• Aucun résultat trouvé

A remark about isogenies of elliptic curves over quadratic fields

N/A
N/A
Protected

Academic year: 2022

Partager "A remark about isogenies of elliptic curves over quadratic fields"

Copied!
3
0
0

Texte intégral

(1)

C OMPOSITIO M ATHEMATICA

G ERHARD F REY

A remark about isogenies of elliptic curves over quadratic fields

Compositio Mathematica, tome 58, n

o

1 (1986), p. 133-134

<http://www.numdam.org/item?id=CM_1986__58_1_133_0>

© Foundation Compositio Mathematica, 1986, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:

//http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

133

A REMARK ABOUT ISOGENIES OF ELLIPTIC CURVES OVER

QUADRATIC

FIELDS

Gerhard

Frey

Compositio Mathematica 58 (1986) 133-134

@ Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

We want to prove the

following

THEOREM:

Let p

be a

prime &#x3E;

240. Then there are

only finitely

many

elements j ~ Q

with

[Q(j): Q]

2 such that there is an

elliptic

curve E

with

j-invariant equal to j having

an

isogeny of degree

p rational over a

quadratic

extension

of 0.

At first we introduce some notation:

Let

X0(p)

be the modular curve

parametrizing elliptic

curves with

isogenies

of

degree p,

its Jacobian is denoted

by J0(p)

and its Eisenstein

quotient by

J

(cf. [Ma]).

Let be the

quotient mapping

from

J0(p)

to J.

The first

ingredient

we use is

Fact 1

(Mazur) : J(Q)

is finite.

Secondly

we use

Fact 2

(essentially

due to

Ogg):

Assume that

K|Q

is an extension such

that the residue field of K with

respect

to a

place q|2

is contained in

IF 4’

Then

for p

&#x3E; 240 there is no non constant function

f

on

X0(p)

rational

over K whose

pole

divisor has a

degree

4.

We indicate

shortly

how fact 2 follows: Let D be the

pole

divisor of

f.

Extend D to a divisor e of the minimal model

q-o(p)

of

Xo

with

respect

to q over

Oq (the ring

of

integers

with

respect

to

q).

Then

H0(X0(p)

X

F4, O(D IF 4))

is of dimension &#x3E; 1 and hence there is a

mapping fq : ~0(p)

X

F4 ~ P1 | F4

of

degree

4. Hence

#X0(p)(F4)

20. But due to

[Ogg]

one knows that

q-o( p)

X

F4

has at least

[ p/12]

+ 1

F4-rational points.

The third essential result is the celebrated theorem of

Faltings:

Fact 3: Let r be a scheme of finite

type

of

dimension

1 defined over a

finite number

field K

such that the set of K-rational

points 0393(K)

is

infinite. Then r X 0 contains a curve of genus 0 or genus 1.

Now we come to the PROOF OF THE THEOREM:

(1)

Let

X0p)(2)

denote the

symmetric product

of

X0(p)

with itself:

X0(p)(2) = (X0(p) X0(p))/2

where @

operates by interchanging

the

components.

p)(2)

Hence the

points

of

X0(p)(2) correspond

to sets

(x, y) :=

(3)

134

. We have a

mapping

by sending Q

to

(((x)

+

( y ) - 2( oo )))

where as usual oo is the cusp

corresponding

to i - oc on the upper half

plane

and

(( x )

+

( y ) - 2( oo ))

is

the divisor class of the divisor

(x) + (y) - 2( oo ).

f:=

~-1(J(Q))

is a 0-rational subscheme of

XO(p)(2)

of dimension 1. For otherwise the

image

of

X0(p)(2)

under (p would be zero

dimensional and connected.

But ~((~, 0)) =

is different

from

~((~, oo ) being

the zero element of J.

(ii)

Now assume that E is an

elliptic

curve defined over a

quadratic

field

KE

with a

KE-rational isogeny

of

degree

p. Let x be the corre-

sponding point

in

X0(p)(KE)

and let a be the involution of

KE/Q.

Then

x , Qx ~ X0(p)(2)(Q)

and since

(x - ( oo )

+ Qx -

(~)) ~ J0(p)(Q)

we have:

(x, 03C3x) ~ r(Q).

Now

assume that there are

infinitely

many different

points

on

X,(p)(0) obtained

in this manner. Then fact 3

implies

that there is a curve C in r X 0

having

genus 1. Now let C =

Cl,

... ,

Cn

be all the

conjugates

of C

over

0 and let T be an

automorphism

of 0

mapping

C

to

Ci,

If P E

C1(0)

n

F(Q)

then P = TP E

Ç(0).

Since we can assume

that we have

infinitely

many

points

in

C1(Q)

~

0393(Q)

we

get

that C is

already

defined over 0 and that

r(Q)

~

C(Q)

=

C(Q).

Let

CI

be the

preimage

of C in

X0(p) X0(p)

and

(without

loss of

generality) p1(C1)

= X0(p)

where pi is the

projection

of

X0(p) X0(p)

to the first

component.

The

degree

of

CI

over C is

equal

to 2.

Now choose a

point

P =

e C(Q)

and a Q-rational function z on C with

pole

divisor

equal

to

(g(C)

+

1)(P)

such that z has a zero in a

point Q E C(G)

with

Q

=

xl, yl

and

Xl =1=

x. Then z induces a 0-ra- tional function z, on

Cl

whose norm with

respect

to p 1 is non constant

Q-rational with

pole

divisor of

degree

4.

But this contradicts fact

2,

and hence the theorem follows.

References

[Fa] G. FALTINGS: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Inv.

Math. 73 (1983).

[Ma] B. MAZUR: Modular curves and the Eisenstein Ideal. Publ. Math. IHES 47 (1977).

[Ogg] A. OGG: Diophantine equations and modular forms. Bull AMS 81 (1985).

(Oblatum 22-VIII-1985) Fachbereich Mathematik Fachbereich 9

Universitàt des Saarlandes D-6600 Saarbrücken BRD

Références

Documents relatifs

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention