• Aucun résultat trouvé

On the rate of decrease in logical depth Theoretical Computer Science

N/A
N/A
Protected

Academic year: 2022

Partager "On the rate of decrease in logical depth Theoretical Computer Science"

Copied!
5
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the rate of decrease in logical depth

L.F. Antunes

a

,

1

, A. Souto

b

,

c

,

2

, P.M.B. Vitányi

d

,

e

,∗,

3

aUniversityofPorto&CRACS/INESC-TEC,RuadoCampoAlegre,1021,4169-007Porto,Portugal

bLaSIGE,FaculdadedeCiências,UniversidadedeLisboa,PortugalCampoGrande,1749-016Lisboa,Portugal

cDepartamentodeInformática,FaculdadedeCiências,UniversidadedeLisboa,CampoGrande,1749-016Lisboa,Portugal dCWI,SciencePark123,1098XGAmsterdam,TheNetherlands

eUniversityofAmsterdam,TheNetherlands

a rt i c l e i n f o a b s t ra c t

Articlehistory:

Received15March2017

Receivedinrevisedform26July2017 Accepted19August2017

Availableonline25August2017 CommunicatedbyL.M.Kirousis

Keywords:

Logicaldepth Kolmogorovcomplexity Compression

The logical depth with significance b of a string x is the shortest running time of a programforxthat canbecompressedbyatmostbbits.Anotherdefinition isbasedon algorithmicprobability. Wegiveasimplenew prooffortheknownrelationbetweenthe twodefinitions.Wealsoprovethefollowing:Givenastringwecanconsiderthemaximal decreaseinlogicaldepthwhenthesignificance parameterincreasesby 1.Thereexists a sequenceofstringsoflengthsn=1,2,. . .,suchthatthismaximaldecreaseasafunction ofnrisesfasterthananycomputablefunctionbutnotasfastastheBusyBeaverfunction.

Thisholdsalsoforthecomputationtimesoftheshortestprogramsofthesestrings.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Thelogicaldepthisrelatedtocomplexitywithboundedresourcesandmeasuresthetradeoffbetweenprogramsizesand runningtimes.Computingastringxfromoneofitsshortestprogramsmaytakeaverylongtime,butcomputingthesame stringfromasimple“print(x)”programoflengthabout|x|bitstakesverylittletime.

Aprogrampforx,i.e.suchthatU

(

p

)

=xwhereU isauniversalTuringmachine,oflargerlengththanagivenprogram qforxmayrequirelesscomputationtimethanqdoes.Thisneednotalwaysbethecase,asalongerprogrammightsimply performsomepointlessredundantsteps.

In generalwe associatelonger computation times withshorterprograms for x.As a consequence,one may raise the questionofhowmuchtimecanbesavedbycomputingagivenstringfromalongerprogram.

*

Correspondingauthor.

E-mailaddresses:antunes.lfa@gmail.com(L.F. Antunes),andrenunosouto@gmail.com(A. Souto),Paul.Vitanyi@cwi.nl(P.M.B. Vitányi).

1 This work was supported by “Project *NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics*/NORTE-01-0145-FEDER-000016”whichisfinancedbytheNorthPortugalRegionalOperationalProgramme(NORTE2020),underthePORTUGAL 2020PartnershipAgreement,andthroughtheEuropeanRegionalDevelopmentFund(ERDF).

2 ThisworkwassupportedbyLaSIGEResearchUnit,ref.UID/CEC/00408/2013andtheFCTprojectConfidentPTDC/EEI-CTP/4503/2014,tSQIGSecurity and Quantum InformationGroup,the Instituto deTelecomunicações(IT) Research Unit, ref. UID/EEA/50008/2013, and the FCT Post-doc scholarship SFRH/BPD/76231/2011duringwhichthemajorpartoftheworkwasdone.

3 CWIistheNationalResearchInstituteforMathematicsandComputerScienceintheNetherlands.

http://dx.doi.org/10.1016/j.tcs.2017.08.012 0304-3975/©2017ElsevierB.V.Allrightsreserved.

(2)

1.1. Previouswork

The above question was first considered by C. Bennett in [1]. The minimum time to compute a string by a b- incompressibleprogram was calledthe logicaldepthatsignificanceb ofthe string considered.Bennett also providedvari- ationsofthisdefinitionandstudiedtheir basicpropertiesandrelations.Amoreformal treatment,aswellasan intuitive approach,wasgivenin[4],Section 7.7.

