• Aucun résultat trouvé

Parametrization of the deuteron wave function of the paris n-n potential

N/A
N/A
Protected

Academic year: 2021

Partager "Parametrization of the deuteron wave function of the paris n-n potential"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: in2p3-00017487

http://hal.in2p3.fr/in2p3-00017487

Submitted on 25 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Parametrization of the deuteron wave function of the

paris n-n potential

M. Lacombe, B. Loiseau, R. Vinh Mau, J. Cote, P. Pires, R. de Tourreil

To cite this version:

M. Lacombe, B. Loiseau, R. Vinh Mau, J. Cote, P. Pires, et al.. Parametrization of the deuteron wave

function of the paris n-n potential. Physics Letters B, Elsevier, 1981, 101, pp.139-140.

�10.1016/0370-2693(81)90659-6�. �in2p3-00017487�

(2)

Volume 101B, number 3 PHYSICS LETTERS 7 May 1981

PARAMETRIZATION OF THE DEUTERON WAVE FUNCTION OF THE PARIS N - N POTENTIAL

M. LACOMBE 1, B. LOISEAU and R. VINH MAU

Division de Physique Thdorique 2, lnstitut de Physique Nucl&ire, Orsay 91406, France

and LPTPE, Universitd Pierre et Marie Curie, Paris 75230, France

J. COT/~ and P. PIRI~S

Division de Physique Thdorique, lnstitut de Physique Nucl&ire, Orsay 91406, France

and

R. de TOURRE1L

Laboratoire GANIL, F-14201 Caen, France

Received 22 January 1981

We present a convenient analytical parametrization, in both configuration and momentum spaces, of the deuteron wave- function calculated with the Paris potential.

The deuteron wavefunction of the recently pub- lished Paris potential [1 ] reproduces quite well the known low energy properties and the electromagnetic form factor A ( q 2) o f the deuteron. In particular the predicted value of the asymptotic D- to S-wave ratio ~, 0.02608, is in excellent agreement with the recent high precision measurements o f ref. [2], 0.0259 -+ 0.0007, and ref. [3], 0.02649 + 0.00043. It has been shown furthermore by Klarsfeld et al. [4] that for internucleon distances r ~ 0.6 fro, this wavefunc- tion satisfies rigorous bounds imposed by the experi- mental deuteron data and now improved by the new experimental values of ~ [2,3].

In view of the use of this wavefunction in low and medium energy nuclear reaction problems, numerical values have been given in table VI of ref. [1]. We have also found that a cubic spline interpolation of this table reproduces very accurately the original wave- function. The numerical values and the cubic spline interpolation subroutine can be obtained on request. However, since in some cases an analytical form is use- 1 Facult~ des Sciences de Reims, 51-Reims, France.

Laboratoke associ~ au CNRS.

ful, we present here an algebraic parametrization of the Paris-potential deuteron wavefunction, in both configuration and momentum spaces.

It is appropriate to parametrize the radial wavefunc. tion components

U(r)/r

and

W(r)/r

as a discrete super- position of Yukawa-type terms since this was done for the potential itself. Therefore

U(r)

and

W(r)

of table VI of ref. [1 ] are parametrized as follows

n Ua(r ) = ~

C j e x p ( - m j r ) ,

J = l

(1)

n Wa(r ) = ~

D j e x p ( - m j r ) ( 1 + 3~m j r + 3/m2r2),

J=l

where the subscript a refers to "analytical".

The corresponding m o m e n t u m space wavefunction components are n

Ua(P)/p

= (2/701/2 ~

Cs/(p 2 + m~),

J = l n (2)

Wa(p)/p

= (2/1r)1/2 ~ .

D j / ( p 2 + m2).

J=l

(3)

Volume 101B, number 3 PHYSICS LETTERS 7 May 1981 T h e b o u n d a r y c o n d i t i o n s U a ( r ) ~ r a n d Wa(r ) -+ r 3 as r -+ 0 i m p l y 3 n ~ n n

,m2--o

J = l J = l =

(3)

I n o r d e r t o satisfy t h e s e c o n s t r a i n t s w i t h a c c u r a c y t h e last c o e f f i c i e n t o f Ua(r ) a n d t h e last t h r e e o f Wa(r) are t o b e c o m p u t e d w i t h t h e f o l l o w i n g f o r m u l a e n - 1

