• Aucun résultat trouvé

Invariance principles for random bipartite planar maps

N/A
N/A
Protected

Academic year: 2021

Partager "Invariance principles for random bipartite planar maps"

Copied!
56
0
0

Texte intégral

(1)

HAL Id: hal-00004645

https://hal.archives-ouvertes.fr/hal-00004645v2

Submitted on 20 Mar 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Invariance principles for random bipartite planar maps

Jean-François Marckert, Grégory Miermont

To cite this version:

Jean-François Marckert, Grégory Miermont. Invariance principles for random bipartite planar maps. Annals of Probability, Institute of Mathematical Statistics, 2007, 35 (5), pp.1642–1705.

�10.1214/009117906000000908�. �hal-00004645v2�

(2)

ccsd-00004645, version 2 - 20 Mar 2006

Jean-FrançoisMarkert

, Grégory Miermont

20th Marh 2006

Abstrat

Randomplanarmapsareonsideredin thePhysisliteratureasthedisreteounterpartof

randomsurfaes.Itisonjeturedthatproperlyresaledrandomplanarmaps,whenonditioned

to have a large number of faes, should onverge to a limiting surfae whose law does not

depend,uptosalingfators,ondetailsofthelassofmapsthatare sampled. Previousworks

on the topi, starting with Chassaing & Shaeer, have shown that the radius of a random

quadrangulation with n faes, i.e. the maximal graph distane on suh a quadrangulation to a xed referenepoint, onvergesin distribution one resaledby n1/4 to the diameter of the

Browniansnake,upto asalingonstant.

Using a bijetion due to Bouttier, di Franeso & Guitter between bipartiteplanar maps

and a family of labeled trees, we show the orresponding invariane priniple for a lass of

random maps that follow a Boltzmann distribution putting weight qk on faes of degree 2k:

the radius of suh maps, onditioned to have n faes (or n verties) and under a ritiality

assumption, onvergesindistributiononeresaledbyn1/4 toasaledversionofthediameter

of theBrowniansnake. Convergeneresultsfortheso-alledproleofmapsare alsoprovided.

The onvergeneof resaled bipartitemaps to theBrownian map, in the sense introduedby

Markert & Mokkadem, is also shown. The proofs of these results rely on a new invariane

priniplefortwo-typespatialGalton-Watsontrees.

Key Words: Randomplanar maps, labeled mobiles, invariane priniple, spatial Galton-Watson

trees,Brownian snake,Brownian map

M.S.C. Code: 60F17,60J80, 05C30

CNRS, LaBRI, Université Bordeaux 1, 351 ours de la Libération, 33405 Talene edex, Frane,

markertlabri.fr

CNRS, Équipe Probabilités, Statistique etModélisation, Bât.425, Université Paris-Sud, 91405 Orsay, Frane

Gregory.Miermontmath.u-psud.fr

(3)

Contents

1 Introdution,motivationsand main results 3

1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Boltzmann laws on planarmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Snakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Mainresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Two illustratingexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1-angulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.2 qii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Commentsand organization of thepaper. . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Pushing maps to two-type trees 11 2.1 Planar spatial trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Two-type spatial GWtrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Bouttier-di Franeso-Guitter bijetion andits onsequenes . . . . . . . . . . . 14

3 An invariane priniple for spatial GW trees 18 3.1 The invariane priniple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Computation ofthe saling onstants assoiatedwithrandom maps . . . . . . . . . . 20

3.3 Proof ofTheorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Convergene of the height proess 23 4.1 GWforests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Controlling the height and numberof omponentsof forests . . . . . . . . . . . . . . 24

4.3 Anestral deomposition ofa GWforest . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 An estimatefor the size ofGWtrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 The `onvergene of types'lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Convergene ofthe height proess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Convergene of the label proess 36 5.1 Controlling the branhinginonditioned trees . . . . . . . . . . . . . . . . . . . . . . 36

