• Aucun résultat trouvé

Why houses need mechanical ventilation systems

N/A
N/A
Protected

Academic year: 2021

Partager "Why houses need mechanical ventilation systems"

Copied!
5
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Construction Technology Update, 1998-05-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Why houses need mechanical ventilation systems

Haysom, J. C.; Reardon, J. T.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=13076694-f9ff-4700-905e-f979e1ddae1b https://publications-cnrc.canada.ca/fra/voir/objet/?id=13076694-f9ff-4700-905e-f979e1ddae1b

(2)

b y J.C. Ha y som a nd J.T. Re a rd on

This Update is the first of tw o that discuss mechanical ventilation systems in

houses. It explains w hy houses need to be mechanically ventilated, and

examines the main characteristics of an ideal system from the standpoint of

design and installation.

C o n s t r u c t i o n T e c h n o l o g y U p d a t e N o . 1 4

T he N e e d for M e c ha nic a l Ve nt ila t ion

History of Ventilation in Houses

Hou ses n eed to h ave an in d oor/ ou td oor exch an ge of air to rep len ish oxygen u sed by th e occu p an ts an d to rem ove p ollu tan ts gen erated by breath in g, h ou seh old activities an d em ission s from bu ild in g m aterials an d fu rn ish in gs. For m an y years, h ou ses w ere con stru cted w ith ou t m ech an ical ven tilation system s an d relied on air leakage th rou gh th e bu ild in g en velop e to p rovid e th is in d oor/ ou t-door air exchange during the winter months.

In th e p ast, th is n atu ral form of ven tilation w orked fairly w ell. Hou ses bu ilt before th e 1960s ten d ed to be qu ite leaky an d p ressu re d ifferen ces betw een th e in sid e an d ou tsid e, cau sed by w in d or tem p eratu re d ifferen ce, w ere su fficien t to p rovid e a sign ifican t am ou n t of air exch an ge m ost of th e tim e. How ever, a leaky bu ild in g en velop e d oes n ot alw ays gu aran tee ad equ ate air exch an ge. Th e m ovem en t of air requ ires both a p ath w ay (e.g., a leak) an d a p ressu re d ifferen ce, an d even a leaky h ou se w ill exp erien ce p eriod s w h en th ere is n o

in d oor/ ou td oor air exch an ge. Th ese p eriod s are m ost likely to occu r d u rin g th e sp rin g or fall, w h en w in d s are ligh t an d th ere is little or n o in d oor/ ou td oor tem p eratu re d ifferen ce th at can create a stack effect. Th e leakier th e h ou se, h ow ever, th e less frequ en t th e p eriod s of in ad equ ate air exch an ge.

Sin ce m ost fu el-fired system s con su m e air from th e h ou se, an d th is air m u st th en be rep laced by leakage from ou td oors, th e op eration of fu el-fired system s p rom otes som e in d oor/ ou td oor air exch an ge. Th e ch im n eys associated w ith th ese system s also p rovid e a m ajor leakage p oin t, th u s p rom otin g air exch an ge even w h en th e h eatin g system is n ot op eratin g. As w ell, a ch im n ey ten d s to raise th e level of th e n eu tral p ressu re p lan e, th u s red u cin g th e ou tw ard p ressu re d ifferen ce across th e bu ild in g en velop e an d , w ith it, th e

Why Houses Need

Mechanical Ventilation

Systems

Canada Mortgage and Housing Corporation, “Complying with Residential Ventilation Requirements in the 1995 National Building Code” (1996), cover photo

(3)

2

p oten tial for in terstitial con d en sation (i.e., con d en sation th at occu rs w ith in th e bu ild in g en velop e) cau sed by air leakin g ou t of th e h ou se.

