• Aucun résultat trouvé

Accelerated ageing of shales of palaeontological interest: Impact of temperature conditions

N/A
N/A
Protected

Academic year: 2021

Partager "Accelerated ageing of shales of palaeontological interest: Impact of temperature conditions"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01435164

https://hal.archives-ouvertes.fr/hal-01435164

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accelerated ageing of shales of palaeontological interest:

Impact of temperature conditions

Giliane P. Odin, Frederik Vanmeert, Koen Janssens, Hervé Lelièvre, Jean-Didier Mertz, Véronique Rouchon

To cite this version:

Giliane P. Odin, Frederik Vanmeert, Koen Janssens, Hervé Lelièvre, Jean-Didier Mertz, et al.. Ac-

celerated ageing of shales of palaeontological interest: Impact of temperature conditions. Annales

de Paléontologie, Elsevier Masson, 2014, 100, pp.137 - 149. �10.1016/j.annpal.2013.12.002�. �hal-

01435164�

(2)

Disponibleenlignesur

ScienceDirect

www.sciencedirect.com

Original article

Accelerated ageing of shales of palaeontological interest:

Impact of temperature conditions

Vieillissement accéléré de schistes argileux d’intérêt paléontologique : impact des conditions de température

Giliane P. Odin

a

, Frederik Vanmeert

b

, Koen Janssens

b

, Hervé Lelièvre

c

, Jean-Didier Mertz

d

, Véronique Rouchon

a,

aCentredeRecherchesurlaConservationdesCollections(Muséumnationald’Histoirenaturelle,ministèredelaCultureetdelaCommunication, CentreNationaldelaRechercheScientifique),CRCC,USR3224,CP21,36,rueGeoffroy-Saint-Hilaire,75005Paris,France

bDepartmentofChemistry,UniversityofAntwerp,Groenenborgerlaan171,2020Antwerp,Belgium

cCentredeRecherchesurlaPaléobiodiversitéetlesPaléoenvironnements(Muséumnationald’Histoirenaturelle,CentreNationaldelaRecherche Scientifique,UniversitéPierre-et-Marie-Curie),UMR7207,CP38,8,rueBuffon,75005Paris,France

dLaboratoiredeRecherchedesMonumentsHistoriques(ministèredelaCultureetdelaCommunication,CentreNationaldelaRechercheScientifique), LRMH,USR3224,29,ruedeParis,77420Champs-sur-Marne,France

a rt i c l e i n f o

Articlehistory:

Received31January2013 Accepted19June2013 Availableonline24January2014

Keywords:

Shale Pyrite Sulfide Degradation Fossil Sulfate Conservation

a b s t r a c t

ThepalaeontologicalcollectionsoftheMuséumnationald’Histoirenaturelle(MNHN,Paris,France)and theMuséumd’Histoirenaturelled’Autun(MHNA,Autun,France)includemanyfossilspecimensoriginat- ingfromtheargillaceousshalesoftheAutunbasin(Saône-et-Loire,France).Thesefossilsarepreserved withinsedimentaryrockscontainingunstablesulphidecompounds,suchaspyrite,whichmaydeterio- rateincontactwithwaterandoxygen.Thisalterationprovokescrystallineefflorescenceandcracks,thus compromisingthepreservationsofthefossils.Thisworkconstitutesthefirststepofaprojectthataims tounderstandthemechanismsofalterationofthesematerialsinordertodefineconservationguide- linesforpalaeontologicalcollections.Forthispurpose,eightdamagedspecimensoriginatingfromthe PermianAutunbasin(Saône-et-Loire,France)wereselectedandanalyzedbyX-raydiffraction(XRD), Ramanspectroscopy,scanningelectronmicroscopycoupledtoenergydispersiveX-rayspectrometry (SEM/EDS)andX-rayabsorptionspectroscopyatthethresholdofthesulphurKa-edge(XANES).This methodologyenabledthecharacterizationofthematricescompositionandthechemicalnatureofthe alterations.Subsequently,wehavesoughttoreproducebyartificialageingthealterationphenomena encounteredinthecollections.NewshalesampleswerecollectedonsevenoutcropsofthesameAutun basin.Theywereanalyzedandsubjectedtoartificialageingat50%relativehumidity(RH)andattemper- aturesrangingbetween40Cand90C.Ourworkshowsthatdamagedspecimensandnewlycollected shalehaveasimilarmineralogicalcomposition.Yetthecrystallineefflorescencematerialformedonthe surfaceofdamagedspecimensbelongstotheironsulphategroupwhereasgypsumpredominateson artificiallyagedshalesamples.Reproducingthealterationsobservedonspecimensbyartificialageing remainsthereforeproblematic.Additionally,itappearsthatthetemperatureofageingcontrolsthenature ofthedamage:at40C,manysamplesaremechanicallydamagedwhereasnoorminorcrystallineefflo- rescenceoccurs.At90C,itistheoppositetendencythatisobserved.Finally,mechanicaldamagesdo notseemtobecorrelatedwiththedevelopmentoftheefflorescence:sampleswithefflorescentcrystals generallydonotshowclearlyvisiblecracks;thosethatseemmostfragmenteddonotshowanyvisible efflorescence.

©2013ElsevierMassonSAS.Allrightsreserved.

Motsclés: Schistesargileux Pyrite

r és um é

Lesschistesargileuxdubassind’AutunfontpartieintégrantedescollectionsdepaléontologieduMuséum nationald’Histoirenaturelle(MNHN,Paris,France)etduMuséumd’Histoirenaturelled’Autun(MHNA,

Correspondingauthor.

E-mailaddress:rouchon@mnhn.fr(V.Rouchon).

