• Aucun résultat trouvé

Mechanical Relaxation in Pure Monocrystals of Ice

N/A
N/A
Protected

Academic year: 2021

Partager "Mechanical Relaxation in Pure Monocrystals of Ice"

Copied!
24
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1960

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331697

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Mechanical Relaxation in Pure Monocrystals of Ice

Schiller, P.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=ff7fb50f-f929-48a7-96a9-ea3d822c44c7 https://publications-cnrc.canada.ca/fra/voir/objet/?id=ff7fb50f-f929-48a7-96a9-ea3d822c44c7

(2)

I c e i s a m a t e r i a l which n o r m a l l y e x i s t s a t a t e m -

p e r a t u r e c l o s e t o tk-,at a t which i t m e l t s . T h i s f a c t h a s t o be k e p t i n mind when a t t e m p t s a r e made t o c a l c u l a t e how i c e behaves u n d e r l o a d i n problems such as t h e p r e - d i c t i o n o f t h e b e a r i n g c a p a c i t y o f a n i c e s h e e t o r t h e p r e s s u r e s which i c e c a n e x e r t on c l a m s , b r i d g e p i e r s and o t h e r e n g i n e e r i n g s t r u c t u r e s . I n r e c e n t y e a r s , t h e m e c h a n i c a l b e h a v l o u r o f m a t e r i a l s I n t h i s t h e r m a l s t a t e h a s been r e c e l v l n g greater a t t e n t i o n , b u t t h i s knowledge h a s n o t d e v e l o p e d t o t h e s t a t e where t h e m e c h a n i c a l be- h a v i o u r o f i c e c a n b e p r e d i c t e d a c c u r a t e l y w i t h c o n f i d e n c e .

The Snow nnd I c e S e c t i o n o f t h e D i v i s i o n o f B u i l d i n g R e s e a r c h i s c o n c e r n e d w i t h making a v a i l a b l e t o Canadian s c l e n t i s t s and e n g i n e e r s Itnowledge on hoW t h i s u n i q u e m a t e r i a l behaves when i t i s s u b j e c t t o s t r e s s , and how

t h i s b e h a v i o u r depends o n t h e t e m p e r a t u r e , r a t e o f l o a d i n g , geometry o f loacllng, s t r u c t u r e and o t h e r v a r i a b l e s . T h i s p a p e r , t r a n s l a t e d from t h e German, g i v e s I n f o r m a t i o n on how t h e modulus o f e l a s t i c i t y o f s i n g l e i c e c r y s t a l s de- pends on t h e t e m p e r a t u r e , f r e q u e n c y o f t h e s t r e s s and c r y s t n l l o ~ ~ a ~ h i c o r i e n t a t i o n w i t h r e s p e c t t o t h e ' d i r e c t i o n o f t h e s t r e s s . The D i v i s i o n r e c o r d s i t s a p p r e c i a t i o n f o r t h i s t r a n s l a t i o n t o M r . D . A . S i n c l a i r . O t t a w a May 1960 R.F. L e g g e t D i r e c t o r

(3)

NATIONAL RESEARCH COUNCIL

OF

CANADA Technical T r a n s l a t l o n 890 M e c h a n i c a l r e l a x a t i o n i n p u r e m o n o c r y s t a l s o f i c e ( D i e m e c h a n i s c h e R e l a t i o n * i n r e l n e n E i s e i n k r i s t a l l e n ) P. S c h i l l e r Z. P h y s i k , 1.53: 1-15, 1958 A u t h o r : R e f e r e n c e : T r a n s l a t o r : C.A. S l n c l a i r , T r a n s l a t i o n s S e c t i o n , N.R.C. L i b r a r y

*

T r a n s l a t o r ' s Note: Assumed t o be a m i s p r i n t f o r " R e l a ~ a t l o n ~ ~ .

(4)

MECI-IAIIIChL RELAXAT I O N I N I-'URE FIONOCRYSTAL OF ICE ---.

A b s t r a c t

U s i n c t h e n a t u r a l v t b r a t i o n s o f combined r e s o n a t o r s

a rnecl~unic;ll r e l a x a t i o n i s investigated i n monocry st;als

o f i c e i n t h e f r e q u e n c y r a n g e between 8CO and 6000 c p s and t h e t e m p e r a t u r e I n t e r v a l between O 0 and - l O O ° C . The phenomenon (Iepends on t h e k i n d o f o s c l l l a t i o l l a n d t h e c r y s t z i l l o g r a ~ ~ h l c o r i e n t a t i o n . I t c a n be r e g a r d e d as a t r a n s f o r m a t i o n produced by t h e d : . s t r i b u t i o n o f de- f l c i e n c i e s i n t h e P a u l i n e c n n f i g u r a . t i o n s .

I n t r o d u c t i o n

D i e l e c t r i c r e l a x a t i o n phenomena i n i c e have a l r e a d y been known f o r some time''). I n r e c e n t y e a r s t h e e a r l y l n v e s t l g a t i c n s h a v e been supplemented and e x t e n d e d t o c o v e r heavy i c e , e.g. by A ~ l t y and C o l e ( 2 ) , CrAnicher

(''I

and ~ d e r ( " ) . To g e t R c l e a r p i c t u r e of t h e

p r o c e s s e s i t a p p e a r e d o b v i o u s t o a p p l y m e c h a n i c a l methods of i n - v e s t i g a t i o n . A p i o n e e r p a p e r ( 5 ) produced e n t i r e l y s a t i s f a c t o r y r e s u l t s , even thou& i t w a s a l r e a d y a p p a r e n t h e r e t h a t 1.n t h e m e c k ~ a n i c a l c a s e t h e e f f e c t i s d e f i n i t e l y s m a l l e r t h a n i n t h e d i - e l e c t r i c e x p e r i ~ e n t s . I n t h e p r e s e n t p a p e r a n a t t e m p t w i l l be made t o c o n t r i b u t e t o t h e c l a r i f i c a t i o n o f t h e phenomena by p r e s e n t i n g as e x t e n s i v e e x p e r i m e n t a l e v i d e n c e a s p o s s i b l e . With t h i s In view m e c l ~ a n l c a l r e l a x a t i o n h a s been s t u d i e d a s a f u n c t i o n of t e m p e r a t u r e , f r e q u e n c y , ~ r y s t a . l l o ~ a p l 7 i C o r i e n t a s t i o n 2nd t y p e o f d e f o r m a t i o n . The v a l u e s f o r c?.ctlva.tion e n e r g y and r e l a x a t i o n time o f t h e p r o c e s s a p - e e w i t h i n t h e l i m i t s o f m e a s u r i n g a c c u r a c y w i t h t h e r e s u l t s o f t h e e l e c t r i c a l i n v e s t i g a t i o n s . The e x t e n t o f t h e m e c h a n i c a l e f f e c t h a s been c n l c u l ~ ~ t e d by

ass'^),

u s i n g a thermodynamic method, and shows good agreement w i t h t h e e x p e r i m e n t s . The t e m p e r a t u r e and f r e q u e n c y dependence o f t h e l o g a r i t h m i c d e c r e m e n t , t h e most s e n s i - t i v e o f t h e measured v a l u e s , obey, i n f i r s t a p p r o x i m a t i o n , t h e l a w s which h o l d f o r a s i m p l e r e l a x a t i o n p r o c e s s . A more c a r e f u l

(5)

a n a l y s i s o f t h e t e s t r e s u l t s , however, c a l l s f o r a c o r r e c t i o n which w i l l be a t t e m p t e d a t t h e end o f t h e p a p e r . A p p a r a t u s The r e s u l t s of p r e v i o u s i n v e s t i g a t ; i o r l s ( 5 ) s u g g e s t e d t h e u s e o f t h e n a t u r a l f r e q u e n c i e s o f combined r e s o n a t o r s f o r t h e measurement o f t h e r e l a x a t i o n phenomena i n i c e ( ~ i g . 1). I n t h i s way i t i s p o s s i b l e t o s c a n t h e e n t i r e f r e q u e n c y i n t e r v a l i n which we were I n t e r e s t e d . The e x c i t a t I o n and measurement o f t h e n a t u r a l f r e - q l i e n c l e s o f t h e s e r e s o n n t o r s were c a r r i e d o u t e l e c t r o s t a t i c a l l y . Tile method d e s c r i b e d by Bordoni and Nuovo (7) p r o v e d e s p e c i a l l y

s11it;able for* t h i s . The l o g a r i t h m i c d e c r e m e n t , d e p e n d i n g on i t s

v a l u e , was d e t e r m i n e d from t h e damping t i n e o f t h e r e s o n a t o r o s c i l - l a t i o n o r from i t s r e s o n a n c e w i d t h .

F o r c a l c u l a t i n g t h k n a t u r a l f r e q u e n c i e s o f t h e o s c i l l a t o r s shown i n F i g . 1 t h e f o l l o w i n g a p p r o x i m a t i o n g i v e s good r e s u l t s f o r t h e d i m e n s i o n s i n v o l v e d . The r e s o n a t o r i s assumed t o c o n s i s t o f two w e i g h t s J o i n ~ . d by a s p r i n g o f z e r o muss. The r o l e of s p r i n g i s p l a y e d by t h e bar of i c e i n t h e c e n t r e of t h e r e s o n a t o r . The s p r i n g c o n s t a n t i s d e t e r m i n e d from t h e g e o m e t r i c and e l a s t i c d a t a o f t h e i c e . I n t h e c a s e o f a f i n i t e i n t e r n a l damping t h e phenomenon c a n b e d e s c r i b e d by a complex modulus o f t h e i c e . I n t h e s e c a l c u l a t i o n s , o f c o u r s e , t h e a n i s o t r o p y o f t h e e l a s t i c c o n s t a n t o f t h e i c e must be talcen i n t o a c c o u n t . U s i n g Voigt i n d i c e s f o r t h e e l a s t i c i t y v a l u e s , t h e f o l l o w i n g e x p r e s s i o n s a r e o b t a i n e d f o r t h e n a t u r a l f r e q u e n c y of t h e r e s o n a t o r s , d e p e n d i n g on t h e o r i e n t a t i o n o f t h e a x i s i n t h e p i e c e o f i c e and d e p e n d i n g on t h e t y p e o f o s c i l l a t i o n : F o r l o n g i t u d i n a l o s c i l l a t i o n s o f r e s o n a t o r s i n which t h e i c e s e c t i o n s h a v e a c y l i n d e r a x i s ( a ) p a r a l l e l t o t h e h e x a g o n a l ax- of t h e i c e :

(6)

( b ) p e r p e n d i c u l a r t o t h e h e x a g o n a l a x i s o f t h e i c e :

S l m l l u r l y , f o r t o r s i o n a l o s c i l l a t i o n s :

( c ) c y l l n ~ ~ r l c a l and h e x a g o n a l a x e s p a r a l l e l :

( d l c y l i n d r l c a l and h e x a g o n a l a x e s m u t u a l l y . p e r p e n d i c u l a r :

I n t h e s e e x p r e s s i o n s

m

and @ are t h e mass and moment o f I n e r t i a , r e s p e c t i v e l y , of t h e t e r m i n a l m a s s e s , a i s t h e r a d i u s

and h t h e l e n g t h of t h e p i e c e o f i c e , w h i l e

silt

and cik a r e t h e e l a s t i c c o n s t a n t s and e l a s t i c moduli of t h e I c e , r e s p e c t i v e l y .

E x p e r i m e n t s

Mat-erlal and a c c u r s c y

-

The l o g a r i t h m i c decrement and t h e f r e q u e n c y of r e s o n a t o r s o f v a r i o u s g e o m e t r i c d i m e n s i o n s were measured as a f u n c t i o n o f t h e t e m p e r a t u r e between 100° and 273OK. The a x e s o f t h e i c e c y l i n d e r were o r i e n t e d p a r a l l e l l y and p e r p e n d i c u l a r l y t o t h e h e x a g o n a l a x i s . T o r s i o n a l and l o n g i t u d i n a l o s c i l l a t i o n s were i n v e s t i g a t e d i n b o t h o r i e n t a t i o n s . A t d i f f e r e n t t i m e s s e v e r a l f r e q u e n c i e s were employed on t h e same p i e c e s o f i c e , t h e frequenc'jr b e i n g v a r i e d by c h a n g i n g t h e g e o m e t r i c a l d i m e n s i o n s o r by i n t e r c h a n g i n g t h e end w e i g h t s . The o v e r a l l f r e q u e n c y t n t e r v a l scanned w a s from 800 c p s t o 6 kcps. The c r y s t a l s employed were from t h e s t o c k o f t h e i n s t i t u t e . I n p o l a r i z e d l i g h t no p a i n b o u n d a r i e s c o u l d be f o u n d ' l n t h e i c e

(7)

employed. The c o n d u c t i v i t y o f t h e w a t e r o f m e l t i n g w a s

- 1 - 1

x = 2 1 0 - ~ 5 2 cm

.

The p i e c e s o f i c e c o u l d b e o r i e n t e d t o a n

a c c u r a c y o f ?lo. The a c c u r a c y o f t h e f r e q u e n c y measurement. was t h a t o f t h e damplng measurement b e t t e r t h a n 5 5 . R e s u l t s F i g . 2 shows a t y p i c a l p l o t o f t h e l o g a r i t h m i c decrement w i t h t h e t e m p e r a t u r e . T h e r e i s a marked maximum of t h e c u r v e , t h e p o s l - t i o n o f which v a r i e s w i t h t h e f r e q u e n c y o f t h e o s c i l l a t i o n w h i l e i t s h e i g h t depends on t h e k i n d of o s c l l l n t i o n and t h e c r y ~ t n l l o g r a p h -

i c o r l e r ~ t a t i o n . The v e r y low r e s i d u a l damping beyond t h e maximum I s due i n p a r t t o t h e m a t e r i a l i t s e l f and i n p a r t t o t h e a i r . The a i r damping i n t h e c a s e of l o n g i t u d l n u l o s c i l l a t i o n i s a p p r o x i m a t e l y of t h e o r d e r o f

T h e v a l u e s from a l l t h e measurements a r e a s s e m b l e d i n T a b l e s I and 11.

R e s o n a t o r no. 1 2 was n o t s y m m e t r i c a l , b u t had two d i f f e r e n t end w e i g h t s . A l l t h e o t h e r r e s o n a t o r s were s y m m e t r i c a l l y d e s i g n e d and t h e v a l u e s f o r t h e mass o r t h e moment of i n e r t i a , as t h e c a s e may

b e , a p p l y t o one o f t h e end we:ghts. The ,a' a n d h v a l u e s a p p l y t o

t h e r a d i u s and t h e l e n g t h of t h e i c e s e c t i o n , r e s p e c t i v e l y .

The p o s i t i o n of t h e damping maximum w a s d e t e r m i n e d g r a p h i c a l l y f r o n the. measured c u r v e s . The t e m p e r a t u r e f i g u r e s o f t h e maximum t h e r e f o l - e do n o t p o s s e s s t h e a c c u r a c y o f t h e o t h e r measured v a l u e s . The e r r o r i s a b o u t 20.5OC. The maximum o f t h e l o n g i t u d i n a l

o s c i l l a t i o n s p a r a l l e l t o t h e c a x i s i s however c o n s i d g r a b l y s m a l l e r t h a n t h e o t h e r maxima, and t h e r e f o r e t h e d a t a o n i t s t e m p e r a t u r e

-

i s e v e n more I n a c c u r a t e . The p o s i t i o n of t h e s e maxima w a s t h e r e f o r e n o t t a k e n i n t o a c c o u n t and o n l y t h e i r h e i g h t i s a r e e n t e r e d i n

T a b l e 111. A c r i t i c a l - e x m i n a t i o n o f T a b l e s I and I1 l e a d s t o tihe f o l l o w i n g c o n c l u s i o n s :

(8)

1. The h e i g h t o f t h e damping maximum depends on t h e o r l e n t a - t l o n . C o n s i d e r , t h e measurements o f b a r s no. 1 7 and 1 9 ( F i g . 3 ) .

Both h a v e a l o n g i t u d i n a l r e s o n a n c e a t a b o u t 2.9 kcps. Now,, bar

no. 1 7 i s p e r p e n d i c u l a r t o t h e c a x i s I n t h e c r y s t a l and bar no. 19 I S p a r a l l e l t h e r e t o . G m a X . i s 24

l o m 3

f o r no. 17 and 4

f o r no. 19. The d i f f e r e n c e f o r t h e t o r s i o n a l oscillations i s some- what l e s s ( 1 0 % ) .

2. The h e i g h t o f t h e damping maxima v a r i e s w i t h t h e t y p e o f o s c i l l a t i o n . A s a n example w e may c i t e t h e measurements o f no. 13

and 1 7 . F o r similar c r y s t a l l o g r a p h i c o r i e n t a t i o n t h e t o r s i o n a l o : ; c I l l a t I o n 1 s somewhat more s t r o n g l y damped t h a n t h e l o n g i t u d i n a l . E s p e c i a l l y m a r k e 4 i s t h e d i f f e r e n c e f o r r e s o n a t o r s p a r a l l e l t o t h e c a x i s . The o b s e r v a t i o n s made a t p o i n t s 1 and 2 a r e a s s e m b l e d i n

T a b l e 111. 3 . W i t h i n t h e l i r n $ t s o f m e a s u r i n g a c c u r a c y t h e h e i g h t o f t h e maximum i s i n d e p e n d e n t o f t h e t e m p e r a t u r e . I f t h e r e i s a n y depend- 1 e n c c a t a l l t h e n i t must be s m a l l e r t h a n - T o r N - T * 4. No m e a s u r a b l e r e l a t i o n s h i p between t h e f r e q u e n c y and t h e h e i g h t o f t h e maximum was found.

5. I n F i g . 4 t h e l o g a r i t h m o f t h e f r e q u e n c y i s p l o t t e d a g a i n s t 1 / ~ i n d e p e n d e n t l y o f the k i n d o f o s c i l l a t i o n and t h e o r i e n t a t i o n . W i t h i n t h e l i m i t s o f a c c u r a c y a l l p o l n t s l i e on a s t r a i g h t l i n e . From a smoothing c a l c u l a t i o n we o b t a i n t h e c o n s t a n t s o f t h e c o r r e s - p o n d i n g A r r h e n i u s e q u a t i o n f = foexp.[

-

&i ] a s : f o = (5.3 t 4)1014 s e c

-

1

.