5.2 A boundon the Hölder normof theheight proess . . . . . . . . . . . . . . . . . . . 39

5.3 Tightness of thelabelproess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Finite-dimensional onvergene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Convergene tothe Brownianmap 49

(4)

1 Introdution, motivations and main results

1.1 Motivation

An embedded graph G is an embedding of a onneted graph in the 2-dimensional sphere S2, in whih edges do not interset exept possibly at their endpoints (the verties). A fae of G is a

onneted omponent of S2\ G. Faes are homeomorphi to open disks, and the degree of a given faeis the numberof edges that are inluded inthe losure of this fae, with theonvention that

ut-edgesareountedtwie,where ut-edgesarethoseedges whoseremovaldisonnetsthegraph.

Ifthe graphis the vertex-graph withonly one vertexand no edges, we adopt theonvention that

itbounds one fae withdegree 0. The degree of a vertexis thenumber of edges adjaent to that

vertex,whereself-loopsareountedtwie,aording totheusualgraph-theoretidenition. Unlike

faes,itdepends onlyon the underlying graph rather than itsembedding inS2.

Wesaythattwo embedded graphsareequivalent ifthereexistsanorientation-preserving home-

omorphism of S2 that maps the rst embedding to the seond. Equivalene lasses of embedded graphs are alled planar maps, and their set is denoted by M0. When onsidering a planar map

m∈ M0,we will slightlyimproperly speakofits verties,edges, faes andtheir respetive degrees

(weshouldrsttakeanelementofthelassmtobeompletelyaurate). WeletS(m), A(m), F(m)

bethesets ofverties,edges andfaesofm. Thedegree ofanelement u∈S(m) or f ∈F(m) will

be denotedbydeg(u), resp. deg(f). We denotethe lassof thevertex-graphby.

If u, v are verties in a planar map m ∈ M0, and e1, . . . , en are oriented edges, we say that e1, . . . , en is a path from u to v of length n ifthe soure of e1 is u, the target of en is v, and the

target ofei is the soure ofei+1 for all 1≤i≤n−1. Thegraph distane assoiated witha planar

mapm∈ M0 is the funtion dm :S(m)×S(m) → Z+ dened by letting dm(u, v) be the leastn

suh that there exists a path of length n leading from u to v. This an be interpreted by saying thatwe turnminto a metrispae, byendowing edgeswithlengthsall equal to 1.

Planarmapshavebeenofpartiularinteresttophysiistsinthelastdeadeastheyan beon-

sideredasdisretizedversionsofsurfaes. Inordertogiveamathematialgroundto the`stohasti

quantization of 2-dimensional gravity', inwhih an integral with respet to an ill-dened `uniform measure'onRiemanniansurfaesisinvolved,apossibleattemptistoreplaetheintegral byanite

sum over distint `disrete geometries', whose role is performed by planar maps [3℄. Informally,it

isbelieved that

Arandom maphoseninsomelassofplanarmapswith`size'n(e.g.aquadrangulation with

nfaes,i.e.amapwhose nfaesareallofdegree4),whoseedge-lengthsareproperlyresaled, should onverge indistribution asn→ ∞to a limitingrandom `surfae',and

The limitingrandom surfae shouldnot depend,upto sale fators, ondetails ofthelassof

maps whih israndomly sampled.

The seond property is alled universality. A similar situation is well-known to probabilists: the

roleof a`Lebesguemeasure onpaths' is performedbyBrownian motion, whih isthesaling limit

ofdisretized randompaths (random walks)whose step distributions havea nite variane.