0753-3969/$seefrontmatter©2013ElsevierMassonSAS.Allrightsreserved.

http://dx.doi.org/10.1016/j.annpal.2013.12.002

(3)

Sulfure Dégradation Sulfate Conservation

Autun,France).Cesrochessédimentairescontiennentdenombreuxfossiles,malheureusementsujetsà d’importantesdégradations.Eneffet,lescomposéssoufrésqu’ilscontiennent,enparticulierlessulfures defertelslapyrite,s’oxydentpeuàpeu,provoquantdescraqueluresetdesefflorescencescristallines quicompromettentlaconservationdesfossiles.Cetravailconstituelapremièreétaped’unprojetvisant àmieuxcomprendrelesmécanismesd’altérationdesfossiles,afind’optimiserlesconditionspropicesà leurconservation.Pourcela,nousavonssélectionné,danslescollectionspatrimoniales,unensemblede huitspécimensendommagésissusdubassinpermiend’Autun(Saône-et-Loire,France)etavonsprocédéà leurcaractérisationàl’aidededifférentsoutilsanalytiques:diffractiondesrayonsX(DRX),spectroscopie Raman,microscopieélectroniqueàbalayagecoupléeàunesonded’analyseélémentaire(MEB/SDE)et spectroscopied’absorptionauseuildelaraieKadusoufre.Desdonnéespréliminairessurlacomposition desencaissantsetlanaturedesaltérationsontainsipuêtreacquises.Parlasuite,nousavonscherché àreproduireparvieillissementartificiellesphénomènesd’altérationrencontrésdanslescollections.

Dumatérielneufaainsiétécollectésurseptaffleurementsdecemêmebassind’Autun,analysé,puis soumisàdesvieillissementsartificielsavecunehumiditérelativede50%etàdifférentestempératures.

Nostravauxmontrentquelesschistesdesspécimensendommagésetceuxnouvellementprélevésont unecompositionminéralogiquesemblable,maisprésententdesefflorescencescristallinessensiblement différentes:elless’apparententpourlespremiersàdessulfatesdefer,etpourlessecondsàdessulfatesde calcium.Lareproductiondesmécanismesd’altérationparvieillissementartificield’unmatérielapriori prochedesspécimensendommagésrestedoncproblématique.D’autrepart,latempératureserévèle êtreunparamètredéterminantdutypedeladégradation:à40C,peud’efflorescencescristallinessont observéesmaisdenombreusesdégradationsmécaniquesontlieu.A90C,c’estlatendanceinversequi estconstatée.Enfin,lesdégradationsmécaniquesobservéessurleséchantillonsvieillisartificiellement nesemblentpascorréléesàl’apparitiond’efflorescences:leséchantillonssurlesquelsonobservedes efflorescencesnemontrentgénéralementpasdedégradationmécaniqueévidenteàl’œiletceuxqui semblentlesplusfragilesnemontrentpasd’efflorescencevisible.

©2013ElsevierMassonSAS.Tousdroitsréservés.

1. Introduction

Shalesmaycontainfossils,asinthecaseoftheworld-renowned andwidelystudiedBurgessShale(Gainesetal.,2012).Although shalesoftheAutunbasin(Saône-et-Loire,France)arelessknown, they have also delivereda largenumber of fossils, now stored in various museums, includingthe Muséumnational d’Histoire naturelle, Paris, France (MNHN) and the Muséum d’Histoire naturelled’Autun,Autun,France(MHNA).Someofthesefossilsare nowshowingsignificantdegradations(Rouchonetal.,2012);these arefrequentlyattributedtopyritebreakdown,hencethedesigna- tionof“pyritized”fossils.However,agreatvarietyofquiteunstable sulphidespeciescouldaswellbesuspectedtobetheoriginofthis damage.

Thealterationofpyritizedfossilsismainlyduetotheoxidation ofsulphides(sulphurofoxidationnumber−Ior−II)intosulphates (sulphurofoxidationnumber+VI).Manyinvestigationsarecur- rentlydedicatedtothedegradationofsulphidespecies(Jambor etal.,2000;Vaughan,2006;MurphyandStrongin,2009;Chandra andGerson,2010;Schoonenetal.,2010;HeidelandTichomirowa, 2011).Ithasbeeninparticularshownthatthepresenceofheavy metalimpurities(Lehneretal.,2007),microorganisms(Tupikina etal.,2009)orcarbonates(Caldeiraetal.,2010)significantlyinflu- encestheoxidationprocess.

Palaeontologistsandmuseumconservatorsarewellawareof therisksrelatedtopyritebreakdown(Howie,1977a,b)andcon- sequently developed several preventive and curative methods.

Preventivemethods,suchasdry/anoxicstorageinwater/airtight plasticbagsconstituteapromisingstrategy(CarrioandStevenson, 2002;McPhailetal.,2003;Day,2005;Buttler,2006)butnoinfor- mationisavailableregardingtheacceptableamountofhumidityor residualoxygeninthebags.Curativemethods,suchastheappli- cationofethanolaminethioglycollate(CornishandDoyle,1984;

Cornish,1986)arepoorlydocumentedwithrespecttotheireffi- ciencyandlongtermsideeffects.Theyaremoreoverinvasiveand compromiseanyfurtherdiagenesisinvestigation.

Despiteintensive studiesdedicatedtothedecayof ironsul- phide,thepreservationofpalaeontologicalspecimensduringtheir storageinmuseumcollectionsremainsmisunderstood(Fellowes

and Hagan, 2003). This work constitutes the first step of a project that aims to obtain a better insight into the physico- chemicaltransformationstakingplaceinfossilspreservedinshale after their excavation in order to define conservation guide- linesforpalaeobotanicalcollections.Forthispurpose,itappears necessary:

•tocharacterizethealterationproducts;

•toreproducethedegradationinlaboratoryconditions.

Twoapproacheswerethereforedevelopedinthiswork:firstly, originaldamagedspecimensfromtheAutunbasin(Saône-et-Loire) wereanalyzed;secondly,shalesamplesweretakenfromdifferent outcropsofthesamebasinandartificiallyagedwithdifferenttem- peratureconditions.Thepurposeistocomparethenewlyinduced alterationoftheseshalesampleswiththatformedonthedamaged specimens(Rouchonetal.,2012).

2. Materialsandmethods

2.1. Investigatedsamples 2.1.1. Damagedspecimens

Thespecimens (Table1)were selectedfromtheMNHNand MHNAcollections.Whiledamageisevident(Fig.1),itisdifficultto assesswhenandunderwhichcircumstancesitoccurredbecause thehistoryofthesespecimensisnotdocumented.

The specimens MNHN.F.6888, MNHN.F.6889, MNHN.F.6890, MNHN.F.6891andMNHN.F.6892belongtotheFlouestcollection andwerealreadydepictedinthesupportinginformationofaprevi- ousstudy(Rouchonetal.,2012).Asthesespecimensjointlyentered theMuseumcollectionin1865,itisreasonabletoassumethatthey havebeensubjectedtosimilarconservationconditions.Theyare nowstoredinthesamedrawer,inaroomwithoutairconditioning andthusexposedtotemperatureandhumidityfluctuations(Fig.2).

The specimens MHNA-PAL-000316, MHNA-PAL-000155 and MHNA-PAL-000167(Fig.1)werecollectedinthenineteenthcen- turybyAnatoleDesplacesdeCharmasseanddonatedtotheSociété d’Histoire naturelle d’Autun around 1900. In 1964, they were

(4)

Table1 Mineralogicalcompositionofdamagedspecimens.ThecompositionofthematriceswasdeterminedbyX-raydiffractionandscanningelectronmicroscopycoupledtoenergydispersiveX-rayspectrometry(SEM/EDS).The compositionoftheefflorescencewasdeterminedbyX-raydiffractionandRamanspectrometry.Allmatricesquotedinthistablepresentamatteaspect.ThematricesofthespecimenMNHN.F.6889andMHNA-PAL-000167show anadditionallayerthatisnotquotedinthistable.Itisshiny,amorphous,composedoforganicmatterandhastheaspectofvitrinite. Compositionminéralogiquedesspécimensendommagés.LacompositiondesmatricesaétédéterminéepardiffractiondesrayonsXetparmicroscopieélectroniqueàbalayagecoupléeàunesonded’analyseélémentaire(MEB/SDE).La compositiondesefflorescencesaétédéterminéepardiffractiondesrayonsXetparspectrometrieRaman.Touteslesmatricesréférencéesdanscetableauontunaspectmat.LesmatricesdesspécimensMNHN.F.6889etMHNA-PAL-000167 comportentunecouchesupplémentairenonréférencéedanscetableau.Cettecoucheestbrillante,amorphe,composéedematièreorganiqueetprésentel’aspectdelavitrinite. OriginPeriodPermian GeographicalareaAutunbasin,Saône-et-Loire,France HistoryInstitutionMuséumnationald’Histoirenaturelle(MNHN),ParisMuséumd’Histoirenaturelle(MHNA),Autun Collection(entrance)Flouest(1865)Charmasse(around1900) HousingStoredinindividualplasticbags,andinawoodencabinet,Brogniart’sroom,drawer#M17(sincethe1990s)noairconditioningOnplasticracks,inanairconditionedroom(45%±5%R.H.and20±2C)sincethe2000s ReferenceInventoryMNHN.F.6888MNHN.F.6892MNHN.F.6889MNHN.F.6890MNHN.F.6891MHNA-PAL-000316MHNA-PAL-000155MHNA-PAL-000167 ReferenceinRouchonetal,2012IGHJK FossilSphenopterissemialata (Geinitz,1858)Weiss, 1868 Walchiasp.SyringodendronspPecopterisarborescens (Schlotheim,1804) Brongniart,1828 Callipterisnaumannii (Gutbier,1849)Kerp, 1988.

FernFishNofossilprint LocalisationLeRuet,TavernayLeRuet,TavernayLeRuet,TavernayLeRuet,TavernayLeRuet,TavernayIgornayIgornayUnknown ShalematrixQuartz SiO2

xxxxxxxnotanalysed Kaolinite Al2Si2O5(OH)4

xxxxxxx Peakat14Å(smectite,chlorite...)xxxxxx Peakat10Å(illite,muscovite...)xxxxxx Mineralofthefeldspargroupxxxx Dolomite CaMg(CO3) 2

x Pyrite FeIIS2

xx Gypsum CaSO4·2H2Oxxxxxx Mineralofthejarositegroupxxxxx ElementdetectedbySEM/EDSAl,Si,S,K,CaFe,TiAl,Si,S,K,CaFe,Mg,Ti, ZnAl,Si,S,K,CaFe,Ti,Na, Cl,ZnAl,Si,S,K,CaFe,Mg,Ag, GdAl,Si,S,K,CaFe,Mg,ZnAl,Si,S,K,CaFe,TiAl,Si,S,K,CaFe,P,Na,Ti EfflorescenceGypsum CaSO4·2H2Ox Melanterite FeIISO4·7H2Ox Rozenite FeIISO4·4H2Oxxxxxxxx Szomolnokite FeIISO4·H2Oxxxx Mohrite (NH4) 2FeII(SO4) 2·6(H2O)xxx Boussingaultite (NH4) 2Mg(SO4) 2·6(H2O)xxx Copiapite FeIIFeIII4(SO4) 6(OH)2·20(H2O)x Metavoltine K4Na4FeII0.5Zn0.5FeIII6(SO4) 12

O2·20(H2O)x Jarosite, KFeIII3(OH)6(SO4) 2

x Ammoniojarosite (NH4)FeIII 3(OH)6(SO4) 2

xxx Natrojarosite NaFeIII 3(OH)6(SO4) 2

x

(5)

Fig.1.GeneralviewofMuséumd’Histoirenaturelled’Autun(MHNA)specimens.a:

MHNA-PAL-000316;b:MHNA-PAL-000155;c:MHNA-PAL-000167.Aphotographic reportofMNHNspecimensisavailableelsewhere.

VuesgénéralesdesspécimensduMuséumd’Histoirenaturelled’Autun(MHNA).a: MHNA-PAL-000316;b:MHNA-PAL-000155;c:MHNA-PAL-000167.Undossierpho- tographiquedesspécimensduMNHNestdisponibleparailleurs.

Rouchonetal.,2012.

donatedtothecityofAutunandjoinedtheMHNAcollection.In 2000,theymovedtoanair-conditionedroomwithstablehumidity andtemperatureconditions(Fig.2).

Mostdamagedspecimenspresentahomogeneousmatteaspect, buttwoofthem(MNHN.F.6889andMHNA-PAL-000167)havean additionallayerthatappearsshiny.

2.1.2. Newlyexcavatedshalesamples

ThecrystallineefflorescencepreviouslyobservedontheMNHN specimenswasnotsystematicallylocatedonthefossilsalonebut wasalsodistributedintheshalematrix(Rouchonetal.,2012).It

Fig.2.Temperatureandrelativehumidityofthestorageareas.Muséumnational d’Histoirenaturelle(MNHN),Brongniart’sroom,#M17drawer,betweenOctober 2011andNovember2012(up)andMHNA,air-conditionedvaultbetweenDecember 2011andDecember2012(down).

Températureethumiditérelativedeslieuxdestockage.MNHN,salleBrongniart,tiroir

#M17entreoctobre2011etnovembre2012.(enhaut)etMHNA,caveclimatiséeentre décembre2011etdécembre2012(enbas).

wasthereforenotfoundnecessarytocollectshaleslabsthatcontain fossils.

Samples,severaldecimetresinsize,weretakenfromsevendif- ferent outcropsof theAutunbasin (Table2). Itsstratigraphyis welldocumented(ElsassDamon,1977;Châteauneufetal.,1980;

Marteau,1983).Theydonotshowanyvisiblefossilsandpresenta matteaspect.

Astheyweretakenfromoutcroppingshalelayers,thecollected slabsmighthavealreadybeenexposedtooxygenandthussub- jectedtosome“primary”oxidation.Thisoxidationwasvisibleon onesampleonly,whichcamefromSaint-Léger-du-Boisandpre- sentedafewspotsofgypsum.Nevertheless,sampleswerehoused inairandwatertightplasticbags(ESCAL,LongLifeforArt,Ger- many)withoxygenscavengerbags(ATCOFTM,LongLifeforArt, Germany)for 3monthsbeforethestudy.Thisconditioningwas efficientinlimitingdrying,butoxygendepletionwassometimes ineffective,probablybecausetheplasticdidnotwithstandpiercing fromthesharpshaleedges.Itwasalsonecessarytocheckregularly theamountofoxygenwithanoximeter(Canal111,Vigaz,Visciano, France).

Somespecificityshouldbenoticed:firstly,theslabsoriginating fromtheMusesitedonotbelongtothefamousfishlayer(Gand

(6)

Table2

Locationofshalematerialcollectedforthisstudy.

Localisationdesaffleurementssurlesquelsontétéprélevésleséchantillonsdeschistesargileux.

Geographicallocation GPScoordinates Autunianstratigraphy

North East Altitude(meter)

Millerya 465909,96′′ 41651,27′′ 307 Millerybedding

Surmoulina 470029,14′′ 41921,14′′ 297 MainlayeroftheSurmoulinbedding

LaComaillea 465837,75′′ 41350,42′′ 319 MainlayeroftheSurmoulinbedding

Musea 470136,22′′ 42254,44′′ 322 Musebedding

Bois-des-Grands-Miens 470154,15′′ 42150,71′′ 328 Musebedding

Saint-Léger-du-bois 470100,34′′ 42654,16′′ 319 Igornaybedding

Igornay 470258,75′′ 42242,49′′ 327 Igornaybedding

ThedepositsofLaComailleandSurmoulincorrespondtothemainlayerofSurmoulin(Châteauneufetal.,1980);theMuséumnationald’Histoirenaturellespecimenscoming from“LeRuet”probablycorrespondtothislayer.

aLocalitiesofthehistoricalAutunianstratotype.

etal.,2010),butweresampledapprox.onetotwometresabovethis layer.Secondly,theoutcropofthesiteofLaComailleissituatedvery closetothelocality“LeRuet”wheretheMNHNspecimenswere collected.TheslabscomingfromLaComailleprobablycorrespond tothesamelayerastheMNHNspecimens.

2.2. Acceleratedageing

Threesetsofnewlyexcavatedshalesampleswereartificially agedatthesamelevelofrelative humidity(50%RH)yetatdif- ferent temperature values: 40C, 70C and 90C. Ageing was performed in closed vessels with an experimental setup simi- lar to that depictedin the ASTM D6819standard (Sawoszczuk et al., 2008); however,silica gel wasusedinstead ofpaper for themonitoringofhumidity(PROSorb,LongLifeforArt,Germany;

pre-conditionedat50%RH).Duringageing,thetemperatureand humidityconditionsweremonitored bysmallsensorsplacedin thevessel(Hygrobutton,ProgesPlus,USA).

Duetotheheterogeneousnatureofshale(BerrowandReaves, 1981;Subasingheetal.,2009),eachslabhasbeensplitintoeight samples,eachapproximately2to3cmwideand0.5to1cmthick.

Thesesampleswerethen dispatchedineighttubes.Asaresult, eachtubecontainedsevensamples,eachofthemoriginatingfrom adifferentoutcrop.Theeighttubeswereclosedandplacedtogether inthesameovenatagiventemperature(40C,70Cor90C).They wereregularlyremovedfromtheovenandopenedforafewdaysin ordertobephotographed.Thesilicagelwasreplacedandthetube placedbackintheoventopursuetheageing.Inall,168samples wereartificiallyagedforatotalperiodof16weeks.

2.3. Characterisationtechniques

2.3.1. Visualassessmentduringartificialageing

Visiblechangesduringartificialageingwereevaluatedforeach samplewithmacro-picturestakenwithadigitalcameraplacedon topofa4300Klightbooth,specificallydesignedforsmallsamples;

seeelsewherefordetails(Rouchonetal.,2009).Thecomparisonof picturestakenbeforeandduringageingenabledtheidentification ofchanges.Thisvisualassessmentallowedtopinpointthemost obviousdamages.

2.3.2. X-raydiffraction(XRD)

X-raydiffraction(XRD)wasusedtoidentifycrystallinephases present inshalespecimensand alsoinnewlyexcavatedshales.

Small samples, several millimetres large, were taken from the slabsandcrushedinanagatemortar.Onsomesamples,XRDwas usedadditionallyfortheidentificationoftheefflorescencewhen thelattercouldbesampledinsufficientquantity.Analyseswere conductedwithaconventionalCu-Kapowderdiffractometer(D2

Phaserdiffractometer)equippedwithaCeramicKFLX-raytube sourceanda 1D-linearLynxEyedetector,usingstandardcondi- tions:30kV;10mA;2urange:3 to65;timescan0.2sstep−1; 3068steps;angularspeed200radmin−1.Phaseswereidentified withtheJointCommitteePowderDiffractionStandardusingthe EVAsoftware(Bruker,Germany).