C n = - C C j ,

J = l O n _ 2 =

(.,2

m~_2

2

2

_ . , 2 _ 2 )

n - mn-2)(mn-1

n_3D

2

2 ~ ~'J+

2

+m 2)

X -mn-lmn

(mn-1

J= 1 m 2

n-3

n-3

× C

D j -

C

Djm 2)

J = l J = l (4) a n d t w o o t h e r r e l a t i o n s d e d u c e d b y c i r c u l a r p e r m u t a - t i o n o f n - 2, n - 1 a n d n. T h e masses

mj

are c h o s e n t o b e

mj = o~ + (J -

1 ) m 0 , w i t h m 0 = 1 f m - 1 a n d

a = (2mRIEDI)I/2/h

= 0 . 2 3 1 6 2 4 6 1 f m - 1 , w h e r e m R a n d E D are t h e n e u t r o n p r o t o n r e d u c e d mass a n d t h e d e u t e r o n b i n d i n g e n e r g y o f ref. [ 1 ] . This c h o i c e e n s u r e s t h e c o r r e c t a s y m p t o t i c b e h a v i o r . T h e values o f t h e p a r a m e t e r s C j a n d D j are l i s t e d in t a b l e 1. T h e a c c u r a c y o f t h i s p a r a m e t r i z a t i o n is i l l u s t r a t e d b y t h e m a g n i t u d e o f

,s (0 I

=

drI,, ,

-

r,12)"2

= 3 . 5 X 1 0 - 4 Table 1

Coefficients of the parametrized deuteron wavefunction com- ponents. The last

Cj

and the last three

Dj

are to be computed from eq. (4). The notation a -+ n stands for a X 10 +-n.

Cj

(fm -1/2)

Dj(fm -1/2)

0.88688076 + 00 0.23135193 - 01 -0.34717093 + 00 - 0 . 8 5 6 0 4 5 7 2 + 00 - 0 . 3 0 5 0 2 3 8 0 + 01 0.56068193 + 01 0.56207766 + 02 - 0 . 6 9 4 6 2 9 2 2 + 02 - 0 . 7 4 9 5 7 3 3 4 + 03 0.41631118 + 03 0.53365279 + 04 -0.12546621 + 04 -0.22706863 + 05 0.12387830 + 04 0.60434469 + 05 0.33739172 + 04 - 0 . 1 0 2 9 2 0 5 8 + 06 -0.13041151 + 05 0.11223357 + 06 0.19512524 + 05 -0.75925226 + 05 see eq. (4) 0.29059715 + 05 see eq. (4) see eq. (4) see eq. (4) a n d

ID = ( ? dr[W(r)- Wa(r)]2)l/2=4.0 X 10 -4.

We h a v e also c h e c k e d t h a t this p a r a m e t r i z a t i o n re- p r o d u c e s v e r y well t h e d e u t e r o n p a r a m e t e r s a n d f o r m f a c t o r o b t a i n e d in ref. [ 1 ].

References

[I ] M. Lacombe et al., Phys. Rev. C21 (1980) 861. [2] W. Grfiebler, V. K6nig, P.A. Schmelzbach, B. Jenny and

F. Sperisen, Phys. Lett. 92B (1980) 279.

[3] K. Stephenson and W. Haeberli, Phys. Rev. Lett. 45 (1980) 520.

[4] S. Klarsfeld, J. Martorell and D.W.L. Sprung, Nucl. Phys. A352 (1981) 113;

S. Klarsfeld, private communication.

Références

Documents relatifs

The computer studies of the required magnetic field were performed by choosing the curvature of the separate coil frag- ments and the configuration of the exter nal contour and

The systematic error in the corrections procedure was estimated by comparing results from two different meth- ods that are mathematically equivalent for normally dis- tributed

If the contribution of the nucleon anapole moment is put aside, the effect is much larger however, ranging from a factor 2 for the spin contribution to a factor 4 for the

The radiated cross sections and asymmetries were tabulated as input for the Monte Carlo code, while the Born cross sections and asymmetries were compared with the Monte Carlo output

The spin structure function integral can be used in the quark parton model to extract the helicity contributions to the proton of each type of quark and antiquark. Measurements

In summary, we have studied the many body effects of the quark condensate in the deuteron through the Feynman-Hellmann theorem and found out that the part of the deuteron

electromagnetic form factors in the space-like momentum transfer region... agreement supports the two-nucleon picture of the deuteron structure in the region

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des