In a pioneering work,Chassaing &Shaeer [8℄ made a very substantial progress inanswering

the rst question, by establishing that the largest distane to the root in a uniform rooted quad-

rangulation with n faes (see denition below) divided by n1/4 onverges in distribution to some

(5)

Brownian snake withlifetimeproess the normalized Brownian exursion). Byusing an invariane

priniple for disrete labeled trees satisfying a positivity onstraint, Le Gall [15℄ has given an al-

ternative proof ofthe results of[8℄. Thisinvolvesa newrandom objet, alledtheBrownian snake

onditioned to bepositive, thatwas introdued inLe Gall and Weill[16 ℄. Markert& Mokkadem

[19℄ gave a desription of quadrangulations by gluing two trees, and showed that these trees on-

verge when suitably normalized as n goes to. They introdued the notion of Brownian map,

and showed that under a ertain topology, resaled quadrangulations onverge in distribution to

the Brownian map. All these results have been obtained by using bijetive methods whih take

their soure in the work of Shaeer [22℄, and whih allow to study random quadrangulations in

termsofertainlabeledtrees. Theniefeatureofthis methodisthatthelabels allowtokeep trak

of geodesi distanes to a referene vertex inthe map, sothat some geometri information on the

mapsispresent inthe assoiated labeledtrees.

On theother hand, theseond question has not been addressed up to now in a purely proba-

bilistiform, and in theontext of saling limitsof planarmaps. Angel[4℄ and Angel& Shramm

[5℄giveevidenethatthelarge-salepropertiesoflargeplanarmapsshouldnotdependontheloal

details of the map (like the degree of faes), but these remarks hold in theontext of loal limits

of random maps, where all edges have a length xed to 1 as the numberof faes of the map goes

to innity (this is an `innite volume limit'), rather than in the ontext of saling limits, where

edge-lengths tend to 0 as the number of faes goes to innity (so that the total `volume' is kept

nite). In a reent artile, Bouttier, di Franeso and Guitter [6℄ have given a generalization of

Shaeer's bijetion to general planarmaps. Theyobtain identities for thegeneratingseries of the

most general family of (weighted) planar maps, and infer a number of lues for the universality

of the `pure 2Dgravity' model, e.g. by omputing ertain saling exponents with a ombinatorial

approah.

Their bijetion suggests a path to prove invariane priniples (the probabilisti word for 'uni-

versality') forrandom maps. Thepresent workexplores this pathinthease ofbipartite maps,by

rstgiving aprobabilisti interpretation oftheidentitiesof [6 ℄.

1.2 Boltzmann laws on planar maps

Aplanar mapis saidto bebipartite ifall itsfaes have evendegree. Inthis paper, we will onlybe

onerned withbipartite maps, notieisbipartite withour onvention.

Every edge of a map an be given two orientations. A bipartite rooted planar map is a pair

(m, e) where m isa bipartite mapand e isa distinguished oriented edgeof m. The basi objets

thatareonsideredinthisartilearebipartiteplanarmapswhiharerootedandpointed,i.e.triples

(m, e,r) where(m, e) isabipartite rootedplanar mapand risa vertexof m. We letMbetheset

ofrooted,pointed,bipartite planarmaps. The mapannotberootedandan be pointedonly at

its unique vertex, but is still onsidered as an element of M. By abuse of notation, we will often

denoteageneri element ofMbymwithout referringto (e,r) whenitis freeofambiguity.

By the bipartite nature of elements of M, we have |dm(r, u)−dm(r, v)| = 1 whenever u, v ∈ S(m) are neighbors. Therefore, if (m, e,r) ∈ M \ {†}, we have either dm(r, e+) > dm(r, e) or dm(r, e+) < dm(r, e), where e and e+ arethe soure and the target of the oriented edge e. We

let

M+={(m, e,r) ∈ M:dm(r, e+)> dm(r, e)} ∪ {†}.

Allprobability distributions on mapsin thispaperare goingto bedened ontheset M+. Notie

(6)

non-orientededgehasbeen distinguished.

Letq= (qi, i≥1) beasequeneofnon-negative weightssuhthatqi>0forat leastonei >1.

By onvention, let q0 = 1. Consider the σ-nite measure Wq on M+ that assigns to eah map

m∈ M+ a weight qi perfaeof degree 2i:

Wq(m) = Y

f∈F(m)

qdeg(f)/2, (1)

with the onvention Wq(†) = q0 = 1. This multipliative form is reminisent of the measures assoiated withthe so-alled simply generated trees, whih areof theform w(t) =Q

u∈tqct(u) for

any tree t, where ct(u) is the number of hildren of a vertex u in t, and where (qi, i ≥ 0) is a

sequeneofnon-negative numbers [1 , p. 27-28℄.