1.2. Results

Section2introducesnotations,definitionsandresultsneededintheremainder.Section3presentstwoversionsoflogical depthandgivesasimplenewproofofquantitativerelations betweenthem.Section 4showsthat slightvariationsonthe significancelevelmaycausedrasticvariationsoflogicaldepth.Section5presentsconclusions.

2. Preliminaries

We usestring fora finitebinary string. Stringsare denotedby lower caseletters,such as x, y and z. Thelength ofa stringx(thenumberofoccurrencesofbitsinit)isdenotedby|x|,andtheemptystringby .Thus,|

|=0.Thenthstring inthelexicographiclength-increasingorderisviewedalsoasthenaturalnumbernandviceversa.

Computability,resource-boundedcomputationtime,self-delimitingstrings,big-Onotation,and(prefix)Kolmogorovcom- plexityarewell-knownandtheproperties,notations,aretreatedin[4].4 OriginallyKolmogorovcomplexitywasintroduced in1965in[2]andtheprefixversionin1974in[3].Thelength ofa self-delimitingversionofastringoflengthnwillbe n+2logn+1 wherelog denotesthelogarithmbase 2.Thatis,theself-delimitingversion ofxisx=1||x||0|x|xwhere||x||

denotesthelengthof|x|.Restrictingthecomputationtimeresourceisindicatedbyasuperscriptgivingtheallowednumber ofsteps,usuallydenotedbyd.

We choose a referenceoptimaluniversalprefixTuringmachine and call it U. Let x

,

y be strings. The prefixKolmogorov complexity K

(

x|y

)

ofxwithauxiliary yisdefinedby

K

(

x

|

y

) =

min

p

{|

p

| :

U

(

p

,

y

) =

x

}.

IfxisastringoflengthnthenK

(

x|y

)

n+O

(

logn

)

.ThenotationUd

(

p

,

y

)

=xmeansthatU

(

p

,

y

)

=xwithindsteps.The d-time-boundedprefixKolmogorovcomplexity Kd

(

x|y

)

isdefinedby5

Kd

(

x

|

y

) =

min

p

{|

p

| :

Ud

(

p

,

y

) =

x

} .

Iftheauxiliarystring yistheemptystring ,thenweusuallydropit.Similarly,wewriteU

(

p

)

forU

(

p

, )

.Thestringxis ashortestprogramforxifU

(

x

)

=xandK

(

x

)

= |x|.Astringxisc-incompressibleif|x|≥ |x|−c anditisc-compressibleif

|x|≤ |x|−c.

Define Q

(

x

)

=

p:U(p)=x2−|p|.In[3]L.A.LevinprovedintheCodingTheoremthat(see[4]Theorem 4.3.3fordetails):

logQ

(

x

) =

K

(

x

) +

O

(

1

)

3. Differentversionsoflogicaldepth

Thelogicaldepthasdefinedin[1]forastring(thefinitecase)comesintwoversions:onebasedonthecompressibility ofprograms ofprefix Turing machinesandtheother usingthe ratiobetweenalgorithmic probabilitieswithandwithout timelimits.

Thealgorithmicprobabilityversionisbasedontheso-calleda prioriprobability[4]anditstime-boundedversion:

Q

(

x

) =

U(p)=x

2−|p|

,

Qd

(

x

) =

Ud(p)=x

2−|p|

.

4 ThereadermaybelessfamiliarwiththeprefixTuringmachine.ItisaTuringmachinewithaone-wayread-onlyprogramtape,anauxiliarytape,one ormoreworktapesandanoutputtape.Alltapesarelinearanddividedincellscapableofcontainingoneoutofafinitesetofsymbols.Initiallythe programtapeisinscribedwithaninfinitesequenceof0’sand1’sandtheheadisscanningtheleftmostcell(theprogramtapeissemi-infinite).Whenthe computationterminatesthesequenceofbitsscannedistheprogram.Foreveryfixedcontentsoftheauxiliarytapethesetofprogramsforsuchamachine isaprefixcode(noprogramisaproperprefixofanotherprogram).AnotherconsequenceisthatifthecomputationofaprefixTuringmachinetakesd stepsthenforitsprogrampholdsthatd≥ |p|.TheprefixKolmogorovcomplexityisbasedontheprefixTuringmachinesimilartothe(plain)Kolmogorov complexitybasedonthe(plain)Turingmachine.