6. I n a d d i t i o n t o t h e t e m p e r a t u r e dependence o f t h e l o g a r i t h m i c

-

d e c r e m e n t , t h e dependence on t h e n a t u r a l f r e q u e n c y w a s a l s o s t u d i e d f o r some r e s o n a t o r s . These i n v e s t i ~ a t i o n s were r a t h e r d i f f i c u l t , s i n c e t h e bar d i m e n s i o n s , and h e n c e t h e n a t u r a l f r e q u e n c i e s , v a r i e d u n c o n t r o l l a b l y as t h e r e s u l t o f e v a p o r a t i o n . F i g . 5 shows t h e

(9)

t e m p e r a t u r e . I t w i l l b e n o t e d t h a t i n t h e r e g i o n of the damping maximum a d i s ~ e r s i o n s t e p i s superimposed on t h e normal t e m p e r a t u r e dependence o f t h e n a t u r a l f r e q u e n c y o r o f t h e modulus. The, s o l i d c u r v e s i n I : i , g . 5 h o l d f o r a s i m p l e r e l a x a t i o n p r o c e s s and confol-m

t o t h e f u n c t i o n s

and

I n computing them, t h e v a l u e s f o r Q , f T and Smax were i n s e r t e d . The measured p o i n t s a g r e e w e l l w i t h t h e c u r v e s . I t must be p o i n t e d o u t , however, t h a t a s m a l l , s y s t e m a t i c d e v i a t i o n became n o t i c e a b l e i n t h e d i r e c t i o n o f low t e m p e r a t u r e s , t h e measurement v a l u e s i n g e n e r a l on t h e low t e m p e r a t u r e s i d e o f t h e maximum b e i n g s i t u a t e d below t h e v a l u e s vrhlch would be e x p e c t e d a c c o r d i n g t o e q u a t i o n (1) f o r t h e s i m p l e r e l a x a t i o n p r o c e s s ( F i g . 9 ) . 7. Because o f t h e l a r g e nurnber o f r e s o n a t o r s i n v e s t i g a t e d i t i s p o s s i b l e t o p l o t t h e l o g a r i t h m i c decrement as a f u n c t i o n o f t h e f r e q u e n c y . F i g . G shot,s t h e s t ~ r n c l a r d i z e d v a l u e s o f t h e v a r i o u s r e s o n a t o r s f o r t = - 1 7 O C , Here, a g a i n , t h e s o l i d c u r v e c o r r e s p o n d s t o t h e v a r i a t i o n i n a s i m p l e r e l a x a t i o n p r o c e s s ( F i g . 1). To sum up: ( a ) There i s a r e l a x a t i o n p r o c e s s i n i c e which i s e x p r e s s e d as a maximum o f t h e dumping and n d i s p e r s i c n o f t h e modulus,

( b ) The magnitude o f t h e e f f e c t depends on t h e c r y s t a l l o g r a p h i c L : r * l e n t a t i o n and o n t h e - t y p e o f d e f o r m a t i o n .

( c ) W i t h i n the measubing r a n g e i t i s i n d e p e n d e n t of f r e q u e n c y and t e m p e r a t u r e .

(10)

( d ) The p r e c e s s c a n b e d e s c r i b e d i n good a p p r o x i m a t i o n by a s i m p l e r e l a x a t i o n p r o c e s s w i t h a s i n g l e r e l a x a t i o n t i m e , w h i c h d e - p e n d s on t h e t e m p e r a t u r e a c c o r d i n g t o a n A r r h e n i u s e q u a t i o n . ( e ) The c o n s t a n t s o f t h e A r r h e n i u s e q u a t i o n a r e : Q = 1 3 . 4 k c a l = 0.58 e v ; To = 3 1 0 - l 6 sec. R e l a x a t i o n Time The s t r u c t u r e o f t h e

ice

The p o s i t i c n o f t h e oxygen a t o m s c a n be d e t e l n ~ l n e d d i r e c t l y i n i c e by means o f X-ray methods. The oxygen a t o m s form a h e x a g o n a l l a t t i c e o f t h e k i u r t z i t e t y p e . I n t h i s arrangement; e a c h o x y g e n atom i s s u r r o u n d e d , i n good a p p r o x i m a t i o n , t e t r a h e d r i c a l l y by i t s f o u r n e a r e s t n e i g h b o u r s . The X-ray s t u d i e s c a n g i v e n o i n f o r m a t i o n con- c e r n i n g t h e p o s l t i ~ n of. t h e p r o t o n s i n t h i s l a t t i c e e l e m e n t ,

V a r i o u s o t t - e r s t r u c t ~ l r a l i n v e s t i g ~ t i c n s , u s i n g t h e r e f r a c t i o n o f n e u t r o n and e l e c t r o n beams s u r g e s t a n arr-angement o f t h e p r o t o n s o f t l , e k i n d s u g g e s t e d b y P a u l i n g 'lo) a n d B e r m 1 a n d F o w l e r (11) I t ctrn b e s t b e described by t h e f o l l o w i n g f o u r r u l e s . 1. The p r o t o n s are s i t u a t e d on t h e l l n e s c o n n e c t i n g t h e n e a r e s t n e i g l ~ b o u r l n g o x y g e n atoms. 2. T h e r e are -two s t a . b l e p o s i t i o n s o f t h e p r o t o n s a l o n g t h e s e c o n n e c t i n g 1 l n c s. 3. On e a c h o f t h e s e c o n n e c t i n g l i n e s t h e r e i s o n l y o n e p r o t o n . 4. On t h e f o u r c o n n e c t i n g l l n e s b e l o n g i n g t o a s i n g l e oxygen atom t h e f o u r p r o t o n s

a r e

s o d i s t r i b u t e d t h a t on two o f t h e l i n e s t h e y t a k e t h e p o s i t i o n n e a r e s t t h e atom i n q u e s t i o n and o n t h e O t h e r two t h e p o s i t i o n r e m o t e s t t h e r e f r o m . I n c o n s l d e ~ ~ a t l o n o f t h e s e r u l e s A m u l t i p l i c i t y o f d i f f e r e n t c o n f i g u r a t i o n s c a n be c o n s t r u c t e d . C o m h i n a t o r i a l c o n s i d e r a t i o n s rJ y i e l d ( 3 / 2 ) p o s s i b l e c o n f l g u r n t i o n s f o r N m o l e c u l e s . The r e s u l t - i n g v a l u e o f 0.82 c r i l p e r mole O C f o r t h e z e r o p o l r ~ t e n t r o p y i s a l s o d e r i v e d from t h e m e a s u r e m e n t s ( 1 2 )

.

