• Aucun résultat trouvé

AAA+ ATPases: structural insertions under the magnifying glass

N/A
N/A
Protected

Academic year: 2021

Partager "AAA+ ATPases: structural insertions under the magnifying glass"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-03071111

https://hal.archives-ouvertes.fr/hal-03071111

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

magnifying glass

Matthew Jessop, Jan Felix, Irina Gutsche

To cite this version:

Matthew Jessop, Jan Felix, Irina Gutsche.

AAA+ ATPases:

structural insertions under

the magnifying glass.

Current Opinion in Structural Biology, Elsevier, 2020, 66, pp.119-128.

�10.1016/j.sbi.2020.10.027�. �hal-03071111�

(2)

AAA+

ATPases:

structural

insertions

under

the

magnifying

glass

Matthew

Jessop

1

,

Jan

Felix

2

and

Irina

Gutsche

AAA+ATPasesareadiverseproteinsuperfamilywhichpowera vastnumberofcellularprocesses,fromproteindegradationto genomereplicationandribosomebiogenesis.Thelatest advancesincryo-EMhaveresultedinaspectacularincreasein thenumberandqualityofAAA+ATPasestructures.This abundanceofnewinformationenablescloserexaminationof differenttypesofstructuralinsertionsintotheconservedcore, revealingdiscrepanciesinthecurrentclassificationofAAA+ modulesintoclades.Additionally,combinedwithbiochemical data,ithasallowedrapidprogressinourunderstandingof structure-functionalrelationshipsandprovidedarguments bothinfavourandagainsttheexistenceofaunifyingmolecular mechanismfortheATPaseactivityandactiononsubstrates, stimulatingfurtherintensiveresearch.

Address

InstitutdeBiologieStructurale,Univ.GrenobleAlpes,CEA,CNRS,IBS, 71Avenuedesmartyrs,F-38044Grenoble,France

Correspondingauthors:Jessop,Matthew(matthew.jessop@icr.ac.uk), Gutsche,Irina(irina.gutsche@ibs.fr)

1

Presentaddress:DivisionofStructuralBiology,TheInstituteofCancer Research,LondonSW73RP,UK.

2Presentaddress:UnitforStructuralBiology,VIBCenterfor InflammationResearch,Technologiepark-Zwijnaarde71,9052Ghent, Belgium.

CurrentOpinioninStructuralBiology2021,66:119–128 ThisreviewcomesfromathemedissueonFoldingandbinding EditedbyVicArcusandMargaretCheung

https://doi.org/10.1016/j.sbi.2020.10.027

0959-440X/ã2020TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creative-commons.org/licenses/by-nc-nd/4.0/).

Introduction:

the

AAA+

domain

architecture

AAA+ ATPases are widely used by cells as motors to powermechanicalworkortoactasmolecularswitchesor scaffolds, often as parts of macromolecular machines [1–4].TheuniversalAAA+ATPasemoduleiscomposed of two subdomains [4–6]. The N-terminal ‘large’ aba subdomain belongs to the ASCE group of P-loop NTPases,and isbuiltaroundacentral5-strand b-sheet carrying the highly conserved Walker A and Walker B motifs, as well as sensor 1 (S1) and arginine finger (R-finger) residues (Figure 1a,b). The Walker A motif (i.e. theP-loop)stabilises ATPbindingwhileWalkerB coordinatesanATP-boundmagnesiumionandprovides

the catalyticglutamate that,together with the polarS1 residue, primes a water molecule for ATP hydrolysis. Oligomerisation of AAA+ ATPases completesthe ATP bindingpocket,with mostAAA+proteins forming ring-shapedhexamers(Figure1c).Oligomerisationallowsthe R-fingertoactintrans,contactingtheg-phosphateofthe ATPmoleculeboundtotheanticlockwiseneighbouring subunit during hydrolysis (Figure 1d). In most AAA+ ATPases, the large subdomain is fused to a ‘small’ C-terminal a-helicallidsubdomain thatcloses over the nucleotide bindingsite andmediatesoligomeric assem-bly.Thissubdomainoftencontributesasecondarginine residue called sensor 2 (S2) to the ATP binding site, whichactseitherincisorintransdependingontheAAA+ ATPase family (Figure 1d). ATPase activity results in relative movements between the large and the small subdomains,whicharepropagatedwithintheoligomeric AAA+assemblyandtransducedtothefunctionaltarget. Thename‘AAA+(ATPasesassociatedwithvarious cel-lularactivities)’highlightstheremarkablediversityofthis protein superfamily, which is due to the fact that the conservedAAA+ATPasemodulecanbeappendedtoa plethoraofdifferentaccessorydomainsconferringavast numberoffunctions[7].Themostcommonfunctionof AAA+proteinsistheATPhydrolysis-driventranslocation of protein or DNA substrates through the central hex-americ channel. Often assisted by additional domains, cofactors, andbinding partners,proteintranslocationby AAA+ ATPasesresultsin target unfolding,disassembly and remodelling, whereas DNA translocation leads to unwinding duringreplicationandtranscription or pack-agingof viralgenomes.

ClassificationofAAA+ATPasesintoclades

In an effort to infer evolutionary relationships and commonfunctionaland mechanisticprinciples between AAA+ATPases,AAA+moduleswereclassifiedintoseven distinctcladesbasedonsequenceandstructural informa-tion available in 2004–2006 [3–5,8]. This analysis revealed that in addition to N-terminal and C-terminal accessory domains, the functions of AAA+ proteins are fine-tunedbyinsertionsofspecificstructuralelementsin the conserved AAA+ core. Each clade is defined as an evolutionary lineageandis furthersubdivided into pro-teinfamilies.Asummaryofthestructuralfeatures defin-ingtheAAA+cladesispresentedin Figure1a,b. Clades1and2aremostlynon-hexamericAAA+proteins and contain DNA polymerase clamp loaders and

Availableonlineatwww.sciencedirect.com

ScienceDirect

(3)

Figure1

(a)

(b)

(c)

Current Opinion in Structural Biology

OverviewoftheAAA+ATPasestructure.(a)Overviewofsecondarystructuralfeaturesandkeysequencemotifs.Thelocationsofclade-specific insertionsintheAAA+coreareindicated(exceptfortheN-terminalandC-terminalhelicesofClade4).(b)3Dstructuresofrepresentative monomersfromeachofClade1–7.Clade1=RFC3(PDBID:1SXJ),Clade2=Orc5(PDBID:5V8F),Clade3=ClpA-NTD(PDBID:6UQE),Clade 4=E1helicase(PDBID:2V9P),Clade5=RuvB(PDBID:1HQC),Clade6=NtrC1(PDBID:4LY6),Clade7=RavA(PDB3NBX).TheClade 6NtrC1structureisenlargedtoshowthelocationofkeymotifsin(a).Keymotifsandinsertionsarecolouredasin(a),aswellastheClade3pore loop1(PL1)coloureddarkgreen.(c)HexamericstructureofLonA(PDBID:6ON2)withmonomersA–Fcolouredindividuallyandboundsubstrate shownasaredsurfaceinthecentreofthehexamericring.Dottedboxesareshownovertwoadjacentmonomers,colouredasin(d).Asideview (below)focussedoncentreofthehexamericringshowaspiralstaircasearrangementofporeloopsaroundthesubstrate.(d)OverviewoftheATP

(4)

DNA-replicativehelicaseloadersrespectively;thefirstis the‘archetypal’ AAA+domain,whereasthesecond has an a-helicalinsertion between b2and a2.Clade3also hasanextraa-helixinsertedbetweenb2anda2,butthis helix is shorter and is followed by a substrate-binding loop(poreloop1orPL1)(Figure1b).Membersofthis ‘classic’ protein-remodelling clade possess a second R-finger and lack an S2 residue. Clade 3 is the most widelystudiedandextensivelyreviewedclade[7],and includesprominentmemberssuchasVps4,katanin,and the N-terminalAAA+domains ofdouble-ringed unfol-dases suchasClpB and Hsp104.Clades4–7allshare a b-hairpin insertion between a3 and b4, before the S1 motif, and are therefore grouped into the pre-sensor 1 insert(PS1i)superclade. Clade4 is composed exclu-sivelyofviralhelicases,andpossessesauniquedomain formed by a-helices N-terminaland C-terminalto the abacoreinsteadofthecanonicalAAA+lidsubdomain. Clade5istermedtheHCLRClade,reflectingthemain familiesthatitiscomposedof—HslU/ClpX, ClpABC-CTD,Lon, andRuvB.MembersofClade5possessno additionalfeaturestothePS1i,andsimilarlytoClade3, areinvolvedinproteinunfoldingandremodelling.Clade 6 ischaracterisedbyab-hairpininsertion ina2termed thehelix-2insert(H2i),andcontainsbacterialenhancer binding proteins(bEBPs)suchasNtrC1andPspF,and the unusual ‘AAA+ GTPase’ McrB. Clade 7 members also possess the H2i, but have an additional a-helical insertion between a5 and a6 called the pre-sensor 2 insert (PS2i). Several functionally divergent families such astheMCM helicase,MoxR,and dyneinfamilies are attributedtothisclade.

Cryo-EMinsightsintotheAAA+ATPasemechanism

As the classification of AAA+ ATPases was performed 15yearsago,onlyaboutadozenhighresolutionstructures of different representatives of this superfamily were available,mostly fromX-raycrystallographicstudies. At this time, the prevailing consensus was that AAA+ ATPases formed symmetric closed rings, with a few isolatedexceptions[3,4,9].Sincethecryo-EMrevolution in2015avastnumberofnewstructuresofAAA+ATPases have been published, and there have been more than 50 publicationspresenting cryo-EMstructures ofAAA+ ATPasessincethestartof2019(SupplementaryTable1). It is now apparent that most AAA+ ATPases show an asymmetric spiral arrangementof six monomers around the central pore (Figure 1c). Many of the published structures wereobtainedinthepresence of asubstrate,

which may play a role in the rearrangement of planar hexamericringsintospiralsto facilitatethreadingofthe substrate through the pore [10–12]. As the binding of ATPisknowntoberequiredforsubstrateengagement, mostofthestructureswereobtainedwithATP binding-efficientbuthydrolysis-defectiveWalkerBmutants,orin the presence of non-hydrolysableATP analogues. Sub-strate-bindingporeloopsformaspiralstaircaseengaging the substrate, with pore loop positions correlating with thenucleotidestate(ATP,ADP,oranapo‘seam’).These structures have allowed the inference of a common mechanism for ATP hydrolysis [7,12] which is based onthesequentialhydrolysisofATParoundthe hexame-ricring,withcorresponding‘hand-over-hand’movements ofporeloopsdrivingunidirectionaltranslocationof sub-stratethroughthepore.However,theuniversalityofthis mechanism is still underdebate [13]. Inaddition, the majorityofstructuresusedtodefinethismechanismare ofproteinsfromtheClassicClade[7,12].Incontrast,the PS1i superclade is much less studied despite its huge functional diversity.In thisreview,we presentan over-view of recent structures of AAA+ ATPases, with a particularfocusonstructuralinsertionsintheAAA+core of PS1isuperclade members.Wediscussthefunctional roles ofthese insertions,and revisit theclassificationof AAA+ ATPases in light of recently solved structures. Finally, we address the controversy surrounding the mechanism of AAA+ ATPaseactivity, underscoring the needforfurtherinvestigationtoclarifythegeneral appli-cabilityof proposedATP hydrolysismechanismsto the entire AAA+superfamily.

Structure

and

function

of

insertions

in

the

AAA

+

core

Clade 3 is by far the best-characterised clade, with many recent high resolution cryo-EM structures of Clade 3 members, including those of the proteasome [14,15–17], Vps4 [18], katanin [19], spastin [20,21], Bcs1 [22], Cdc48/p97/VCP [23–25], and ClpABC-NTD [26–29]yieldingvaluable insightintotheaction of pro-tein-translocatingAAA+ATPases.Asstatedabove,PL1, a short loop before a2, is responsible for binding to substratesduringtranslocation.Theseloopsusually con-tainanaromaticresiduethatnon-specificallyintercalates betweenproteinsubstrateresidues,formingaspiral stair-caseinthecentralpore(Figure1c)[7,12,30].A second-ary loop termedporeloop 2 (PL2), lessconservedthan PL1 [7], islocated betweenb3and a3formsanother spiralstaircasebelowPL1.TherolesofPL1andPL2in StructureandfunctionofAAA+ATPaseinsertionsJessop,FelixandGutsche 121

(Figure1LegendContinued)bindingsiteof(left)Clades1–6(ClpA-CTD,PDBID:6UQE)and(right)Clade7(MCM,PDBID6XTX).Schematicsof twoneighbouringmonomersareshownabove;largeandsmallsubdomainsofoneAAA+monomerarelabelledLandS,whilecorresponding subdomainsfromaneighbouringmonomerarelabelledL0andS0respectively.AsshowninzoomsoftheATPbindingsite(below),the domain-swappedarchitectureofClade7membersmeansthattheS2arginineactsintransandcontactstheg-phosphateoftheneighbouringmonomer, unlikethecanonicalS2ofClades1–6whichactincis.BothbindingsitesareoccupiedbyATPgS,acommonlyusednon-hydrolysableATP analogue.Keymotifsarecolouredasin(a),publicationreferencesforallPDBIDsarepresentedinSupplementaryTable2.

(5)

substratetranslocationareextensivelyreviewedinRefs. [7]and[12].

The Classic Clade isfunctionally similarto theHCLR Clade 5, with members of both being involvedprotein unfolding, remodelling, and proteolysis, as reviewed in Ref.[30].Forsome,suchastheLonprotease,theAAA+ module is fused to a dedicated protease domain. For others,proteasebindingpartnerssuchasClpPandHslV degrade substrates. While Clade 5 lacks the a-helical insertion typical to Clade 3, several Clade 5 members alsointeract withsubstrate viaashort loopbetweenb2 and a2. For other members of Clade 5 as well as both Clade6and7,otherinsertionsintheAAA+core,namely thePS1iandH2i,insteadplayrolesinsubstrate recogni-tionandtranslocation.Despitedifferencesinthelocation oftheseinsertions,thespiralstaircaseconformationseen for the Clade 3 PL1 is conserved across clades,as dis-cussedbelow.

Pre-sensor1insert

ThePS1ib-hairpin,oftenpositionedinthecentreofthe hexamericring,iscrucialtothefunctionofmanyAAA+ proteins in the PS1i superclade. For some, it fulfils a similarroletothePL1inClade3.Intheviralhelicasesof Clade4,thePS1iprotrudesdirectlyintothecentralpore and interacts with double-stranded DNA during origin recognitionand with single-stranded DNA during heli-case unwinding, forming a spiral staircase around sub-strate [31,32]. Similarly, in the Clade 7 DNA helicase MCM, recent structures revealed that the PS1i is involved in coordinating the phosphate backbone of single-stranded DNA during translocation [33,34,

35–37].Forothers,however,thePS1iplaysmorediverse roles.Early studieson RuvB, an evolutionarily distinct memberofClade5,showedthatthePS1iisnotinvolved in substrate translocation but rather in mediating an interaction with its binding partner RuvA [38]. Two recentcryo-EMstructuresoftheClade5unfoldaseClpX boundtosubstratedemonstratethatthePS1iisinvolved insubstraterecognitionratherthantranslocation,withthe majorityofsubstrate-interactingresiduescominginstead from PL1 [39,40]. The structure of the Escherichia coli ClpX reveals that thePS1i reaches into and above the centralporeto engagesubstrate,whichislaterunfolded and translocated through the hexameric pore [40]. In contrast, high-resolution cryo-EM structures of sub-strate-engaged ClpA [26], ClpB [27,28] and Hsp104 [41]haveall beenpublishedrecentlyshowingthatthe PS1iin theC-terminalAAA+ domainisdisplacedaway fromthecentreofthepore(Figure2),withinsertedloops inhelixa2insteadbindingthesubstrateduring translo-cation.Althoughtheseinsertionsareclosetothelocation oftheClade3PL1,theyappeartobemuchlongerandare inthemiddleofa2,bearingacloserresemblancetothe H2iofClade6and7members.Therelativearrangements ofPS1iloopsandthesesubstrate-coordinatingporeloops

fortheClpABC-CTDfamilyaresimilartothoseseenin recentcryo-EMstructuresofLonA[42,43],anotherClade 5 protein, and several members of Clades 6 and 7 (Figure2).

ThePS1iistermedloop2(L2)intheClade6members McrBandbEBPssuchasNtrC1andPspF.InbEBPs,the PS1insertslackthetypicalb-hairpinsecondarystructure andaremoredisorderedcomparedto othermembersof thePS1i superclade, and interact with substrates along withtheH2i(seebelow)[44].Insomecases,suchasfor theMoxRfamilyCbbQ,classifiedintoClade7,thePS1i interactswiththeH2iwhichwouldallowthetransmission ofconformationalchangesfromtheH2itothenucleotide bindingsite[45].

H2insert

SimilarlytothePS1i,theH2ib-hairpinplaysacrucialrole ininteractionswithsubstrateorpartnerproteins.InClade 6bEBPs(extensivelyreviewedinRef.[44]),aconserved motif in theH2i (termed loop 1, L1 or PL1 due to its similarityto theClade 3PL1) facilitatestheinteraction between the AAA+ module and s54-bound RNA poly-merase.bEBPs use theenergy fromATP hydrolysis to remodel RNA polymerase from a closed to an open conformation, thereby activating transcription. The cryo-EM structure of PspF showedthat the H2 inserts of PspF sit in the centre of the hexameric ring and facilitate an interaction with promoter DNA [46]. In NtrC1, anotherbEBP, theH2 inserts are arrangedin a spiralstaircase[47].However,theseproteinsdonotactas motorsbut ratherasmolecularswitches,andassuchare unlikely to translocate substrate through the central channel [44]. The McrB H2i facilitates protein-protein interactionswith theendonuclease McrC, which sits in thecentralhexamericpore,butitisunclearwhetherthe GTPase activity of McrB is used for threading DNA substratethroughthepore [48].

TheH2 insertsof Clade7 members playavarietyof roles.TheH2iofMCMactstogetherwiththePS1ito coordinate substrate DNA, meaning that each MCM protomercontributestwoloops toacontinuous spiral staircase(Figure2)[33,34,35–37].Keyresiduesinthe H2i are necessary for the MoxR protein CbbQ to function as a RuBisCO activase, and in the CbbQ hexamertheH2isprotrudeintothecentralhexameric pore [45]. The H2i also plays important functional roles in the motor protein dynein and the ribosome biogenesis protein Midasin/Rea1. The H2i in the second AAA+ domain of dynein (AAA2) is critical for dynein’s motor activity, with AAA2 H2i mutants still able to hydrolyse ATP but not to perform the power stroke associated with motor function [49]. Cryo-EM structures of Midasin/Rea1 showed that AAA2H2iisinsteadextendedbyana-helicalbundle, whichsitsinthecentreofthehexamericringasaplug CurrentOpinioninStructuralBiology2021,66:119–128 www.sciencedirect.com

(6)

and inhibitsATPaseaction ofthehexamer whennot boundtoitssubstrate[50,51].Additionally,therecent cryo-EMstructureofRea1incomplexwith theRix1/ pre-60S ribosome particle showed that the H2i of AAA2 promotes an interaction with Rix1 while the

H2i of AAA5 instead contacts the Rea1 MIDAS domain [52]. However, it is unclear whether these pore loop-facilitated interactions are involved in threading substrate, or rather in mediating protein-protein interactions alone.

StructureandfunctionofAAA+ATPaseinsertionsJessop,FelixandGutsche 123

Figure2

Current Opinion in Structural Biology

HexamerstructuresofselectedPSI-insertsuperclademembersshowingPS1i,H2iandPS2ilocations.Colouredboxesindicateclade

classification:red=Clade4,magenta=Clade5,green=Clade6,blue=Clade7.InsertionsarecolouredasforFigure1(largeAAA+subdomain =lightbrown,smallAAA+subdomain=orange,PS1i=magenta,H2i=green,PS2i=navyblue,Clade4-specificN-terminalandC-terminalhelices =lightblueandcoralrespectively,grey=inter-protomerlinkers).Boundsubstrates,whenpresent,arecolouredred.AllPDBIDsarelistedin

Figure3d,exceptforLonA(6ON2),MCM(6XTX)andRavA(6SZB),andpublicationreferencesforallPDBIDsarepresentedinSupplementary Table2.

(7)

Figure3

(a)

(b)

(c)

Current Opinion in Structural Biology

DiscrepanciesinAAA+ATPaseclassification.(a)ComparisonofmonomerstructuresforClade7members.WhileMCM,RavA,BchIand CHU_0153(notshown)possesstheclade-definingPS2i(colourednavyblue)anddisplayrepositionedsmallAAA+subdomains,CbbQ,Dynein (AAA2monomershown)andRea1(AAA3monomershown)insteaddisplayacanonicalarrangementofAAA+subdomains.(b)Comparisonof selectedClade5and6monomers,focussedontheregionsurroundinga2(lightblue)anda3(mediumblue).Insertionsina2arecolouredlight greenandthePS1iiscolouredmagenta.WhiletheClade5membersClpX,RuvB,TorsinandHslUpossessacontinuousa2,ClpA-CTD, ClpB-CTD,LonAandLonBpossessaninsertionverysimilartothoseseenforClade6membersNtrC1,PspF,FlrC,McrB,aswellasFleQandZraR (notshownbutalmostidenticaltoNtrC1).ClpC-CTDandHsp104-CTDstructures(3PXIand6D00respectively)lackbuilt-inresiduesatthis location,howeverthenumberofmissingresiduesatthebreakina2areconsistentwithaninsertedloop.(c)Structuralsimilaritydendrogramof