In h ou ses bu ilt p rior to th e 1960s, th e am ou n t of air exch an ge p rovid ed by leakage w as gen erally regard ed as su fficien t. Bu t in th e ‘60s, a n u m ber of factors ch an ged th is p ictu re, in clu d in g th e in creased u se of electric h eatin g in h ou ses. Un like fu el-fired system s, electric h eatin g system s d o n ot requ ire th e rep lacem en t of air, n or d o th ey requ ire ch im n eys. Con sequ en tly, electrically h eated h ou ses h ave a greater ten d en cy to exp erien ce h igh h u m id ity levels, in terior su rface m ou ld s an d in terstitial con d en sation .

In th e early 1970s, in resp on se to th ese p roblem s associated w ith electrically h eated h ou ses, Can ad a Mortgage an d Hou sin g Corp oration (CMHC) took th e step of requ irin g all NHA-fin an ced electri-cally h eated h ou ses to in corp orate exh au st fan s, a requ irem en t th at w as even tu ally in corp orated in to th e Nation al Bu ild in g Cod e. By th e m id -70s, th ese p roblem s h ad becam e so ap p aren t th at CMHC con tem -p lated n ot allow in g electric h eatin g in h ou ses fin an ced u n d er its Nation al Hou sin g Act m ortgage in su ran ce p rogram .

In ad d ition to th e in crease in th e u se of electric h eatin g, th e 1960s brou gh t th e con -stru ction of h ou ses th at w ere m u ch m ore airtigh t as a resu lt of n ew p rod u cts an d p ractices, w h ich in clu d ed th e su bstitu tion of p an el sh eath in gs, su ch as p lyw ood an d w aferboard , for board sh eath in g; th e rep lace-m en t of p ap er-backed in su lation batts by friction -fit batts an d p olyeth ylen e film ; improved caulking materials; tighter windows and doors; and more efficient heating systems. Wh en th e en ergy crisis d evelop ed in th e early 1970s, considerable emphasis was placed on red u cin g air leakage in ord er to con serve en ergy. Th e u se of electric h eatin g system s w as en cou raged an d h igh er efficien cy fu r-n aces w ere d evelop ed fu rth er red u cir-n g air-change rates in buildings. This trend towards greater airtigh tn ess an d h igh er efficien cy fu rn aces gave rise to con cern s th at th e exch an ge of air in h ou ses by n atu ral m ean s m igh t be in su fficien t in som e in stan ces to p rovid e ad equ ate air qu ality th u s in creasin g th e risk of h ealth p roblem s am on g th e occu -pants. Condensation problems resulting from h igh er h u m id ity levels w ere also a con cern .

How Much Indoor/Outdoor Air Exchange Is Necessary?

Th e air-ch an ge n eed s of h ou ses are n ot u n iform . Not on ly d o th ey vary from h ou se to h ou se accord in g to th e n u m ber of occu p an ts, an d th e p resen ce an d stren gth of variou s p ollu tan t sou rces, bu t, for an y given h ou se, th ey also vary w ith tim e as occu p an ts com e an d go, an d p ollu tan t sou rces w ax an d w an e. Neverth eless, ASHRAE Stan d ard 62, Can ad ian Stan d ard s Association Stan d ard CAN/ CSA-F326 an d th e Nation al Bu ild in g Cod e of Can ad a (NBC) h ave all establish ed levels of air ch an ge th at can be exp ected to m eet th e p eak or n ear-p eak n eed s of a m ajority of n orm al h ou seh old s. (Th e latter tw o are based to som e exten t on ASHRAE Stan d ard 62.)

All th ree ap p roach es su ggest an air ch an ge rate of abou t 0.3 air ch an ges p er h ou r (ach ). Th is is th e level of air ch an ge u sed in tern ation ally as th e n orm in term s of an alyzin g th e su ccess of variou s ven tila-tion sch em es. Again , it is recogn ized th at few, if an y, h ou ses requ ire con stan t air ch an ge at th e rate of 0.3 ach . How ever, if a h ou se is so tigh t th at leakage fails to p rovid e th is level of air ch an ge for sign ifi-can t p eriod s of tim e, it is likely th at m an y su ch p eriod s of sh ortfall w ill coin cid e w ith p eriod s w h en th is level of air ch an ge is requ ired . Wh en th is h ap p en s, p oor in d oor air qu ality, h igh h u m id ity, su rface m ou ld s an d in terstitial con d en sation can resu lt.

How Airtight Are Recently Built Houses?

In 1989, a stu d y to d eterm in e th e airtigh t-n ess of recet-n tly cot-n stru cted h ou ses it-n variou s region s of Can ad a w as con d u cted . Airtigh tn ess w as m easu red by carryin g ou t fan -d ep ressu rization tests on n early 200 h ou ses th rou gh ou t th e cou n try. Th e test resu lts w ere an alyzed to estim ate th e in d oor/ ou td oor air ch an ge rate th at cou ld be attribu ted solely to th e air leakage likely to be exp erien ced by each h ou se over a typ ical h eatin g season . Th e resu lts of th e stu d y allow ed th e research ers to m ake th e follow in g p red iction s:

• More th an 70% of th e su rveyed h ou ses w ou ld h ave an average air-leakage rate of less th an 0.3 ach over th e en tire h eatin g season .

(4)

• th ere is su fficien t air exch an ge d u e to w in d or stack effect to m eet th e h ou se-h old ’s n eed s.

Provide needed amount of air exchange

Th e system w ou ld be able to d eliver en ou gh ou td oor air to m eet th e p robable m axim u m n eed s of th e h ou seh old . It w ou ld also be cap able of m od u latin g d eliv-ery so th at it d id n ot d eliver m ore ou td oor air th an requ ired at tim es of red u ced n eed . A system th at d oes n ot h ave th is cap ability is likely to p rovid e too m u ch ou td oor air m ost of th e tim e it is in op eration , resu ltin g in excess en ergy costs an d low h u m id ity. As w ell, a system th at is u n resp on sive can an n oy th e occu p an ts, p ossibly to th e p oin t th at th ey sim p ly tu rn it off altogeth er.

Distribute outdoor air w here needed

It is n ot en ou gh th at th e m ech an ical ven tilation system ch an ge th e air in th e h ou se as a w h ole to m eet th e stan d ard of 0.3 ach . Th e system m u st also be able to d eliver th e ou td oor air to th ose p arts of th e h ou se w h ere th e occu p an ts are likely to sp en d m ost of th eir tim e — th e livin g room , th e kitch en an d th e bed room s.

Be quiet

Th e system w ou ld be qu iet en ou gh so th at th e occu p an ts w ou ld n ot be tem p ted to tu rn it off to red u ce n oise.

Not interfere w ith other systems

Th ere is sign ifican t p oten tial for m ech an ical ven tilation system s to in terfere w ith th e op eration of oth er system s, su ch as certain typ es of fu el-fired h eatin g system s. Un d er th ese circu m stan ces, if th e ven tilation system creates a h igh n egative p ressu re in th e h ou se, th e p rod u cts of com bu stion (w h ich can be h arm fu l to th e occu p an ts) can sp ill in to th e h ou se rath er th an flow in g u p th e ch im n ey to th e ou td oors.

Not interfere w ith the building envelope

Th e system w ou ld n ot create sign ifican t p ositive p ressu re in th e h ou se sin ce th is cou ld d rive h u m id air from th e h ou se th rou gh th e bu ild in g en velop e, resu ltin g in in terstitial con d en sation .

De m a nd-Cont rolle d Ve nt ila t ion Th e first tw o ch aracteristics of th e id eal m ech an ical ven tilation system d escribed above are related to th e issu e of con trol. A system th at em bod ies th ese ch aracteristics is kn ow n as a “d em an d -con trolled ven tila-tion system .” Su ch a system w ou ld id eally • Alm ost 90% of th e su rveyed h ou ses

w ou ld h ave at least on e m on th d u rin g th e h eatin g season w h en th e average air-leakage rate w as less th an 0.3 ach . • Virtu ally all of th e su rveyed h ou ses (99% )

would have at least one 24-hour period over th e h eatin g season in w h ich th e average air-leakage rate w as less th an 0.3 ach .