T h l s a g r e e m e n t i s a b a s i c

confirmation o f t h e model. I n a n i d e a l c r y s t a l , however, t h e

(11)

s i n c e I n such a c a s e t h e p r o t o n s on a r i n g of a t l e a s t s i x m o l e c u l e s would have t o t r a n s f e r s i m u l t a n e o u s l y from o n e p o s i t i o n t o a n o t h e r . A p a r t from t h e f a c t t h a t t h i s r i n g would h a v e t o s a t i s f y c e , r t a i n c o n d i t i o n s f o r t h e I n i t i a l p o s i t i o n , such a c o l l e c t i v e jump would r e q u i r e a v e r y h i g h a c t i v a t i o n e n e r g y , and i s t h e r e f o r e h i g h l y

improbable. However, when we t a k e i n t o a c c o u n t t h e d e f e c t s p r e s e n t i n e a c h c r y s t a l i t i s q u i t e a s i m p l e m a t t e r t o c o n s t r u c t p r o c e s s e s which c o u l d l e a d t o a t r a n s f o r m a t i o n o f t h e c o n f i g u r a t i o n . A s l a t t i c e d e f e c t s s u i t a b l e f o r o u r problem t h e r e a r e i n f r a c t i o n s o f t h e a b o v e - c i t e d c o n d i t i o n s f o r t h e p r o t o n d i s t r i b u t i o n (13) An i n f r a c t i o n of Rule 3 l e a d s t o a 0-0 c o n n e c t i n g l i n e o c c u p i e d e i t h e r by two p r o t o n s , D - d e f i c i e n c i e s

,

o r t o d e f i c i e n c i e s l a c l r i n g t h e p r e s c r i b e d p r o t o n , L - d e f i c i e n c i e s . Both d e f i c i e n c i e s a r e p r e s e n t i n e q u a l c o n c e n t r a t i o n . They a r i s e by r e a s o n o f a p r o t o n jumping from t h e l i n e a,ssigned t o i t t o a c o n n e c t i n g l i n e of one o f t h e n e i g h b o u r i n g o w g e n atoms. A s a r e s u l t a n L - d e f i c i e n c y r e m a i n s

a t t h e abandoned p o s i t i o n and a D - d e f i c i e n c y a r i s e s a b o u t t h e new p o s i t i o n . P i g . 7 a i l l u s t r a t e s how such p r o t o n jumps may produce a

d i f f u s i o n o f t h e s e two deficiencies. It i s a p r c g r e s s i o n of t h e p a r t i c l e s from one p o t e n t i a l w e l l t o t h e n e x t , a s h a s been d e a l t w i t h t h e o r e t i c a l l y i n v a r i o u s p a p e r s (14'15). The jumping o f a

p r o t o n a l o n g i t s 0-0 c o n n e c t i n g l i n e produces two d e f i c i e n c i e s which c o r r e s p o n d t o a n i o n i z a t i o n o f t h e oxygen atoms j o i n e d by t h e l i n e . Moreover, t h e s e v a c a n c i e s c a n be d i f f u s e d by a r e p e t i t i o n o f t h e

same p r o t o n jump ( P i g . 7 b ) . Common t o b o t h t y p e s o f d e f i c i e n c y i s

t h e f a c t t h a t t h e y l e a v e b e h i n d them m o l e c u l e s which t h e y h a v e touched i n t h e c o u r s e o f t h e i r d i f f u s i o n i n a changed p o s i t i o n , ,i .e

.

,

R c o n f i g u r a t i o n t r a . n s f o r m a t i o n r e s u l t s from t h e i r m i g r a t i o n .

R e l a x a t i o n time

According t o Bass t h e c h e m i c a l - r e l a x a t i o n c a n be a t t r i b u t e d t o a change o f c o n f i g u i - a t i o n . The & p e e m e n t between t h e r e s u l t s of t h e m e c h a n i c a l measuremerlt wit11 r e s p e c t t o a c t i v a t i o n e n e r g y and t h e f r e q u e n c y o f t h e p r o c e s s w i t h t h e v a l u e s o f t h e d i e l e c t r i c

(12)

be a s s o c i a t e d w i t h a p r o c e s s which would a l s o e x p l a i n t h e d i e l e c t r i c phenomena t h a t h a v e b e e n d e s c r i b e d . The d i f f u s i o n o f t h e D- and L-deficiencies a r e foremost among t h e s e , s i n c e t h e y r e s u l t ' i n a

r o t a t i o n of t h e m o l e c u l a r d i p o l e t o w a r d s t h e f i e l d . F u r t h e r , i t

w i l l now be assumed t h a t t h e r a t e o f d l f f u s i o n of t h e L - d e f i c i e n c i e s i s c o n s i d e r a b l y l e s s t h a n t h a t o f t h e D - d e f i c i e n c i e s , s o t h a t now we may c o n c e n t r a t e on t h e l a t t e r . Such a r e s t r i c t i o n appe:Ws r e a s o n - a b l e , s i n c e t h e e f f e c t o f a n L - d e f i c i e n c y on t h e p o t e n t i a l o f t h e p r o t o n s I n v o l v e d i n a c o n t i n u e d d i f f u s i o n n u s t c e r t a i n l y b e l e s s , owing t o t h e i r g r e a t e r s e p a r a t i o n , t h a n t h e p o t e n t i a l d i s t u r b a r l c e which 1;he two p r o t o n s of t h e D - d e f l c i c n c y e x p e r i e n c e by r e a s o n o f t h e i r c l o s e n e s s t o e a c h o t h e r . T h i s means t h s t t h e p r o b a b i l i t y o f a Jump, and hence t h e d i f f u s i o n c o n s t a n t s , d i f f e r p e a t l y from e a c h o t h e r . L e t t h e mean d i f f u s i o n d i s t a n c e o f t h e D - d e f i c i e n c y from g e n e s i s t o a n n i h i l a t i o n be d m I t i s now p o s s i b l e t o d i v i d e u p t h e c o r i f i g u r - a t i o n t r a n s f o r m a - t i o n i n t o s t a t i s t i c a l l y i n d e p e n d e n t p r o c e s s e s . These p r o c e s s e s are i d e n t i c a l w i t h t h e h i s t o r i e s o f t h e d e f i c i e n c i e s , i . e . , t h e y are p r o c e s s e s made up o f t h e g e n e s i s o f t h e d e f i c i e n c y , i t s d i f f u s i o n t h r o u g h t h e c r y s t a l and i t s a n n i h i l a t i o n by a r e c l p r o c a l d e f i c i e n c y . The r e l a x a t i o n t i m e i s a measure o f t h e time r e q u i r e d f o r t h e forma- t i o n o f a d e f e c t a t a n i n ( l i v i d u a 1 m o l e c u l e and i t s a n n i h i l a t i o n by d l f f u s i o n . Thus the r e l a x a t i o n time i s d e t e r m i n e d f o r s m a l l

d i f f u s i o n times ( i . e . , t i m e s which c o r r e s p o n d t o h i g h r a t e s o f d i f - f u s i o n and small d i s t a n c e s ) b a s i c a l l y by t h e f i r s t p r o c e s s , l e e . , t h e f o r m a t i o n o f t h e d e f i c i e n c y . I n o t h e r words, i n t h e l i m i t i n g c a s e w e h a v e a s1mpl.e r e l a x a t i o n p r o c e s s and t h e d i s t a n c e o f t h e ' d l f f u s i o n i s talren i n t o a c c ~ u n t o n l y as a c o r r e c t i o n . I n t h e model t l l i s i s clone by I n t r o d u c i n g n d i f f u s i o n d i s t a n c e o f l e n g t h d between t h e two p o t e n t i a l w e l l s f o r which a s i m p l e r e l a x a t i o n p r o c e s s i s d e s c r i b e d ( F i g . 8a a n d b ) .