(8)

Pre-sensor2insert

ThePS2i,thedefiningfeatureofClade7AAA+ATPases, formsalonga-helixthatdrasticallyrepositionsthesmall subdomain relativeto thelarge subdomain[4].Despite this repositioning, the overall arrangement of large and smallsubdomainsinthehexamerandthearchitectureof theATPbindingsite ispreserved(Figure 1d).In other AAA+ clades, the linker between large and small sub-domainsoperatesasahinge,withATPhydrolysislinked toconformationalchangeswithinamonomer.Therecent cryo-EMstructureoftheClade7ATPaseRavAfromthe MoxR familyshowed that thesehinge-likemotions are conserved,butoccurinsteadbetweenthelargeandsmall subdomainsofneighbouringmonomers[53].Inaddition, similaritiesbetweentwofoldsymmetricclosedringstates of ClpX[54]andRavA[53],andin particularthe pres-enceofanucleotide-free‘doubleseam’,supporttheidea ofaconservedATPasemechanismbetweenClades5and 7, despite thehuge differences in domain architecture. Althoughthereareseveralrecentcryo-EMstructuresof Clade 7ATPaseswiththePS2i,inparticularMCMand RavA [34,35–37,53], the effects of AAA+ subdomain repositioningarenotwell-explored.Clade7ismuchless characterisedthanotherclades,andfurtherinvestigation may uncover the role of the PS2i in modulating the ATPaseactivity.Finally,severalAAA+proteinsclassified into Clade 7 clearly lack the PS2i, as discussed below, raisingquestionsaboutthecurrentclassificationscheme.

Discrepancies

in

AAA+

classification

Just as thevast numberof recent AAA+ ATPase struc-tureshasfacilitatedtheincreasedunderstandingoftheir molecularmechanism,italsooffersusachancetomake extensive structuralcomparisons and reveals discrepan-cies in thecurrent classification scheme, particularlyin thePS1isuperclade.Becausethegroupingintocladesis often used to extend hypotheses from one protein to membersofthesamecladeandtocontrastobservations between members of different clades [4,42], working within the framework of an accurate and up-to-date classification system seems important, in particular for theinvestigationofthegeneralapplicabilityofcurrently proposed AAA+ ATPase mechanisms, as discussed below.

Members of Clade 7 offer the most apparent example of discrepancies in classification. Indeed, structural alignment of Clade 7 AAA+ ATPasesshows that while severalmemberspossessthecharacteristicPS2i,dynein, Midasin/Rea1andCbbQlackitandretainthecanonical

arrangement of large and small AAA+ subdomains (Figure 3a) [53,55]. In addition, although dynein is classified an H2i AAA+ ATPase, the sequence stretch originallyidentified[3]asbeinganH2iinAAA3,thethird tandemAAA+domain,infactappearsasaloopbetween a2and b3whiletheonlyinsertionin themiddleof a2 appearstobeinAAA2[55].Thissuggeststhateitherthe other five AAA+ domains in dynein have subsequently lost theirH2i,orprobablymorelikely,therewasalater independent insertion intoa2of AAA2 afterbranching fromotherPS1iproteins[55].Incontrast,allsixtandem AAA+ domainsinMidasin/Rea1possess anH2i[50]. Asintroducedabove,severalmembersofClade5,namely ClpA-CTD,ClpB-CTD,ClpC-CTD,Hsp104-CTDand Lon also have insertions in a2 that interact with sub-stratesinasimilarwaytotheH2isofClade6and7.On thefaceofit,thisfeaturewouldplace theseproteinsin theH2i-containingClade6.Comparisonofthemonomer structures of these proteins with those of Clade 6 and 7 shows a high degree of structural conservation (Figure 3b). However, as is possibly the case for the H2iintheAAA2domainofdynein,itisconceivablethat these insertions arose independently multiple times. Indeed,astructuralsimilaritydendrogrambasedon struc-turalalignmentofmonomersacrossthePS1isuperclade, generated using the distance matrix-based structural alignment algorithmontheDALI server[56],does not maintain asingle grouping for proteins containingH2is but rather splits them into several different groups (Figure 3c). Therefore, the original classification of AAA+ ATPasesbased onstructural PS1i,H2i andPS2i insertionsandassumingtheiremergenceonlyonceinthe course of the superfamily evolution may be outdated. The evolutionary historyof theAAA+ superfamilymay be more complex, suggesting that a fresh look at the classification system based on large-scale analysis is needed in light of the ever-growing structural informa-tion, particularly for the comparatively understudied Clades 6 and 7. In addition, some proteins such as Pch2/TRIP13 do not fit in the current classification scheme, but possess features of multiple clades [57]. Finally,itmaybeworth askingwhetherisitstill useful to referto clades atall,or whether itis betterto group AAA+ATPasesaccordingtotheirfunctionalsimilarities.

Perspectives

a

universal

AAA+

ATPase

mechanism?

Although the recent wealth of structural information has yielded substantial insight into the mechanism of StructureandfunctionofAAA+ATPaseinsertionsJessop,FelixandGutsche 125

(Figure3LegendContinued)PSI-insertsupercladeAAA+ATPasesgeneratedfromastructuralalignmentusingDALI[56]withoutsidelines colouredaccordingtothecladeclassification.The‘all-against-all’optionwasused—thiscarriesoutsequentialpairwisecomparisonsbetweenall PDBfiles,generatingdistancematricesthatdescribedistancesbetweenequivalentCaatoms,andhierarchicallyclustersthesematricesintoa Newickformatdendrogram[61].Wherenecessary,missingloopresiduesweremodelledusingthePhyre2server[62]beforestructuralalignment. DendrogramvisualisationwascarriedoutusingiTOL[63].AtableofPDBIDsusedasinputforthecreatingthedendrogramisshownontheright, withproteinscolouredbyclade.PublicationreferencesforallPDBIDsusedarepresentedinSupplementaryTable2.

(9)

AAA+ATPaseactionandtheorthodox‘hand-over-hand’ modelofsequentialATPhydrolysishasbecomewidely accepted,severalrecentpublicationscallitintoquestion [30,40,53,58]. For example, high-speed atomic force microscopyofthehistonechaperoneAbo1hasprovided directevidenceforATPhydrolysisatnon-adjacentsites inthehexamericring[58].Inparallel,tworecent cryo-EMpapers ontheClade 5 unfoldase ClpXP have reig-niteddebateoverwhetherasequentialorstochasticATP hydrolysis mechanism is correct by interpreting very similar structures in terms of two very different but plausible mechanisms [13,39,40]. Despite the attrac-tiveness of the idea of a unifying ATPase mechanism forallAAA+proteins,therealitymaybemorenuanced.It isconceivablethatdependingoncellularconditionsand interactions with binding partners or cofactors, AAA+ ATPasesmaybeabletoswitchbetweenstrictly sequen-tialand stochasticmodesof action [7,30].Inaddition, whilemostAAA+ATPasesactasmotorswithcontinual ATPturnover,otherssuchastheClade1clamploaders, Clade2helicaseloadersandClade6bEBPsinsteadactas ‘switches’,withasingleATPasecyclelinkedtoasingle event. Whether these switch-like ATPases all function withthesamemechanismasthemore extensively char-acterisedAAA+ ATPases‘motors’isstill uncertain[44], although the recent cryo-EM structure of the Clade 1RFCsuggeststhatthisisunlikely[59].Besides,other non-conventional AAA+ proteins exert force on their protein substrate laterally such as dynein, or act on membranes via unexplored mechanisms such as the unusualClade5ATPaseTorsin,whichformslonghelical polymers[60].Therefore,inparalleltoallowing investi-gationofmechanisticcommonalities,thecurrentflurryof cryo-EMstructuresmayalsoinspirethedisentanglingof cladeorevenprotein-specificfunctionaldifferencesand theirstructuralunderpinning.

Conflict

of

interest

statement

Nothingdeclared.

Appendix

A.

Supplementary

data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10. 1016/j.sbi.2020.10.027.

Acknowledgements

WewouldliketothankourcolleaguesfromtheIBSMICAgroupfortheir constantsupportandinterestinourworkonAAA+ATPasesandthe stimulatingscientificatmosphere.ThisworkwasfundedbytheEuropean Union’sHorizon2020researchandinnovationprogrammeundergrant agreementNo.647784toIG.MJwasaCEA-fundedPhDstudent.JFwas supportedbyalong-termEMBOfellowship(ALTF441-2017)andaMarie Skłodowska-CurieactionsIndividualFellowship(789385,RespViRALI).

References

1. NeuwaldAF,AravindL,SpougeJL,KooninEV:AAA+:aclassof chaperone-likeATPasesassociatedwiththeassembly,

operation,anddisassemblyofproteincomplexes.Genome Res1999,9:27-43.

2. OguraT,WilkinsonAJ:AAA+superfamilyATPases:common structure-diversefunction.GenesCells2001,6:575-597.

3. IyerLM,LeipeDD,KooninEV,AravindL:Evolutionaryhistory andhigherorderclassificationofAAA+ATPases.JStructBiol 2004,146:11-31.

4. ErzbergerJP,BergerJM:Evolutionaryrelationshipsand structuralmechanismsofAAA+proteins.AnnuRevBiophys BiomolStruct2006,35:93-114.

5. MillerJM,EnemarkEJ:FundamentalcharacteristicsofAAA+ proteinfamilystructureandfunction.Archaea2016,2016:1-12.

6. WendlerP,CiniawskyS,KockM,KubeS:Structureandfunction oftheAAA+nucleotidebindingpocket.BiochimBiophysActa MolCellRes2012,1823:2-14.

7.

 PuchadesgoverningC,theSandateactivityCR,andLanderfunctionalGC:ThediversitymolecularofAAA+principles proteins.NatRevMolCellBiol2020,21:43-58.

AcomprehensivereviewofAAA+ATPases,particularlyofClade3,which includesdetaileddiscussionofAAA+structure,ATPasemechanism,and substrateinteraction.

8. SeraphimTV,HouryWA:AAA+proteins.CurrBiol2020, 30:R251-R257.

9. LanderGC,EstrinE,MatyskielaME,BashoreC,NogalesE, MartinA:Completesubunitarchitectureoftheproteasome regulatoryparticle.Nature2012,482:186-191.

10. O’SheaVL,BergerJM:Loadingstrategiesofring-shaped nucleicacidtranslocasesandhelicases.CurrOpinStructBiol 2014,25:16-24.

11. NyquistK,MartinA:Marchingtothebeatofthering: polypeptidetranslocationbyAAA+proteases.TrendsBiochem Sci2014,39:53-60.

12. GatesSN,MartinA:Stairwaytotranslocation:AAA+motor structuresrevealthemechanismsofATP-dependent substratetranslocation.ProteinSci2020,29:407-419http://dx. doi.org/10.1002/pro.3743.

13.

 Tsai2020,FT,9:9-11.HillCP:Samestructure,differentmechanisms? eLife

TheauthorspresentacommentontheClpXPstructurespublishedin Refs.[39]and[40],addressingthedebatesurroundingdifferentmodelsof ATPhydrolysis by AAA+ ATPases andhighlighting the difficulties of inferringmechanismsfromproteinstructures.

14.

 DongLuY,Y,FinleyZhangD,S,MaoWuY:Z,Cryo-EMLiX,WangstructuresWL,ZhuY,andStoilova-McPhiedynamicsofS, substrate-engagedhuman26Sproteasome.Nature2019, 565:49-55.

Cryo-EMstructuresofthesubstrate-engagedhuman26Sproteasomein sevenconformationalstates aresolvedby theauthors, presentinga modelforthecompleteATPhydrolysiscycleandidentifyingthreemodes ofATPhydrolysis.

15. delaPen˜aAH,GoodallEA,GatesSN,LanderGC,MartinA: Substrate-engaged26Sproteasomestructuresreveal mechanismsforATP-hydrolysis–driventranslocation.Science 2018,362.

16. MajumderP,RudackT,BeckF,DanevR,PfeiferG,NagyI, BaumeisterW:Cryo-EMstructuresofthearchaeal PAN-proteasomerevealanaround-the-ringATPasecycle.ProcNatl AcadSciUSA2019,116:534-539.

17. ZhuY,WangWL,YuD,OuyangQ,LuY,MaoY:Structural mechanismfornucleotide-drivenremodelingofthe AAA-ATPaseunfoldaseintheactivatedhuman26Sproteasome. NatCommun2018,9:1-12.

18. HanH,FulcherJM,DandeyVP,IwasaJH,SundquistWI,KayMS, ShenPS,HillCP:StructureofVps4withcircularpeptidesand implicationsfortranslocationoftwopolypeptidechainsby AAA+ATPases.eLife2019,8:1-20.

19. ZehrEA,SzykA,SzczesnaE,Roll-MecakA:Kataningripsthe b-tubulintailthroughanelectropositivedoublespiraltosever microtubules.DevCell2020,52:118-131.e6.

(10)

20. SandateCR,SzykA,ZehrEA,LanderGC,Roll-MecakA:An allostericnetworkinspastincouplesmultipleactivities requiredformicrotubulesevering.NatStructMolBiol2019, 26:671-678.

21. HanH,SchubertHL,McCulloughJ,MonroeN,PurdyMD, YeagerM,SundquistWI,HillCP:Structureofspastinboundto aglutamate-richpeptideimpliesahand-over-hand mechanismofsubstratetranslocation.JBiolChem2020, 295:435-443.

22. KaterL,WagenerN,BerninghausenO,BeckerT,NeupertW, BeckmannR:StructureoftheBcs1AAA-ATPasesuggestsan airlock-liketranslocationmechanismforfoldedproteins.Nat StructMolBiol2020,27:142-149.

23. CooneyI,HanH,StewartMG,CarsonRH,HansenDT,IwasaJH, PriceJC,HillCP,ShenPS:StructureoftheCdc48segregasein theactofunfoldinganauthenticsubstrate.Science2019, 365:502-505.

24. TwomeyEC,JiZ,WalesTE,BodnarNO,FicarroSB,MartoJA, EngenJR,RapoportTA:SubstrateprocessingbytheCdc48 ATPasecomplexisinitiatedbyubiquitinunfolding.Science 2019,365:eaax1033.

25. BlytheEE,GatesSN,DeshaiesRJ,MartinA:Multisystem proteinopathymutationsinVCP/p97increaseNPLOC4UFD1L bindingandsubstrateprocessing.Structure2019, 27:1820-1829.e4.

26. LopezKE,RizoAN,TseE,LinJB,ScullNW,ThwinAC,LuciusAL, ShorterJ,SouthworthDR:Conformationalplasticityofthe ClpAPAAA+proteasecouplesproteinunfoldingand proteolysis.NatStructMolBiol2020,27:406-416.

27. DevilleC,FrankeK,MogkA,BukauB,SaibilHR:Two-step activationmechanismoftheClpBdisaggregaseforsequential substratethreadingbythemainATPasemotor.CellRep2019, 27:3433-3446.

28. RizoAN,LinJB,GatesSN,TseE,BartSM,CastellanoLM, DiMaioF,ShorterJ,SouthworthDR:Structuralbasisfor substrategrippingandtranslocationbytheClpBAAA+ disaggregase.NatCommun2019,10:1-12.

29. YuH,LupoliTJ,KovachA,MengX,ZhaoG,NathanCF,LiH:ATP hydrolysis-coupledpeptidetranslocationmechanismof MycobacteriumtuberculosisClpB.ProcNatlAcadSciUSA 2018,115:E9560-E9569.

30. ZhangS,MaoY:AAA+ATPasesinproteindegradation: structures,functionsandmechanisms.Biomolecules2020,10.

31. ChangYP,XuM,MachadoACD,YuXJ,RohsR,ChenXS: MechanismoforiginDNArecognitionandassemblyofan initiator-helicasecomplexbySV40largetumorantigen.Cell Rep2013,3:1117-1127.