5 Sincewedealwithrunningtimesofcomputationsthefollowingcanhappen.TwodifferentreferenceoptimaluniversalprefixTuringmachinesmay havedifferentcomputationtimesforthesamecombinationofinput,auxiliarystring,andoutput.Itcanalsobethecasethattheyhavedifferentsetsof programs.LetUandUbetwooptimaluniversalprefixTuringmachinesinthestandardenumerationofprefixTuringmachines.Foreveryauxiliaryyand everyprogramqthereisaprogrampwith|q|= |p|+O(1)suchthatUd(q,y)=Ud(p,y)forintegersd,dandd=g(d)withgacomputablefunction.

Therefore,althoughUandUhavethesamelengthofshortestprogramsforastringx(withO(1)precision,thatis,uptoaconstantadditiveterm),the time-limitedprefixKolmogorovcomplexityofastringxmaydifferbyanon-constantadditiveterm.

(3)

Definition1.Letxbeastringandb anonnegativeinteger.Thelogicaldepth,version 1,ofxatsignificancelevel

ε

=2bis depth(ε1)

(

x

) =

min

d

:

Qd

(

x

)

Q

(

x

)ε

.

The definition oflogical depthbased onthe prefix Kolmogorov complexity version is basedon the minimal time the referenceoptimalprefixTuringmachineneedstocomputexfromaprogramwhichisb-incompressible.

Definition2.Letxbeastringandb anonnegativeinteger.Thelogicaldepth,version 2,ofxatsignificancelevelb,is

depth(b2)

(

x

) =

min

d

:

p

∈ {

0

,

1

}

Ud

(

p

) =

x

∧ |

p

| ≤

K

(

p

) +

b

,

theleastnumberofstepstocomputexbyab-incompressibleprogram.

Remark1.Therelationofalmostequalitybetweenthosedefinitionsisknown[4,Theorem 7.7.1]basedonthemoreinfor- mal [1,Lemma 3].As far aswe knowthat isthe onlyexisting proof. We give asimple newproof basedon algorithmic probability. 3

Theorem1.Letx beastringandb

,

d positiveintegers.Then

(i) depth(1)

2b

(

x

)

=d impliesdepth(b2)O(1)

(

x

)

=d,and

(ii) depth(b2)

(

x

)

=d impliesdepth(21)b

(

x

)

d forsomebb+K

(

b

)

+O

(

1

)

.

Proof. (i):Let Qd

(

x

)

2bQ

(

x

)

withd least.Letc be thegreatest integersuch that all programs computing xwithin d steps are c-compressible.Therefore every p such that Ud

(

p

)

=xsatisfies U

(

r

)

=pforsome r.Tocompute string xby U using program r requires that r isconcatenated withan extra program q of constant length c0 to restart U after it has computed p. Then Ud

(

U

(

rq

))

=xand |r|≤ |p|−cc.Forevery p there are possiblymore than onesuch r.Let P be the set ofthese p’s and R be theset ofthe r’s. Hence

rR2−|r|

pP2(|p|−cc). Thatis,the referenceoptimal universal Turing machine computes x withprobability atleast 2c+cQd

(

x

)

2c+cbQ

(

x

)

fromthe programs in R.Then Q

(

x

)

2c+cbQ

(

x

)

+2bQ

(

x

)

(the left-hand side comprises all halting programs for x no matter what is the running time andtheright-handside comprisesalowerbound onthecontributionoftheprogramsin R plusthecontributionof the programs in P). Thismeans that 2c+cb

<

1 and thereforec+cb

<

0,that isc+c

<

b. Among theprograms in P thereis aprogram whichisc-incompressible (otherwise c is notgreatest asassumedabove)andsince c+c

<

b itis

(

bc

)

=

(

bO

(

1

))

-incompressible.