The model may t h u s b e d e s c r i b e d n s f o l l o w s : I n t h e c r y s t a l t h e r e a r e N/dt o f t h e above-mentioned d i f f u s i o n d i s t a n c e s , where

d ' Is t h e number o f l a t t i c e p o i n t s s i t u a t e d a l o n g t h e p a t h d . A l l

(13)

expanded model. I f t h e y a l l r u n i n o n e d i r e c t i o n t h e n t h e e n t i r e c r y s t a l 1s f o l d e d o v e r . The particle^^^ which c o r r e s p o n d t o t h e expanded model and which l1,e i n t h e two p o t e n t i a l w e l l s

are

t h u s t h e i n d i v i d u a l d i f f u s i o n p r o c e s s e s . The t r a v e r s i n g o f such a d i f - f u s i o n d i s t a n c e b r i n g s a b o u t t h e f o l d i n g o v e r o f t h e d ' m o l e c u l e s l y i n g b e t w e e n them i n t o a n o t h e r o f t h e p o s s i b l e p o s i t i o n s i n t h e i c e l a t t i c e c o n f o r m i n g t o t h e P a u l l n g model. The expanded t r u n s p o s l t i o n m o d a J u s t as i n t h e s i m p l e t r a n s p o s i t i o n n o d e l (see f o r example r e f e r e n e e (18) the eeeupaeien n u m k a ~ s a f Cha ewe )lelsl?r and t h a l r

change w i t h time u n d e r a n e x t e r n a l f o r c e can a l s o b e c a l c u l a t e d f o r t h i s expanded model. I n d o i n g s o , i t must a l w a y s b e borne i n mind

t h a t t h e " p a r t i c l e s " now r e p r e s e n t t h e i n d i v i d u a l d i f f u s i o n d l s - t a n c c s , They b e g i n w i t h t h e f a c t t h a t a t some l a t t i c e p o i n t o r

o t h e r a d e f e c t a r i s e s which b e g i n s t o migrate t h r o u g h t h e c r y s t a l u n t i l f i n a l l y i t i s a n n i h i l a t e d a t a d e f e c t o f o p p o s i t e t y p e .

The p r o b n b l l l t y f o r t h e origination o f a d e f e c t d i s t a n c e i s wo and d e p e n d s on t h e t e m p e r a t u r e a c c o r d i n g t o a n e x p o n e n t i a l f u n c t i o n o f t h e forrn A s i n t h e s i m p l e c a s e , i t i s i n f l u e n c e d by a n e x t e r n a l f i e l d and f o r a p o t e n t i a l v a r i a t i o n q i t h a s , I n f i r s t a p p r o x i m a t i o n , t h e form The d i f f u s i c n problem a s s o c i a t e d w i t h t h e f o r m a t i o n o f t h e d e f i c i e n c y c o r r e s p o ~ l d s t o h e a t c o n d ~ c t i o n i n a unilaterally, i n f i n i t e l y c x t e n d - ed medium, I f w e a t t e m p t , a s u s u a l , t o draw up t h e o c c u p a t i o n b a l a n c e s h e e t o f t h e two h o l e s , w e must f i r s t t a k e i n t o a c c o u n t t h e " p a r t i c l e s " which l e a v e t h e h o l e . The o t h e r h o l e a c t s as i f w e w e r e i n a u n i l : r t e r a l l y , i n f i n i t e l y e x t e n d e d medium t h r o u g h t h e s u r f a c e o f which p a r t i c l e s a r e c o n t i n u a l l y b e i n g i n t r o d u c e d which

(14)

t h e n b e g i n t o d i f f u s e . T h i s f l u x o r i g i n a t i n g from t h e s e c o n d h o l e h a s t h r e e components. I t c a n h e c a l c u l a t e d by t h e method d e s c r i b e d i n r e f e r e n c e (17). ( a ) A c o n s t a n t f l u x woNo, which c o n s t i t u t e s t h e e q u i l i b r i u m f l u x . A t a d i s t a n c e d from t h e s u r f a c e , i n t h e u n i l a t e r a l l y e x t e n d - e d medium i t h a s t h e v a l u e : d FAF = Nowo e r f c

-

2 6

'

where x i s t h e d i f f u s i o n c o e f f i c i e n t . ( h ) A p e r i o d i c f l u x f o r which t h e p o t e n t i a l v a r i a t i o n s are r e s p o n s i b l e . Here, fit t h e f i i s t a n c e d : ( c ) The p e r i o d i c v a r i a t i o n s o f Ni a l s o r e s u l t i n a f l u x : ' The o c c u p a t i o n i n d i c e s Ni c o n s i s t o f : From t h e s e e q u a t i o n s we o b t a i n t h e f o l l o w i n g h y p o t h e s i s f o r t h e c h a n g e i n t i m e of t h e number o f p a r t i c l e s : d N 1

- - -

-

3 w, N , + Nowo e r f c

-

-

q l u t e - ( l + i ) a + d t 2 m W b

kT

N2e

(15)

dN2 - ii 9 i w t e - ( l + i ) a +

- - -

d t w 2 N 2 + NowO e r f c

-

2 G t

+

w 0

-

kT N 1 e AM, vsoe - ( l + l ) a S u b t r a c t i o n of t h e two e q u a t i o n s g i v e s : d

-

d t ( N , - N , ) =

-

w o ( l + e - ( l + i ) a )

f

N - N + ~l ( I J , + N 2 ) e The I n t e g r a l of t h l s e q u a t i o n i s : -

9

N 2

-

14, - KT (N, + N 2 ) e i o t 1

.