2.3.3. Ramanspectroscopy(RS)

Ramanspectroscopy(RS)isapowerfultoolforthespeciation ofsulphatemineralsandwasalreadyusedfortheanalysesoffos- sildegradationproducts(Rouchonetal.,2012).Whenthecrystals werepresentinaquantitytoosmalltobeanalysedbyconventional XRD,theywerecharacterizedbyRS,bytheuseofaRamanmicro- scope(inVia,Renishaw,UK;532nm,0.5to2.5mW,50×objective) followingaprotocolalreadydescribedelsewhere(Rouchonetal., 2012).Asshaleisahighlyfluorescentmaterial,themeasurements wereperformedonmicrosamplestakenfromthesurfaceofdam- agedshales.

2.3.4. Scanningelectronmicroscopy/energydispersive spectrometer(SEM/EDS)

Elemental analysis by SEM/EDS was mostly undertaken on shale matrices in order to map elemental distributions onthe microscale(withanapproximatelateralresolutionof5microme- ters)andtoidentifycorrelatedelements.Inaddition,itwasuseful tocharacterizemorepreciselysomeefflorescencematerialssuchas boussingaultite,mohriteandjarositetypesulfates.Measurements were conducted without any specific sample preparation with alowvacuumscanningelectronmicroscope(JEOL,JSM-5410LV) coupledwithan X-rayprobe (Oxford Link Pentafet).Elemental mappingswererecordedwiththefollowingexperimentalparame- ters:acceleratingvoltage,20kV;pressure,20Pa;workingdistance, 20mm;aperture,2;acquisitiontime,1hour.Alldataweretreated withtheLinkISISsoftware(OxFord).

2.3.5. SK-edgeX-rayabsorptionnearedgespectroscopy(XANES) XANESappearstobeapromisingtoolfortheanalysisofsulphur speciationinrocksandminerals(Prietzeletal.,2003;Mikhlinand Tomashevich,2005;Jugoetal.,2010;Boyeetal.,2011).Anumberof preliminaryexperimentswerealsoundertakenontheLUCIAbeam lineoftheSOLEILsynchrotron(Saint-Aubin,France)toevaluatethe feasibilityofXANESfortheanalysisofsulphurinshalematrices.

Thesamplewasplacedinavacuumchamber(210−2atm)and themeasurementswereperformedinX-rayfluorescencemode withthefollowinggeometry:thesamplesurfacewastilted20 withrespecttotheincidentbeamandthedetectorwasoriented perpendiculartotheincidentbeam.SK-edgeXANESspectrawere recordedintheenergyrangefrom2440to2600eV,employing175

(7)

Fig.3.SK-edgeX-rayabsorptionnearedgespectroscopypreliminarytesting:eval- uationofthestabilityofsamplesunderthebeam.Fourspectrawereconsecutively recordedonthesamespotonsampleMNHN.F.6889.Nomodificationisobserved betweenthefirstandthefourthspectra,meaningthattheexperimentalconditions donotprovokesulphurreductionunderthebeam.

Testspréliminairesd’absorptionauseuildelaraieKadusoufre:évaluationdelastabilité deséchantillonssouslefaisceau.Lesquatrespectresontétésuccessivementenregistrés surunmêmepointdel’échantillonMNHN.F.6889.Lasuperpositionparfaitedesspectres montrequ’iln’yapasderéductiondesoufresouslefaisceau.

datapointswithaspacingof0.2eVbetween2465.2eVand2500eV and65datapointswithaspacingof1eVelsewhere.

Theanalysisofsulphurrichspeciesbysynchrotronradiation isgenerallylimitedbythefactthatsulphurispronetoreduction underhighintensitylight beams,thusleading tomeasurement artefactsifthisreductionoccursduringtheacquisition(Wilkeetal., 2008).Onourspecimens,thisdifficultywasovercomebytheuse ofadefocused1×1mmbeamthatlimitstheincidentlightflux persurfaceunit.AsshownonFig.3,severalconsecutiveacqui- sitionscouldbemadeonthesame positionwithoutnoticeably changingthespectrum;thelatterremainsclosetothatofgypsum (CaSO4·2H2O).

SK-edgeXANESmeasurementswereperformedonallthematte matricesoftheMNHNspecimens.Severalspectrawererecorded oneachmatrixandthemostcharacteristicspectrawerecompared tothedatacollectedonsulphurreferencesoravailableintheliter- ature(Cotteetal.,2006;Bohicetal.,2008;Almkvistetal.,2010)or indatabases(ID21,2011).

3. Results

3.1. Damagedspecimens

3.1.1. Mineralcompositionofefflorescence

Themineralcompositionsoftheefflorescence,asdetermined byRamanspectrometry,arereportedinTable1.Mostefflorescence belongstotheironsulphategroupandmorespecificallytothefer- roussulphategroup(rozeniteandszomolnokiteareencountered everywhere).Ferricsulphates,suchascopiapite,jarositeormeta- voltinearealsodetectedinsomeefflorescencebutarepresentin muchloweramounts.

3.1.2. Mineralcompositionofmatrices

Themineralcompositionsofthematrices,as determinedby XRDmeasurements(Fig.4),arereportedinTable1.Theshinylay- ersarenon-diffractingandaremainlycomposedofanamorphous organicmatter,suchasvitrinite,asconfirmedbyasmearslide.In theshinylayerofMNHN.F.6889,somequartzinclusionsoflessthan 20micrometerswidearedetectedbyXRDandSEM/EDS.

Incontrast,allmattelayersaremainlycomposedofinorganic matter:theycontainquartz,kaoliniteandseveralundefinedclay minerals(smectite,chlorite,illite,muscovite,etc.)(Table1).Afew samplesadditionallycontainfeldsparsandcarbonates(dolomite).

Thepresenceofpyrite ishighlighted,butthis mineralcouldbe assessedinonlytwo(outoftheeight)specimens(Fig.4)while sulphatealterationphases(gypsumandamineralofthejarosite group)wereidentified byXRDin manyof thematrices. Asthe numerousSEM/EDSmappingsrecordedonthematricesdidnot evidence the presence of grains rich in sulphur and iron, we

Fig.4.X-raydiffractionspectrarecordedonthespecimenmatrices.

Diffractogrammesenregistréssurlesencaissantsdesspécimensendommagés

(8)

Table3

EnergyofreferencecompoundsatthemaximumoftheSK-edge.ThecompositionofmineralswasconfirmedbyX-raydiffraction,withtheexceptionofpotassiumsulphite, whichisacommercialproduct(SigmaAldrich®).TheenergycalibrationwasperformedongypsumbyfixingtheenergyoftheSK-edgeabsorptionmaximumat2482.5eV.

Energiesaumaximumduseuild’absorptiondelaraieKdusoufremesuréessurdescomposésderéférence.LacompositiondesminérauxaétéconfirméeparDRX,àl’exceptiondu sulfitedepotassiumquiestunproduitcommercial(Aldrich®).Lesénergiesontétécalibréesparrapportàl’énergiedumaximumduseuild’absorptiondugypse,fixéeà2482,5eV.

Compounds o.n.ofsulphur EnergyatthemaximumoftheSK-edge(eV)

Gypsum,CaSO4·2H2O +VI 2482.5

Anhydrite,CaSO4· +VI 2482.6

Rozenite,FeIISO4·4H2O +VI 2482.7

Melanterite,FeIISO4·7H2O +VI 2482.7

Jarosite,KFeIII3(OH)6(SO4)2 +VI 2482.8

Potassiumsulphite,K2SO3 +IV 2478.2

Marcasite,FeIIS2 I 2472.0

Pyrite,FeIIS2 I 2472.1

Pyrrhotite,FeIIS −II 2470.3

reasonablysupposethatpyriteandjarositearepresentintheshape ofsmallcrystalslessthan5mmlarge.

3.1.3. Determinationofsulphurspeciationinthematrices

TheenergiesofSK-edgemaximaarereportedonTable3for severalreferenceminerals.Asexpected,thesevaluesshowasub- stantial shift betweenthe most reduced sulphur species (such aspyrrhotite,o.n.−II,2470.3eV)andthemostoxidizedsulphur species (such asjarosite,o.n. +VI,2482.8eV). Themost charac- teristicspectrarecordedonthesurfaceofthedifferentspecimen matrices arereportedonFig.5: allthesespectrashowa sharp absorptionedgepositionedat2482.5±0.1eV,meaningthatsul- phurismostlypresentassulphates(o.n.+VI)(Table3)(ID21,2011).

In most XANES spectra, a post-absorption edge pattern is noticeablebetween2484eVand2486eV.Asitispresentongyp- sum/anhydritespectraandabsentfromallothersulphatespectra, itisconsideredtobeasignatureofcalciumsulphate.Thisobserva- tionisconsistentwithSEM/EDSmapsinwhich20to100mmlarge grains,richincalciumandsulphuraredetected,mostlynexttothe surfaceandsparselypresentintheinnerpartofthematrix.These crystalsarenotvisiblewiththebinocularmicroscope.

SomeoftheXANESspectrashownospecificfeatureintherange 2484to2486eV(asspectrumCofFig.5a).AsXRDevidencedthe presenceofmineralsofthejarositegroup,theseXANES spectra mayreasonablybeattributedtoironsulphate.

Fig.5.ExampleofX-rayabsorptionnearedgespectroscopyspectrarecordedon matricesofMuséumnationald’Histoirenaturelle(MNHN)specimen.SpectraA, B,CandDwererespectivelyrecordedonspecimenMNHN.F.6888,MNHN.F.6889, MNHN.F.6890andMNHN.F.6892.

ExemplesdespectresXANESenregistréssurlesspécimensduMNHN.LesspectresA,B,C etDontétérespectivementenregistréssurlesspécimensMNHN.F.6888,MNHN.F.6889, MNHN.F.6890etMNHN.F.6892.

Althoughsulphurismostlypresentassulphatespecies,asmall XANESpatternintherange2472to2474eVisnoticedforallspec- imens,attestingthepresenceofreducedsulphurspecies(Fig.5b).

Thissignalseemstobecomposedoftwoabsorptionedgesrespec- tively positioned at 2472.1eV and 2473.9eV. The first edge is similartothatofpyriteormarcasite,i.e.,ironsulphidesofo.n.−I;

itis notpossibletodistinguishwithXANESbetweenthesetwo

Fig.6.Apparitionofcracksduringartificialageing.

Exemplededélitementdesschistesaprèsvieillissementartificiel.

(9)

Table4

ListofthedifferenttypesofdamagethatareobservedonartificiallyagedshalesamplescomingfromtheSurmoulinsite.Ageingwasperformedat50%ofrelativehumidity.

Theweeknumberscorrespondtothefirsttimedamagewasobserved.“No”meansthatnodamagewasobservedafter16weeksofartificialageing.

ListedesdifférentstypesdedommagesobservésaprèsvieillissementartificielsurleséchantillonsprovenantdeSurmoulin.«No»signifiequ’aucundommagen’estobservéaprès 16semainesdevieillissementtandisquelenombredesemainefaitréférenceàladated’apparitiondudommage.

Temperature 40C 70C 90C

Typeofdamage Fissuration Efflorescence Fissuration Efflorescence Fissuration Efflorescence

Tube1 Week14 No Week8 No No No

Tube2 Week7 No No Week10 No Week10

Tube3 Week9 No No Week6 No Week6

Tube4 No No No Week8 No Week8

Tube5 Week13 No Week13 No No Week10

Tube6 Week12 No No Week15 No Week15

Tube7 No No No Week14 No No

Tube8 No No No Week16 No No

minerals because they possess similar signatures. However, as pyritewasdetectedbyXRD(Table1),itseemslikelythatthisfirst edgeismostlyrelatedtopyrite.Thesecondedgedoesnotseemto berelatedtoironsulphidesandremainsunattributed.

3.2. Artificialageingofnewlyexcavatedshales 3.2.1. Visualassessmentofartificialageing

Theexaminationof thephotographs beforeandafterageing madeitpossibletoassessthedegradationofsamples.Twotypesof visibledamagebecomeapparent:macroscopiccrystallineefflores- cenceandfissuration.Efflorescenceinitiallyincreaseswithageing timeandthenstabilizes.Fissurationisassessedbythefactthat shaleslabssplitandflakeaway(Fig.6).