(ii): Assumethatdistheleastnumberofstepsto computex byab-incompressible program.Bywayofcontradiction let Qd

(

x

) <

2BQ

(

x

)

with B=b+K

(

b

)

+e

>

0 foralarge enoughconstante.Letanauxiliary distribution R bedefined asfollows.Computablyenumeratetheset P ofallprograms psuchthat Ud

(

p

)

=x.Let R

(

x

)

=

pP2B−|p|.Then6 R

(

x

)

= 2BQd

(

x

) <

Q

(

x

)

.Thefunction RgivenB islowersemicomputable.Since Q isasemimeasureandR

(

x

) <

Q

(

x

)

forallxthe function Risasemimeasure.A program pP adds2−|p|+B probabilitytoR

(

x

)

andpistherefore

(

BO

(

1

))

-compressible given B,andhence

(

BK

(

B

)

O

(

1

))

-compressible.Itremainstoboundtheconstantterm.Forsufficientlylargee,

B

K

(

B

)

O

(

1

) =

b

+

K

(

b

) +

e

K

(

b

+

K

(

b

) +

e

)

O

(

1

)

b

+

K

(

b

) +

e

K

(

b

+

K

(

b

))

K

(

e

)

O

(

1

)

>

b

.

The first inequality follows from K

(

u+v

)

K

(

u

)

+K

(

v

)

+O

(

1

)

, andthe second inequality holds since K

(

b+K

(

b

))

K

(

b

,

K

(

b

))

+O

(

1

)

K

(

b

)

+O

(

1

)

and K

(

e

) <

e

/

2 for e large enough. Hence all programs that compute xin d steps are

(

b+1

)

-compressiblecontradictingtheassumption.Therefore Qd

(

x

)

2BQ

(

x

)

. 2

Remark2.Withb

,

dasinthetheoremaslightmodificationintheproofyields

1

2b+K(b)+O(1)

QdU

(

x

)

QU

(

x

)

1

2bO(1)

,

where(i)correspondstotherightinequalityand(ii)totheleftinequality. 3

6 WeassumethatR(x)>0.IfR(x)=0 thenthereisnoprogrampsuchthatUd(p)=xand(ii)isvacuouslycorrect.

(4)

Remark3. Notice thatit is possibleto use K

(

d

)

instead of K

(

b

)

in theabove proof by changing theconstruction ofthe semiprobabilityasfollows:knowingdgenerateallprograms pcomputingxwithindstepsandletthesemiprobabilitiesbe proportionalto2−|p|andthesumbelessthan Q

(

x

)

.Inthisway,K

(

b

)

inTheorem 1canbeimprovedtomin{K

(

b

),

K

(

d

)

}+ O

(

1

)

. 3

4. Thegraphoflogicaldepth

Slightchangesofthesignificancelevelb candrasticallychangethevalueofthelogicaldepth.

Lemma1.Let

φ

bedefinedby

φ (

n

) =

max

|x|=nmin

d

{

d

:

Ud

(

x

) =

x

}.

Then

φ

isnotcomputableandgrowsfasterthananycomputablefunction.

Proof. Ifa function

φ

as inthe lemma were computable, then foran x of length n we could run U for

φ (

n

)

steps on anyprogram oflength n+O

(

logn

)

. Among thoseprograms that halt within

φ (

n

)

steps, we could selecttheoneswhich outputx.Subsequently,wecouldselectfromthatsetaprogramofminimumlengthfromwhichxcanbecomputed.Sucha programhaslengthK

(

x

)

.ThiswouldimplythatK wouldbecomputable.ButthefunctionK isincomputable:contradiction.

Therefore

φ

cannot be computable.Sincethisholds foreveryfunction majoring

φ

, thefunction

φ

must growfasterthan anycomputablefunction. 2

Definition3.Thebusybeaverfunction B B:N→Nisdefinedby B B

(

n

) =

max

{

d

: |

p

| ≤

n

Ud

(

p

) < ∞} .

Thisis a variantin termsofnumber ofsteps fromthe original Busy Beaverfunction in[5].The following resultwas mentionedinformallyin[1].

Lemma2.Therunningtimeofaprogramp oflengthn thathaltsisatmostB B

(

n

)

.Therunningtimeofashortestprogram(shortest inprefixKolmogorovcomplexity)forastringx oflengthn isatmostB B

(

n+O

(

logn

))

.

Proof. ThefirststatementofthelemmafollowsfromDefinition 3.Thesecondstatementfollowsfromtheobservationthat K

(

x

)

n+O

(

logn

)

forevery xoflengthn. 2

Theorem2.Thefunction

f

(

n

) =

max

|x|=n,0bn

{

x

:

depth(b2)

(

x

)

depth(b2+)1

(

x

)}

growsfasterthananycomputablefunctionbutnotasfastastheBusyBeaverfunction.

