolution)

• Implicit (⟨G,G⟩ →R)

• Graph space

• Graph matching (G × G →R)

27

(35)

Convolution on graphs

8

Spectral definitions

• analogy of the convolution theorem:

F{f∗g}=F{f} · F{g}

• definition of convolution filter in the frequency domain

• unstable across domain

Spatial definitions

• Explicit computation of convolution

• definition of convolution filter in the spatial domain

• No trivial definition

8Michael M. Bronstein et al. “Geometric deep learning: going beyond Euclidean data”.

In:CoRRabs/1611.08097 (2016). arXiv:1611.08097.

(36)

An example of spatial graph convolution: MoNet

9

Degradation of graphs to riemannian manifolds:

• Non-euclidean

• Node neighbourhoods as compact euclidean spaces

a

b c

d e

f g

9Federico Monti et al. “Geometric deep learning on graphs and manifolds using mixture model CNNs”.In:CoRRabs/1611.08402 (2016). arXiv:1611.08402.

29

(37)

An example of spatial graph convolution: MoNet

9

Degradation of graphs to riemannian manifolds:

• Non-euclidean

• Node neighbourhoods as compact euclidean spaces

Computation of convolution at nodee

a

b c

d e

f g

9Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs”.

(38)

MoNet: local operation

10

Node neighbourhood graphletgeI

b c

e

f g

(0,3)

(1,2)

(2,1)

(−1,−1)

Local/tangent spaceN[e]

x y

b c f

g e

10Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs”.

30

(39)

MoNet: local operation

10

Node neighbourhood graphletgeI

b c

e

f g

(0,3)

(1,2)

(2,1)

(−1,−1)

Local/tangent spaceN[e]

b c f

g e

µ1 Σ1 µ2

Σ2

µ3 Σ3 µ4

Σ4

10Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs”.

(40)

MoNet: local operation

10

Local/tangent spaceN[e]

b c f

g e

µ1 Σ1 µ2

Σ2

µ3 Σ3 µ4

Σ4

Convolution computation ate (

w1(e) w2(e) w3(e) w4(e))



 β1

β2

β3

β4





wi(x) = ∑

xN[x]

exp12(xµi)TΣ−1i (xµi) Parameters: βiandµi,Σi

10Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs”.

30

(41)

MoNet: local operation

10

Local/tangent spaceN[e]

b c f

g e

µ1 Σ1 µ2

Σ2

µ3 Σ3 µ4

Σ4

Convolution computation ate (

w1(e) w2(e) w3(e) w4(e))



 β1

β2 β3

β4





wi(x) = ∑

xN[x]

exp12(xµi)TΣi1(xµi)

Parameters: βiandµi,Σi

• Transforms graph to riemannian manifold

• Limited use of topology

10Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs”.

(42)

Our Graph convolution proposal

Convolution purely in graph space

• Using graph matching

• No degradation of the graph representation

a

b c

d e

f g

31

(43)

Our Graph convolution proposal

Convolution purely in graph space

• Using graph matching

• No degradation of the graph representation

Computation of convolution at nodee

a

b c

d e

f g

(44)

Our GCNN approach: local operation

b c

e

f g

n o

p

q r

geI GF

mc,p= 1

me,n= 1

(GI∗GF)(e) = max

m

mi,k=1

hLi, βki+ ∑

mi,k=1

mj,l=1

hLij, βkli (3a)

= hLe, βni+hLc, βpi+hLec, βnpi (3b)

32

(45)

Graph convolution complexity

• Bipartite matching solver used

O(n5)complexity per local operation

• Use of simplified model (no edges):O(n3)

(46)

Testing Graph Convolution

n×nconv, 32 maxpool/2 n×nconv, 64

maxpool/2 n×nconv, 128

maxpool/2 global avgpool

fc, n

34

(47)

Testing Graph Convolution

Dataset Training set Validation set Testing set

MNIST-original 48 000 12 000 10 000

MNIST-rotated11

10 000 2 000 50 000

MNIST-reduced

1

4 grid 75 superpixels Region Adjacency Graph

11Hugo Larochelle et al. “An empirical evaluation of deep architectures on problems with many factors of variation”.In:Proceedings of the 24th international conference on Machine learning. ACM. 2007, pp. 473–480.