l+i W w o ( l + e

The Imaglnnry p a r t o f t h l s e x p r e s s i o n c o n s t i t u t e s t h e v a l u e wi:ich i s measured by t h e l o @ r I t h m i c d e c r e m e n t . F o r

a

<< 1 and employing

,

and a f t e r a few c o m p u t n t l o n s , t h e t h e a b b r e v i a t i o n T =

-

2tlo

f r e q u e n c y and t e m p e r a t u r e dependence of 6 I s found t o he:

I n a c c o r d a n c e w l t h t h e a s s u m g t i o n t h a t tkic? e f f e c t o f t h e d i f f u s i o n i s c o n s i d e r e d s m ~ : l l , t h i s r e s u l t I s p r e s e n t e d I n t h e form of a s i m p l e p r o c e s s m o d i f i e d by a c o r r e c t l c n term. F o r l a r g e

x

and

s m ~ l l (1, e q u a t i o n ( 5 )

,

as r e q u i r e d , becomes t h e co1'1-esponding exprWt+s- ; i o n of t h e s i m p l e p r o c e s s , A b r i e f g l a n c s shows t h a t t h e m o d i f i e d cul-ve 1-01- WT < 2.4 i s above t h e c u r v e o f t h @ s i m p l e model and f o r

U ) T > 2 . ~ I S below i t . I f w e a g a i n starlt!~.i-dize the two c u r v e s a t

t h e s : m c h e l p b t , t h e y c ~ l r ~ c l d e up t o a b o u t W T = 1 and from WT = 1 the m o d l f i e ~ ? c u r v e i s s-ituatecl above t h e s i m p l e o n e . T h i s asjrmrnetry co1-r-es)1onr1s t o t h e e x p e r i m e n t a l l y obsel-ved d e v i u t l o n s .

(16)

A q u a n t i t a t i v e comparison o f e q u a t i o n ( 5 ) w i t h t h e e x p e r i m e n t a l r e s u l t s r e q u i r e s a knowledce o f t h e v a l u e of a and i t s dependence 011 t h e t e m p e r a t u r e . N o w , accorcllng t o v a r i o u s es timates t h e a c t i v a - t i o n e n e r g y o f t h e d i f f u s i o n c o n s t a n t x I s a b o u t 2 k c a l p e r mole. I t s a b s o l u t e v a l u e a t t h e t e m p e r a t u r e s of measurement i s a p p r o x i - m a t e l y 1 0 " l a t t i c e steps p e r second. d 1 i s p r o p o r t i o n a l t o

%,

i . e . , a p p r o x i m a t e l y 10.. - 5 0 l a t t i c e d i s t a n c e s , w i t h a n a c t i v a t i o n 1 e n e r g y /3 t h a t o f 7;. I n g e n e r a l w hail a v a l u e i n t h e v i c i n i t y of

l o 4 .

\ l i t 1 1 t h e s e rough f i g u r e s we g e t a v a l u e o f '17 f o r a. The t e m p e r a t u r e depend-

e n c e o f a i s c o n s i d e r a b l y l e s s t h a n t h a t o f ?;, s o t h a t t o b e g i n -

w i t h i t a p p e a r s , l u s t i f i e 4 t o p u t n c o n s t a n t i n t h e t e m p e r a t u r e

i n t e r v a l r e r r e s e n t e d by a c u r v e o f t h e t y p e found i n fpig. 9 a n d 10. I n F i g . 9 and 1 0 t h e comparison o f t h e s i m p l e and t h e m o d i f i e d t h e o r y i s car.rlied o u t w i t h a n e x p e r i m e n t a l c u r v e , where a v a l u e o f

'/5 i s assumed f o r a . I n FIE. 9 a d i s c r e p a n c y w a s c l e a r l y evi(1ent

betr;eer~ t h e measured and t h e t h e o r e t i c a l c u r v e t o t h e r i g h t o f t h e maximum. This c l l f f e r e n c e showed up i n a l l t h e measurements.

Wow~ver, t h i s i s J u s t what i s e x p l a i n e d b y t h e c o r r e c t i o n i n t h e m o d i f i e d t h e o r y and e v e n i t s o r d e r of magnitude I s p r e d i c t e d

( F i g . 1 0 ) .

I wish t o t h a n k P r o f . Cr. 11.0. Kneser f o r s u g g e s t i n g t h i s work and f o r h i s c o n s t a n t i n t e r e s t i n i t s p r o g r e s s .

I a l s o wish t o t h a n k Dip1.-Ing. S. Magun f o r h e l p i n g I n many ways d u r i n g i t s e x e c u t i o n .

P h y s i c s c a n d l d a t e E. Vals w a s k i n d enough t o grow t h e r e q u i r e d c r y s t a l s i n a n a p p a r a t u s f i n a n c e d from t h e f u n d s of t h e R e s e a r c h C o r p o r a t i o n . My t h a n k s t o them a r e a l s o e x p r e s s e d h e r e . I a m p ; i r t l c u l u r l y o t ~ l l g e d t o Dip1

.

-llhys. W. Pechhold for many v a l u a b l e d i s c u s s i o n s . The Ileutsche F o r s c ~ i u n ~ s ~ m e i r i s c h n f t a l s o s u p p c r t e d me I n a v e r y k i n d manner.

(17)

R e f e r e n c e s

1. E r r e r a , M . J . J. P h y s , ' R a d i u m , 5: 3 0 4 , 1924.

2. Auty, P. and C o l e ,

R.N.

J. Chem. Phys. 20: 1 3 0 9 , 1952. 3, G r a n i c h e r , H . , J a c c a r d , C . , S c h e r r e r , P. and S t e i n e m a n n , A. F a r n d a y D i s c u s s i o n s . Amsterdam, 1957. 4. E d e r , F . X . Ann. P h y s i k , 1: 381, 1947. 5. K n e s e r , H.O., Magun, S. a n d Z i e g l e r , G. ~ a t u r w i s s . 42: 437, 1955. 6. B a s s , R . P 1 s . s r r t a t i c n . S t u t t g a r t , 1 9 5 8 , R e p r i n t e d i n 2 . P h y s i k , v o l . 1 5 3 , 1958. 7. B o r d o n i , P.G. and Nuovo, M. R i c . S c i . 24: 560, 1954.

8. K n e s e r , H.0. Z . angew. Phys. 3: 113, 1951. A u s e f u l estimate

o f t h e a i r damping o f l o n g i t u d i n a l o s c i l l a t i o n s i s o b t a i n e d by r e g a r d i n g t h e b a r s u r f a c e a s a p i s t o n o s c i l l a t o r and e s t i m a t i n g t h e e n e r g y r B a d 1 a t e d from i t .