Proof. Let

φ

betheincomputablefunctionofLemma 1.Foreveryn1 selectxnoflengthnsuchthatUφ (n)

(

xn

)

=xn.Since a shortestprogram can be compressedby at most O

(

1

)

bits we have depth(O2()1)

(

x

)

=

φ (

n

)

.The optimal referenceprefix Turingmachine U can compute xfromits self-delimiting version xof lengthn+O

(

logn

)

usingan O

(

1

)

-bitprogram in time g

(

n

)

withg acomputablefunction.

For every n we can consider the finite sequence Ln0

,

Ln1

, . . . ,

LnnK(x)+O(logn) with Lnm=depth(m2)

(

xn

)

depth(m2+)1

(

xn

)

(0≤mnK

(

n

)

+O

(

logn

)

), and

φ (

n

)

=nK(x)+O(logn)

i=0 Lni. Then, the average

(φ (

n

)

g

(

n

))/(

nK

(

n

)

+O

(

logn

))

is incomputable(asitgrowsfasterthananycomputablefunction),andthereforethefunction f definedby

f

(

n

) =

max

m

{

Lmn

:

0

m

n

K

(

x

) +

O

(

logn

)}

alsogrowsfasterthananycomputablefunction,since f

(

n

)

(φ (

n

)

g

(

n

))/(

nK

(

n

)

+O

(

logn

))

. 2 5. Conclusion

In[1]oneversionoflogicaldepthisbasedoncompressionandoneisbasedonalgorithmicprobability.Theseareclosely related[1,4].Wegaveanewproofofthisrelationbasedonincompressibilityandalgorithmicprobability.Forastringxthe logicaldepthwithsignificanceb istheminimumnumberofstepsdina computationofx froma program pthat isless than b bits longer than K

(

p

)

. This b is calledthe significance. There is a sequence of strings such that for each string

(5)

changingthesignificanceparameterbyonly1canchangethedepthbyalargeamount.Asafunctionofthepositionofthe stringinthesequencethisamountgrowsfasterthananycomputablefunctionbutnotasfastastheBusyBeaverfunction.

The computationtimesofshortestprograms cansimilarlyrisefasterthan anycomputable functionbutnotasfastasthe BusyBeaverfunction.

Acknowledgements

We thankananonymous personforcomments andsuggestingthenewproof ofTheorem 1andthereferees forcom- ments.

References

[1]C.Bennett,Logicaldepthandphysicalcomplexity,in:R.Herken(Ed.),TheUniversalTuringMachine: AHalf-CenturySurvey,OxfordUniversityPress, 1988,pp. 227–257.

[2]A.N.Kolmogorov,Threeapproachestothequantitativedefinitionofinformation,Probl.Inf.Transm.1 (1)(1965)1–7.

[3]L.A.Levin,Lawsofinformationconservation(non-growth)andaspectsofthefoundationofprobabilitytheory,Probl.Inf.Transm.10(1974)206–210.

[4]M.Li,P.M.B.Vitányi,AnIntroductiontoKolmogorovComplexityandItsApplications,Springer,NewYork,2008.

[5]T.Rado,Onnon-computablefunctions,BellSyst.Tech.J.41 (3)(1962)877–884.

Références

Documents relatifs

It follows from our analysis that the values of D-finite functions (i.e., functions described as solutions of linear differential equations with polynomial coefficients) may be

15 Institut f¨ur experimentelle und Angewandte Physik, Universit¨at Kiel, Kiel, Germany 16 Institute of Experimental Physics, Slovak Academy of Sciences, Koˇsice, Slovak Republic

12: Polar contour map of the phase of the complex variable s, the radius representing the magnitude of the zeta function, the azimuthal angle representing the phase angle PhZ of

We give a very simple algorithm to compute the error and complemen- tary error functions of complex argument to any given

Le diagnostic des infections neuro-méningées à entérovirus a pour but d’identifier l’agent infectieux et d’exclure une infection bactérienne ou herpétique ; il

(1) Regarding purposes - exploratory, because the main objective of the research is to clarify the influence of organizational factors and conceptual integration of the

We derive, adopting a direct method, the luminosity function and the formation rate of long Gamma Ray Bursts through a complete, flux-limited, sample of Swift bursts which has a

The decomposition of the Laughlin wave function in the Slater orthogonal basis appears in the discussion on the second-quantized form of the Laughlin states and is