Foreachsample,thetypeofdamageandthetimewhenitwas becomingvisiblewasdocumented.Thisapproachshowsthatall shalesamplesmaygetdamagedwhatevertheoutcroptheyorig- inatefrom.However,the reactivityof thesamplessignificantly differsfromoneoutcroptoanother:thelessreactivesamplescor- respondtothesitesofIgornay,MilleryandBois-des-Grands-Miens whilethemostreactiveonesoriginatefromthesitesofLaComaille, Muse,Saint-Léger-du-BoisandSurmoulin.

Additionally it wasnoticed that samplesof thesame origin behavedifferentlyfromeachothereveniftheyareagedinsimilar temperatureconditions.Table4summarizesthedamagesobserved onthe24samplesfromtheSurmoulinsiteandclearlyillustratesthe differencesamongsamples:at40C,three(outoftheeight)sam- plesappearundamagedafter16weeksofartificialageingwhiletwo samplesalreadygotdamagedafterlessthan10weeksofageing.

Theseobservationsconfirmthenecessitytoconsideralarge numberofsamplesforidentifyingoveralltendencies.Despitethe discrepanciesobservedamongsamplesofthesameorigin,based uponthedamageassessmentof168samples,itispossibletohigh- lightafewgeneralbehaviours.

Firstly,noefflorescenceisvisibleonthesamplesthatareshow- ingobviouscracksandviceversa(Table4).Thisfeatureisnoticeable whatevertheoriginofthesamples.ItisclearlyillustratedbyTable5 thatreportsthetotalnumberofsamplesaffectedbyeachtypeof

Fig.7. X-raydiffractionspectrarecordedonshalematricesbeforeartificialageing.

Diffractogrammesenregistréssurlesencaissantsdeschisteavantvieillissement.

damage.Inthistable,itcanbeseenthatonlytwosamples(outofthe 168)simultaneouslyshowefflorescenceandcracks.Thisbehaviour appearscontrarytoourexpectations,asonewouldapriorisuppose thattheemergenceofefflorescencewouldstressthematrixdueto thecrystallizationpressureduringsaltgrowthandmakeitmore fragile.

Secondly,anincreaseoftemperaturewasexpectedtoenhance alltypesofdamages.Thisisnotthecase:atlowtemperature(40C), fissurationprevailswhereasathightemperature(90C),efflores- cencegrowthprevails(Table5).ThesamplesfromtheSurmoulin site(Table4)illustratethistendency:at40C,five(outofeight) samplesgetfissuredwhilenoefflorescenceappears;at90C,efflo- rescenceisnoticeableonfive(outofeight)sampleswhereasnone ofthesamplesappearfractured.

Table5

Summaryofthenumberofnewlyexcavatedshalesamplesthatexhibitdifferenttypesofdamageafter16weeksofartificialageing.Thistabletakesintoaccountalltheshale samplesthatwerecollectedonthesevenoutcropsoftheAutunBasin(seeTable2).

Résumésdesdommagesobservésaprès16semainesdevieillissementartificiel.Estprisencomptedanscetableaul’ensembledesprélèvementsdeschistesargileuxréaliséssurles septaffleurements(Tableau2).

Temperature 40C 70C 90C

Fissurationonly 15 3 1

Efflorescenceonly 6 29 25

Fragmentationandefflorescence 0 1 1

Novisibledamage 35 25 31

Totalnumberofsamples 56 56 56

(10)

Table6

CompositionofshalesamplesbeforeartificialageingasdeterminedbyXRDandSEM/EDS.

Compositiondesschistesargileuxavantvieillissementartificiel,déterminéeparDRXetMEB/SDE.

Attribution Saint-Léger-du-bois Muse Surmoulin LaComaille

XRD Quartz,SiO2 x x x x

Kaolinite,Al2Si2O5(OH)4 x x x

Weakpeakat14 ˚A(smectite,chlorite...) x x

Weakpeakat10 ˚A(illite,muscovite...) x x x x

Albite,NaAlSi3O8 x

MineraloftheFeldspargroup x x x x

Dolomite,CaMg(CO3)2 x

Mineralofthejarositegroup x

SEM/EDS Elementsdetectedinallsamples Al,Si,S,K,Fe Al,Si,S,K,Fe Al,Si,S,K,Fe Al,Si,S,K,Fe

Otherelements Mg,Ti,Ca P,Ca,Ti Mg,P,Ca -

SEM/EDS:scanningelectronmicroscopycoupledtoenergydispersiveX-rayspectrometry;XRD:X-raydiffraction.

Table7

Crystallineefflorescenceobtainedbyartificialageingat90C.EfflorescentcrystalswerecharacterizedbyRamanspectroscopyand(ifnecessary)SEM/EDS.

Efflorescencescristallinesobtenuesparvieillissementartificielà90C.LesanalysesontétéeffectuéesparspectroscopieRamanet(aubesoin)parMEB/SDE.

Ramanattribution Saint-Léger-du-bois Muse Surmoulin LaComaille

Numberofsamplesshowingefflorescenceat90C 5 6 5 3

Gypsum,CaSO4·2H2O x x x x

Jarosite,KFeIII3(OH)6(SO4)2 x x

Barite,BaSO4 x

SEM/EDS:scanningelectronmicroscopycoupledtoenergydispersiveX-rayspectrometry.

3.2.2. Compositionofnewlyexcavatedshalebeforeandafter ageing

Analysesweremostlyperformedonsamplescomingfromthe sites of Surmoulin, Saint-Léger-du-Bois, Muse and La Comaille, becausetheyappearedtobethemostreactive.Themineralogi- calcompositionoftheshales,asdeterminedbeforeageingbyXRD (Table6, Fig.7), is similartothat of theoriginal specimens. It includesquartz,kaolinite,feldsparsandclayminerals.Pyriteisnot evidencedalthoughironandsulphuraredetectedinallsamplesby SEM/EDS.

The samples coming from the Surmoulin site are rich in dolomite,whichwasexpected,asthelayerofSurmoulinisthe onlyoneoftheAutunbasinthatcontainssignificantquantitiesof carbonates(ElsassDamon,1977).Aminorquantityofjarositeis additionallydetectedinthesamplesoftheSaint-Légersitedespite thefactthat:

•noefflorescenceisvisible;

•thesesampleswerepreservedinanoxicconditionsof0.5±0.2%

O2untiltheanalysis.

Wethinkthatthismineralcouldalreadyhavebeenpresentin theinnerpartoftheshalebeforeexcavationandwasformedduring aprimaryoxidationthatoccurredonsite.

Someofthesamplesthatweremechanicallydamagedduring theageingat40CwereanalysedbyXRD.Theirdiffractionpat- ternsweresimilartothoseofunagedsamples.Nonewcrystalline phasewasdetectedconsistentwiththeabsenceofvisibleefflores- cence.

Table7 summarisesthecompositionof thecrystallineefflo- rescencethatisappearingat90C:asexpected,theefflorescence correspondstothesulphategroup.However,despitethefactthat iron waspresent inallmatrices,ironsulphatesarefoundtobe minorphases.Onlyafewcrystalsofjarositewerefound,which werescarcelyvisibleonthemacro-pictures.Inthesamplesorigi- natingfromtheLaComaillesite,somesmallcrystalsofbarite,of theorderof10micronsinsize,weredetectedbySEM/EDS(Table7, Fig.8a).Besidethisminoroccurrenceofjarositeandbarite,allefflo- rescencecrystalsappeartobegypsumandshowalargevarietyof

crystallinemorphologies:thinneedles,organisedinstarshaped structures(Fig.8a),largeparallelbeams(Fig.8b),isolatedcrystals showingwelldefinedplanaredges(Fig.8c)orconglomeratesof crystalsofvariousshapes(Fig.8d).

4. Discussion

4.1. Characterizationofdamagedspecimens

MostoftheelementsdetectedinthematricesbySEM/EDSare ingoodagreementwiththemineralphasesdetectedbyXRD.Sili- conandaluminium,thetwomajorelements,mostlycorrespond toquartz andkaolinite that arethetwo majormineralphases.

Theseelementscanadditionallybefoundinfeldsparsandother clay minerals (Table 1, peak at 14 ˚Aand 10 ˚A) in combination withmagnesium,sodium,potassium,calciumandiron. Sulphur canberelatedtosulphateorsulphideminerals,suchasjarosite orpyrite.Titaniumistheonlyelementdetectedinallsamplesby SEM/EDSwithoutbeingattributedtoaspecificmineral.Thismay beexplainedbyitsabilitytosubstitutesiliconincrystallinephases (Hartman,1969).

Thisconsistencyshouldnot conceal thecomplexity ofshale materials,whicharecomposedoforganicandinorganicmatterand ofmineralandamorphousphases.XRDisnotthemostinforma- tivemethodforthedeterminationofamorphousphasesandthe elementsthatarerelatedtoacrystallinephasemayadditionally bepresentinotheramorphousphases.Thisistypicallythecase ofsulphurandiron.Theoccurrenceofpyritewasdemonstrated byXRDonlyinsomespecimens.However,ironandsulphurwere detectedinallmatricesbySEM/EDSandasmallabsorptionedgeat 2472.1eV,whichmatcheswithironsulphidecompoundsofo.n.−I, waspresentinthegreatmajorityoftheSK-edgeXANESspectra.

Allthisinformationtendstoevidence(butdoesnotdemonstrate) thatthereisasmallfractionofpoorlycrystallisedironsulphidestill remaininginthematrices,despitethefactthattheywereexcavated morethanacenturyago.

Anadditionalsmallabsorptionedgeat2473.9eVissuggestive ofothersulphidecompoundsthatremainunidentified.Thesemay possiblycorrespondtozincsulphidessuchassphalerite,showing

Muse

Saint Léger Surmoulin La Comaille

(11)

Fig.8.Thedifferentmorphologiesofgypsumobservedonartificiallyagedshales.Binocularmagnifierpictures(left)andscanningelectronmicroscopybackscatteredelectron modepicture(right).ThesmallwhitespotsobservedonFig.8-a(right)correspondtobaritecrystals.

Morphologiesdesefflorescencesdegypseobtenuesparvieillissementartificiel.Imagesobtenuessousloupebinoculairegauche)etparMEBenmodeélectronsrétrodiffusés droite).LespetitspointsblancsprésentssurlaFig.8-adroite)correspondentàdescristauxdebaryte.

anabsorptionedge closetothisvalue(2473.8eV) (ID21,2011);

availableelementalmeasurements(ElsassDamon,1977)indicate thatthematricescontaintracesofzinc(100±20ppm).Yet,the presenceofsphaleriteappearsdoubtfulas:

•our SEM/EDS measurements evidenced small grains of zinc, approx.10mminsize,thatwerenotassociatedwithsulphur;

•sphaleritewasnotevidencedbyXRD.

Thisindicatesthatzincsulphide(ifpresent)isbelowthedetec- tionlimitofXRDandSEM/EDSandispresentinapoorlycrystallized form.

Othercandidatesfortheattributionofthe2473.9eVabsorp- tionedge(Table8)canbefoundamongorganicsulphidesofo.n.

−II:thiol,thioether,thiopheneorthianthreneexhibitanabsorp- tionmaximumoftheSK-edgenear2473.9eV(Bohicetal.,2008;

Almkvistetal.,2010),meaningthatthisenergycouldbeconsid- eredasasignatureofC-S-CorC-S-Hgroups.Amorequantitative

Références

Documents relatifs

Objectifs : Montrer comment depuis le début XXème siècle le Muséum national d’histoire naturelle contribue à la compréhension des origines du genre Homo et des

Une galerie supérieure, courant à mi-hauteur <le la salle, comprend une belle collection de pièces d'ana­.. tomie

Au Muséum national, depuis Daubenton (Cabinet du Roi), les restes humains en fl uides sont en grande partie intégrés à la collection d’Anatomie comparée, et cela dans la

Un spécimen collé, aile en préparation microscopique, entre deux paillettes ajourées, édéage dans un tube piqué au-dessous, holotype par monotypie : mozambique

Nous avons observé, sur deux Chimpanzés, un tendon qui se séparait de celui du court péronier latéral, entre la gouttière retro-malléolaire et l’insertion distale de ce

Un système d'information géographique (SIG) est un système d'information capable de stocker, d'organiser et de présenter des données alphanumériques spatialement référencées

Pour contribuer à la solution de certains problèmes taxinomiques, nous retraçons dans cet article l’origine et l’histoire de Dendrobates tinctorius (Cuvier), Hyla rubra Laurenti,

mais le plus grand nombre est désarticulé et placé dans des meubles pour en permettre plus aisément l'étude.. j uslifiée par une