Th ese resu lts seem to in d icate th at a m ajority of h ou ses bein g bu ilt in Can ad a u sin g n orm al con stru ction p ractices are close en ou gh to bein g airtigh t th at air leak-age th rou gh th e en velop e can n ot be relied on to p rovid e th e rate of air ch an ge d eem ed n ecessary to m ain tain ad equ ate in d oor air qu ality in a typ ical h ou seh old . Wh ile th e rate of air ch an ge th rou gh th e bu ild in g en velop e m ay be ad equ ate m ost of th e tim e, it m ay n ot be all of th e tim e. Th erefore, to en su re th at a satisfactory rate of air ch an ge is attain able at all tim es th rou gh ou t th e h eatin g season , th ese h ou ses m u st be p ro-vid ed w ith m ech an ical ven tilation system s. Cha ra c t e rist ic s of a n I de a l

M e c ha nic a l Ve nt ila t ion Syst e m Cu rren tly available tech n ology is n ot able to p rovid e an id eal m ech an ical ven tilation system for h ou ses. Bu t before lookin g at th e m eth od s of m ech an ically ven tilatin g h ou ses that are available today, it is helpful to identify th e ch aracteristics of an id eal system :

Operate w hen needed

Th e system w ou ld op erate w h en ever ad d i-tion al in d oor/ ou td oor air exch an ge is n eed ed an d w ou ld d o so w ith ou t th e n eed for occu p an t in terven tion .

Operate only w hen needed

Th is is im p ortan t sin ce a m ech an ical ven ti-lation system h as costs associated w ith it — the cost of the electricity to run it and the cost of h eatin g th e ou td oor air th at th e system brin gs in . (Th e latter can be red u ced by incorporating heat-recovery capabilities in the system , bu t can n ot be elim in ated altogeth er.) Th erefore, th e system sh ou ld n ot op erate d u rin g th ose p eriod s w h en n o in d oor/ ou t-d oor air exch an ge is requ iret-d . Th e len gth , tim in g an d frequ en cy of su ch p eriod s vary from h ou seh old to h ou seh old . Air

exch an ge is n ot requ ired w h en : • th ere are n o occu p an ts in th e h ou se • th ere are n o activities or p rocesses

u n d erw ay th at gen erate p ollu tan ts

(5)

be con trolled by an array of sen sors — on e for h u m id ity an d on e for every p ossible p ollu tan t th at th e ven tilation system w ou ld h ave to resp on d to, in clu d in g carbon m on oxid e, carbon d ioxid e, form ald eh yd e, volatile organ ic com p ou n d s, etc. Th e system w ou ld brin g in ou td oor air an d / or extract in d oor air u n til all of th ese sen sors d eterm in ed th at sp ecific p ollu tan ts w ere at, or below, p red eterm in ed safe levels.

Wh en ever a sen sor d etected a p ollu tan t above its safe level, th e ven tilation system w ou ld op erate.

A less-th an -id eal d em an d -con trolled ven tilation system w ou ld h ave at least on e sen sor. For exam p le, m an y ven tilation sys-tem s are con trolled by d eh u m id istats: th e system op erates u n til th e d eh u m id istat h as d eterm in ed th at th e h u m id ity in th e h ou se is at a safe level. Excess h u m id ity is on e of th e m ain reason s th at ven tilation is

requ ired , bu t n ot th e on ly on e. Th e am ou n t of ven tilation requ ired to con trol h u m id ity m ay n ot be su fficien t to con trol oth er p ollu tan ts sin ce th is d ep en d s on th e activities of th e occu p an ts, on th e relative stren gth s of oth er p ollu tan ts an d on th e level of h u m id ity.