Let Zq=Wq(M+) be the`partition funtion' ofq. Notie that Zq∈(1,∞] sine Wq(†) = 1.

If Zq < ∞, we say that q is admissible, and introdue the Boltzmann distribution on M+ with

suseptibility qby letting

Pq= Wq Zq

.

For k≥1,letN(k) = 2k−1k−1

. For anyweight sequene q(notneessarilyadmissible) dene

fq(x) =X

k≥0

xkN(k+ 1)qk+1 ∈[0,∞], x≥0.

Thefuntion fq : [0,∞)→ [0,∞]is a ompletely positive powerseries, i.e. itsderivatives of every orderarenon-negative,and sine(qi, i >1) isnot identiallyzero, fq isstritly positive on(0,∞),

andstritlyinreasingontheinterval[0, Rq],whereRqistheradiusofonvergeneoffq. Moreover,

fq onverges toasx→ ∞,and themonotone onvergene theorementailsthat thefuntion fq

isontinuous from [0, Rq] to [0,∞]. At Rq,two distint behaviors arepossible: fq(Rq) an either

benite,sothatfqjumpsto+∞totherightofRq,orinnite,inwhihasefqisontinuousfrom

[0,∞]to [0,∞]. In thesequel,weunderstand thatfq(Rq)∈(0,∞]standsfor theleft-derivative of

fqat Rq (whenRq>0).

Consider the equation

fq(x) = 1−1/x , x >0. (2)

Sine x 7→ 1−x−1 is non-positive on (0,1] and fq is inniteon (Rq,∞], a solution of (2)always

belongs to (1, Rq]. Sine x 7→ 1−x−1 is stritly onave on (0,+∞), with derivative x 7→ x−2,

andfqisonvex, stritlyinreasing andontinuouson [0, Rq],wean lassifytheongurations of solutionsfor (2 ) bythefollowing four exlusive ases:

1. there areno solutions

2. thereareexatlytwosolutionsz1< z2 in(1, Rq],inwhihasefq(z1)< z−21 andfq(z2)> z2−2

3. there isexatlyone solution z1 in(1, Rq]withfq(z1)< z1−2

4. there isexatlyone solution z in(1, Rq]withfq(z) =z−2.

AswillbeshowninSet. 2.3,theadmissibility ofqan beformulated intermsoffqasfollows.

Proposition 1 The weight sequene q is admissible if and only if Equation (2) has at least one

solution. In this ase, Zq is the solutionof (2)that satises Zq2fq(Zq)≤1.

Références

Documents relatifs

[Note: In (6) the variable z is used instead of w.] There is a bijection between rooted quadrangulations and non-separable rooted planar maps: black and white vertices in

The hypertrophied hearts had significantly lower energy efficiency than the non-hypertrophied hearts (two-way ANOVA (diet, hypertrophy), P, 0·05) and the FO hearts had higher

Proof. The claim is proved by induction. Then, at step i &lt; θ , the distribution of the map filling-in the hole of ¯ e i follows from the spatial Markov property of the

As a prime example, it allows to establish the following result left as an open question in [CK14], saying that the Brownian CRT is the scaling limit of looptrees associated

A way to generate random bipartite pointed Boltzmann planar maps consists in constructing it as previously, starting from a random forest. Furthermore, easy calculations show that µ

suffisantes pour l'animal associés à de fortes présomptions pour une cancérogénèse selon un mécanisme identique chez l'homme. Exceptions : - Seule base des indications

We consider random rooted maps without regard to their genus, with fixed large number of edges, and address the problem of limiting distri- butions for six different

Using a bijection due to Bouttier, Di Francesco &amp; Guitter between rooted planar maps and certain four-type trees with positive labels, we derive our results from a conditional