(48)

Results for Graph Convolution

Repr. Dataset CNN MoNet Ours

1

4grid reduced 99.88 % 99.40 % 97.76 % mixed 89.87 % 88.90 % 95.63 % 75 superpixelsreduced 92.70 % 89.53 %

mixed 92.90 % 94.17 %

Results on MNIST-2class

• reduced: no rotation

• mixed: rotation only during testing

36

(49)

Research directions

Directions Statistical

CNN

Structural

Graph-based Application to insect image recognition

(50)

Experiments on insect image

recognition

(51)

Experiments on insect image recognition

Datasets

(52)

IRBI dataset

Smartphone

Diffusion dome

LED Specimen

38

(53)

ImageNet-arthropods

• Images in ImageNet category arthropods

• Cardinality reduction (to match IRBI avg # of images per class)

(54)

Datasets

Dataset Nb of classes µ(Card(c)) σ(Card(c))

IRBI 30 85 71

ImageNet-arthropods 443 96 78

40

(55)

Experiments on insect image recognition

Results

(56)

Transfer learning parametrization

3x3 conv, 64 3x3 conv, 64 maxpool/2 3x3 conv, 128 3x3 conv, 128 maxpool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 maxpool/2 global avgpool

fc, 256 fc, 1000

41

(57)

CNNs

Model IRBI ImageNet-arthropods

Top-1 Top-5 Top-1 Top-5

SIFTBoW 52.3 % ± 3.7 82.7 % ± 3.3 11.7 % ± 0.2 25.9 % ± 0.4 VGG16-frsc 54.0 % ± 5.0 84.9 % ± 3.0 26.9 % ± 0.7 50.1 % ± 0.7 VGG16-fitu 72.0 % ± 3.2 92.1 % ± 1.1 42.7 % ± 0.9 69.4 % ± 0.6 VGG16-fitu/w 73.6 % ± 1.8 92.4 % ± 2.2 43.5 % ± 1.1 71.3 % ± 0.8 VGG16-fitu7/w 72.4 % ± 2.8 92.6 % ± 2.1 43.3 % ± 0.6 71.8 % ± 0.4

Table 2:Recognition rates on 5-fold cross-validation

• SIFTBoW: SIFT descriptors classified through codebook

• VGG16: CNN approaches

• frsc: from random weights

• fitu: with transfer learning

• /w: with loss weighting

• fitu7: with transfer learning (7 last layers)

(58)

Graph CNNs

Model IRBI

Top-1 Top-5

SIFTBoW 52.3 % ± 3.7 82.7 % ± 3.3 VGG16-frsc 54.0 % ± 5.0 84.9 % ± 3.0 Table 3:Recognition rates on 5-fold cross-validation

Dataset IRBI

Model Top-1 Top-5

Our graphcnn 30.40 % 71.03 %

Table 4:Recognition rates using region adjacency graphs

• Different network size

• No transfer learning

43

(59)

Conclusions and perspectives

(60)

Conclusions

• Thorough state of the art of insect image recognition

• Application of CNN through transfer learning

• Graph-based approaches proposals

• Graph perceptron

• Graph Convolutional neural networks

• Publicly available dataset proposed: ImageNet-arthropods

44

(61)

Perspectives

• Graph Convolution optimization

• CNN pipeline improvements

• Other research directions

• Metric learning

• Zero-shot learning

(62)

Graph convolution neural network

• Graph matching solver to be changed

• Lower complexity UnderO(n3)

• Differentiability

L(fW(x),y)

∂W depends on the solver iterations

46

(63)

CNN pipeline improvement

• Dealing with multi individuals images

• Networks returns list of locations and classes

• Existing CNN-based approaches:

R-CNN, YOLO, …

• Extra need in labelling

(64)

Towards metric learning

• Unknown query image

• Model returns list ofknearest known images

• Potentially useful to the user

• Neural approach: siamese network

48

(65)

Zero-shot learning

What if an unknown class occurs?

Existing approaches:

• Using metric learning

• Using a-priori knowledge (existing approaches with Graph CNN12)

zebra dear okapi

legs body striped

striped

brown

striped brown

brown

12Xiaolong Wang, Yufei Ye, and Abhinav Gupta. “Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs”.In:The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

(66)

Insect recognition application

50

(67)

Upcoming academic projects

• ANR projects

• Ecophyto ANR

• Biodiversité ANR (Challenge IA biodiv)

• New datasets from IRBI and IRSTEA

(68)

Publications i

In proceedings

Martineau, Maxime et al. “Approches connexionnistes pour la reconnaissance d’images d’insectes.”.In:Journées ORASIS’17. Colleville-sur-Mer, France, 2017.

Raveaux, Romain et al. “Learning Graph Matching with a Graph-Based Perceptron in a Classification Context”.In:Graph-Based Representations in Pattern Recognition - 11th IAPR-TC-15 International Workshop, GbRPR 2017, Proceedings. 2017, pp. 49–58.

Martineau, Maxime et al. “Effective Training of Convolutional Neural Networks for Insect Image Recognition”.In:International Conference on Advanced Concepts for Intelligent Vision Systems. Springer. 2018, pp. 426–437.

52

(69)

Publications ii

Journal articles

Martineau, Maxime et al. “A survey on image-based insect classification”.In:Pattern Recognition65 (2017), pp. 273–284. ISSN: 0031-3203.