Carbon d ioxid e (CO2) sen sors are som e-tim es u sed to con trol ven tilation system s in large bu ild in gs, an d th is tech n ology is ju st n ow becom in g available for resid en tial u se. In creasin g CO2 con cen tration is u su -ally a good in d icator of d ecreasin g air qu al-ity bu t it m ay n ot be ad equ ate in cases w h ere th ere are u n u su al p ollu tan ts, su ch as th ose gen erated by certain h obbies.

Th e id eal system requ ires th e fu ll array of sen sors m en tion ed above. How ever, at p resen t th is id eal is n ot attain able becau se: • th ere is in su fficien t kn ow led ge an d

in form ation to d eterm in e

- w h ich p ollu tan ts sh ou ld be m on itored , an d

- w h at th e accep table levels for a p artic-u lar p ollartic-u tan t are.

• p ractical, reliable an d econ om ical d etec-tors for all p ollu tan ts of con cern are n ot available.

Wh ile research an d d evelop m en t is u n d erw ay in m an y cou n tries to try to ad d ress th ese issu es, breakth rou gh s are n ot exp ected in th e n ear fu tu re.

For a d iscu ssion of cu rren t ap p roach es to m ech an ical ven tilation system s for h ou ses, p lease see Con stru ction Tech n ology Up d ate No. 15. Re fe re nc e s

1. ASHRAE 62-1989, Ven tilation for

Accep table In d oor Air Qu ality. Am erican Society of Heatin g, Refrigeratin g an d Air-Con d ition in g En gin eers, Atlan ta, GA. 2. Stan d ard CAN/ CSA-F326-M91,

Resid en tial Mech an ical Ven tilation System s. Can ad ian Stan d ard s Association , Etobicoke, ON.

3. Nation al Bu ild in g Cod e of Can ad a, 1995. Can ad ian Com m ission on Bu ild in g an d Fire Cod es, Nation al Research Cou n cil of Can ad a, Ottaw a.

4. 1989 Su rvey of Airtigh tn ess of New, Merch an t Bu ild er Hou ses. Haysom , J.C., Reard on , J.T., an d R. Mon sou r. In d oor Air ’90: Th e Fifth In tern ation al

Con feren ce on In d oor Air Qu ality an d Clim ate, v. 4, Toron to, 1990.

5. Resid en tial Air System Design . Heatin g Refrigeratin g an d Air-Con d ition in g In stitu te of Can ad a (HRAI), Islin gton , ON, 1986.

6. Com p lyin g w ith Resid en tial Ven tilation Requ irem en ts in th e 1995 Nation al Bu ild in g Cod e. Can ad a Mortgage an d Hou sin g Corp oration , Ottaw a, 1996. 7. Airtigh tn ess an d En ergy Efficien cy of

New Con ven tion al an d R-2000 Hou sin g in Can ad a, 1997. Can ad a Cen tre for Min eral an d En ergy Tech n ology, Natu ral Resou rces Can ad a, Ottaw a.

Mr. John Ha y somis a sen ior tech n ical ad visor with th e Cod es an d Evalu ation Program of th e N ation al Research Cou n cil’s In stitu te for Research in Con stru ction .

Dr. J.T. Re a rd onis a research officer with th e In d oor En viron m en t Program of th e N ation al Research Cou n cil’s In stitu te for Research in Con stru ction .

“Construction Te chnology Up d a te s” is a se rie s of te chnica l a rticle s conta ining p ra ctica l inform a tion d istille d from re ce nt construction re se a rch.

For more information, contact Institute for Research in Construction, National Research Council of Canada, Ottaw a K1A 0R6

Telephone: (613) 993-2607; Facsimile: (613) 952-7673; Internet: http://irc.nrc-cnrc.gc.ca

© 1998

Nation al Research Cou n cil of Can ad a May 1998

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including