9. Z e n e r , C . E l a s t i c i t y a n d a n e l a s t i c i t y i n m e t a l s . 1 9 4 8 , 10. P a u l i n g , L. The n a t u r e o f t h e c h e m i c a l bond. 1940.

11. H e r n a l , J . C . and F o w l e r , H . H . J. Chem. Phys. 1: 515, 1933. 1 2 . G i a u q u e , '1f.F. and A s h l e y , M. Phys. Rev. 4 3 : 81, 1933.

13. B j e r r u m , N. Dan. Mat. F y s . Medd. 27 ( l ) , 1951. 1.4. e r , A . Phys. Rev, 7 9 : 6 0 1 , 1950. 15. S e e g e r , A. fIandbuch d e r P h y s i k , V I I ( l ) , 1 9 5 5 . 1 6 . F r b h l i c h , H. T h e o r y of d i e l e c t r i c s . 1949. l'?. C a r l s l a w , H.S. and J i i g e r , J . C . C o n d u c t i o n o f h e a t i n : ; o l l d s . 1948

-

(18)

T a b l e

I

R e s o n a t o r s with I c e c y l i n d e r s o r i e n t e d p e r p e n d i c u l a r l y t o the hexagonal a x i s d 0 no. 1 2 . 4 5 6 7 S C) 1 0 1 1 12 13 11 15 16 1 7 I ,l C l l l 12,3 1 1 5 1 1 ,(I 6 , s 0 . 5 lo,.: 1 1 , O I l , O (;),Ss 5,4 1 1 , o 0,35 11,9 10,s 0 5 9,75 0,7 Hernarks From no, F r o m no. F r o m no. F r o m no. r'rom no. F r o m no. F r o m no, Darnpi ag m a x i m u m 1 I 1 dr,t:~x ~ i i

1

I I L i in1

i

26.3 .<(?I1 259,O 2Sc ) c ) 25.3,7 ' 1073 262.5 ! 4 0 1 0 2 0 s

j

0027 250 2 1 1 s 250 21 1 0 2 5 0 , s 2287 26.3

1

3040 267

1

5485 25!?, 5

i

2600 SGS gcn1"5(.),2

!

2090 25G 255,5 204

,

2( )( )(

-

837 200 297{) Q 4 .rl 2 5 2 5 2 5 2 6 2 0 3-5 24,5 2 5 2-1,s 2 4 2 5 32,s 3 1 2 4 3 1 2 5 3 2 2 4 , s 3 2 24 32,s 2 4 n C l I 1 O , S 1 0,785 0 4 0,73 0 , 0 , 5 5 0 , 0,502 0 , 5 0 2 0,375 0,725 0,47 0,935 0,74 0,73 0 , 7 2 0 6 0 4 r: d m a .-I .d .d :4 0 ~n o I I- 1- 1. 1, I- I 1. 1- 1- 1. 7' T L 7' T 1. '1' .! 1

1

I I L 0 1 o -18,O g 0 4 , s ,g 9 4 , s g 74.5 g 2 6 , s g 9 4 , 5 g 75,4 g 6 6 , 3 g 23,g g 1 1 , 9 g 0 4 , s g 17,3gcm"40,5 1 5 , s gcm2 1 5,4 3 5 > 4 g 15,4 g c m 2 35,4 g 15.4 gcm2 .35,4 h' 1 5 , 4 g c n l V 5 0 , 5 35,4 g 15,4 g c m b 4 S 3 5 , 4 g

(19)

T a b l e I1 R e s o n a t o r s w i t h i c e c y l i n d e r s o r i e n t e d p a r a l l e l t o t h e h e x a g o n a l a x i s T a b l e 111 cl 0 (H .r(

Dependence of a b s o l u t e v a l u e of damping maximum on

o r i e n t a t i o n a n d t y p e of d e f o r m a t i o n

I

I

4

1

260

,

4291) 1 3,G

I

( I ( 1 1 1 o,72 o,53 0,79 0,61 0,4s5 Hod 110. 1s 1 0 3 ) 21 2 2 -~ 0 4 . (d -??A t n D a m p i n g maximum G d .r( .A Hemarks :4 0 V) G

-

39,s g 262 4oGO L 39'8 g 25s 200() 3 O r i e n t a t i o n 11 C

LC

I1 ( ' 1 1 1

----

13,45 1 3 , ~ ~ I 1 , o 1 0 , O 6 , 3 7'

-

'1' 7' 7' Type o f d e f o r m a t i o n I 5,4 gcm2 3 5 , 4 6 1S,4gcm2 35,4gcn12 I 5,4

L

3.5 2 5 T

-

30 33 • 356,s 20 5 252 252 gcn1"50,5 21 70 30 5130 3,5 1330 1 3 0 400 7

1

3,O I100 1 30 F r o m no.

(20)

Pig* 1 Resonators

Pig* 2

-

Bar 8, longitudinal oscillations perpendicular to c axis.

(21)

F i g . 3

Dependence of logarithrn&c decrement on t h e d i r e c t i o n . L o n g i t u d i n a l o s c i l l a t i o n p a r a l l e l and p e r p e n d i c u l a r t o c a x i s , f = 2.9 kcps Fig. 4

-

Dependence of t h e r e l a x a t i o n frequency on t h e t e m p e r a t u r e , o

-

l o n g i t u ( 1 i n a l o s c i l l a t i o n p n r p e n d i c u l a r t o c a x i s , +

-

t o r s i o n a l o s c i l l a t i o n pel-pendicular t o c a x i s , 0

-

t o r s i o n a l o s c i l l a t i o n p a r a l l e l t o c a x i s , A c t i v a t i o n energy: 0.5@ ev

-

13.4 kcal/mole

-

1 f = 5.3 1014 s e c

(22)

F i g . 5

B a r 17. T o r s i o n a l o s c l l l ~ i t i o n t o c a x i s . f z 8 4 0 c p s

Pependence of t h e -1o.iprithmic decrement on t h e frecluency:

(23)

Fig. 7a

D- and L-def lclencies

Fig. 7b

Positive and negative deflciencies

-

Fig. 8a and b

(a) Simple transposition model

(24)

F i g * 9

Bar 13. Comparison o f s i m p l e t h e o r y w l t h t e s t r e s u l t s

-

F i g * lo

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including