Alaei, Alireza et al. “Blind document image quality prediction based on modification of quality aware clustering method integrating a patch selection strategy”.In:Expert Systems with Applications108 (2018), pp. 183–192. ISSN: 0957-4174.

Martineau, Maxime et al. “Learning error-correcting graph matching with a multiclass neural network”.In:Pattern Recognition Letters(2018). ISSN: 0167-8655.

(70)

Thanks

54

(71)

Thanks for your attention

(72)

Graph matching

a

b c

d e

f g

<match>

1 2

3 4

LetG1 = (N1,E1,L1 )andG2 = (N2,E2,L2 )be two graphs

Problem

Graph Matching formulation

y=argmin

y d(G1,G2,y), (4a)

subject to y∈ {0,1}n1n2 (4b)

n1

i=1

yi,a= 1 a[1,· · ·,n2 ] (4c)

n2

a=1yi,a= 1 i[1,· · ·,n1 ] (4d)

d(G1,G2,y) = yia=1

dV(L1 i,L2

a) (5)

+

yia=1

yjb=1

dE(L1 ij,L2

ab) =yTDy (6)

55

(73)

Graph classification

Input:

a

b c

d e

f g

<match>

Model:

1 2

3 4

LetG1 = (N1,E1,L1 )andG2 = (N2,E2,L2 )be two graphs

Problem

Graph Matching formulation

y=argmin

y d(G1,G2,y), (7a)

subject to y∈ {0,1}n1n2 (7b)

n1

i=1

yi,a= 1 a[1,· · ·,n2 ] (7c)

n2

a=1yi,a= 1 i[1,· · ·,n1 ] (7d)

d(G1,G2,y) = yia=1

dV(L1 i,L2

a) (8)

+

yia=1

yjb=1

dE(L1 ij,L2

ab) =yTDy (9)

(74)

Parametrized graph matching

Problem

Parametrized Graph Matching Problem y=argmin

y d(G1,G2,y, β) (10a)

57

(75)

Parametrized graph matching

Problem

Parametrized Graph Matching Problem y=argmin

y

d(G1,G2,y, β) (10a)

How to defineβ?

(76)

Parametrized graph matching

Problem

Parametrized Graph Matching Problem y=argmin

y

d(G1,G2,y, β) (10a)

How to defineβ?

57

(77)

Parametrized distance function example

(78)

Testing graph perceptron: data

Database size (TrS,TeS)

# classes node labels

edge

labels |V| |E| max|V| max|E| LETTER

(high) (750,750) 15 x,y none 4.7 4.5 9 9

GREC (286,528) 22 x,y Line

types

11.5 12.2 25 30

59

(79)

Results

ηTrS η std(η) time std(time) GREC

Proposal 0.9733 0.9488 0.1054 87.31 24.49

NW-1-NN (β= 1) NA 0.5235 0.0561 1588.83 870.46

T-1-NN (Kaspar Riesen and Horst Bunke. “Approximate graph edit distance compu- tation by means of bipartite graph matching”.In:Image Vision Comput.27.7 (2009), pp. 950–959)

NA 0.9992 0.0096 1789.52 990.08

LETTER

Proposal 0.8610 0.8262 0.1279 31.09 6.42

NW-1-NN (β= 1) NA 0.9735 0.0294 1584.15 510.37

T-1-NN (Riesen and Bunke,

“Approximate graph edit distance computation by means of bipartite graph matching”)

NA 0.9735 0.0295 1573.96 490.51

(80)

Learning rate impact

61

(81)

Demo

(82)

Conclusion

• Parametrized graph matching optimization problem solved with a graph-based perceptron

• Large speed-up with little accuracy loss compared to 1-NN classifier

• Simple paradigm with parameters to explore: Graph models types, stacking up neurons, …

63

Références

Documents relatifs

Figure 2 shows how a check reader model ˜ p(y|x) is expressed as a sequence of graph transformations A first transformer produces a graph representing the various fields of the

The index model used in the set prototype problem can not be used for the solution encoding of the generalized prototype problem since the definition of generalized (median

In our practice, we use the result of color transfer T to initialize S, which guides the synthesis result to follow the shape of the input face. Since the original texture

Action units describe muscles or muscle groups in the face, are set or unset Uncertainty Modelling in Knowledge Engineering and Decision Making Downloaded from

In multiple modal data fusion, image and text, for example, the depth of the neural net- work can use different models of two kinds of modal data feature extraction, and im- age and

B. Compressibility of Hilbert domain convolution outputs Hilbert indexing is recursive, associated with a non-smooth F function and this makes finding its statistical

for example). In these approaches, the features and the classifier function are learnt at the same time during the learning stage. However, most of the papers studied in this

We present in this paper a graph classification approach using genetic algorithm and a fast dissimilarity measure between graphs called graph probing.. The approach consists in