32. EnemarkEJ,Joshua-TorL:MechanismofDNAtranslocationin areplicativehexamerichelicase.Nature2006,442:270-275.

33. MeagherM,EplingLB,EnemarkEJ:DNAtranslocation mechanismoftheMCMcomplexandimplicationsfor replicationinitiation.NatCommun2019,10.

34.

 RzechorzekPellegriniL:CryoEMNJ,HardwickstructuresSW,JatikusumoofhumanVA,CMG–ATPgS–DNAChirgadzeDY, andCMG–AND-1complexes.NucleicAcidsRes2020,48 :6980-6995http://dx.doi.org/10.1093/nar/gkaa429.

Thispublicationpresentscryo-EMstructuresofthehumanCMG(Cdc45– MCM–GINS) helicase bound toreplication fork DNA and to AND-1, yieldinginsightintoDNAtranslocationandprovidingdetailedanalysis ofinteractionsbetweentheH2iandPS1iloopsoftheAAA+ATPaseMCM anditsDNAsubstrate.

35. EickhoffP,KoseHB,MartinoF,PetojevicT,AbidAliF,LockeJ, TambergN,NansA,BergerJM,BotchanMRetal.:Molecular basisforATP-hydrolysis-drivenDNAtranslocationbythe CMGhelicaseoftheeukaryoticreplisome.CellRep2019, 28:2673-2688.e8.

36. YuanZ,GeorgescuR,BaiL,ZhangD,LiH,O’DonnellME:DNA unwindingmechanismofaeukaryoticreplicativeCMG helicase.NatCommun2020,11:688.

37. BareticD,Jenkyn-BedfordM,AriaV,CannoneG,SkehelM, YeelesJTP:Cryo-EMstructureoftheforkprotectioncomplex boundtoCMGatareplicationfork.MolCell2020,78:926-940. e13.

38. HanY-W,IwasakiH,MiyataT,MayanagiK,YamadaK, MorikawaK,ShinagawaH:Auniqueb-hairpinprotrudingfrom AAA+ATPasedomainofRuvBmotorproteinisinvolvedinthe interactionwithRuvADNArecognitionproteinforbranch migrationofhollidayjunctions.JBiolChem2001, 276:35024-35028.

39. RipsteinZA,VahidiS,HouryWA,RubinsteinJL,KayLE:A processiverotarymechanismcouplessubstrateunfolding andproteolysisintheClpXPdegradationmachinery.eLife 2020,9:1-50.

40. FeiX,BellTA,JenniS,StinsonBM,BakerTA,HarrisonSC, SauerRT:StructuresoftheATP-fueledClpXPproteolytic machineboundtoproteinsubstrate.eLife2020,9:1-22.

41.

 GatesBuellCE,SN,SweenyYokomAL,EA,LinMackJ,JackrelKL,ChuangME,RizoEetAN,al.:KendserskyRatchet-likeNM, polypeptidetranslocationmechanismoftheAAA+

disaggregaseHsp104.Science2017,357:273-279.

Authorsherepresentcryo-EMstructuresofHsp104boundtothemodel substratecaseinindifferentstatesoftranslocation,yieldinginsightintoa sequentialmechanismofproteintranslocationandtheconformational changesassociatedwithATPhydrolysisandsubstratebinding. 42. ShinM,PuchadesC,AsmitaA,PuriN,AdjeiE,WisemanRL,

KarzaiAW,LanderGC:Structuralbasisfordistinctoperational modesandproteaseactivationinAAA+proteaseLon.SciAdv 2020,6:eaba8404.

43. BotosI,LountosGT,WuW,CherryS,GhirlandoR,KudzhaevAM, RotanovaTV,deValN,TropeaJE,GustchinaAetal.:Cryo-EM structureofsubstrate-freeE.coliLonproteaseprovides insightsintothedynamicsofLonmachinery.CurrResStruct Biol2019,1:13-20.

44. GaoF,DansonAE,YeF,JovanovicM,BuckM,ZhangX:Bacterial enhancerbindingproteins—AAA+proteinsintranscription activation.Biomolecules2020,10:1-12.

45. TsaiY-CC,YeF,LiewL,LiuD,BhushanS,GaoY-G, Mueller-CajarO:Insightsintothemechanismandregulationofthe CbbQO-typeRubiscoactivase,aMoxRAAA+ATPase.Proc NatlAcadSciUSA2020,117:381-387.

46. GlydeR,YeF,DarbariVC,ZhangN,BuckM,ZhangX:Structures ofRNApolymeraseclosedandintermediatecomplexesreveal mechanismsofDNAopeningandtranscriptioninitiation.Mol Cell2017,67:106-116.e4.

47. SysoevaTA,ChowdhuryS,GuoL,NixonBT:Nucleotide-induced asymmetrywithinATPaseactivatorringdrives54-RNAP interactionandATPhydrolysis.GenesDev2013,27:2500-2511.

48.

 NirwanAmuntsN,A,ItohSaikrishnanY,SinghK:P,Structure-basedBandyopadhyayS,mechanismVinothkumarforKR, activationoftheAAA+GTPaseMcrBbytheendonuclease McrC.NatCommun2019,10:1-9.

Cryo-EM structures of McrB bound to the endonuclease McrC are presented,showingthat McrCbindsinthecentral poreandbridges twoMcrBhexamers.Thispublicationprovidesanexcellentexampleof H2iporeloopsfacilitatingprotein–proteininteractionsratherthan trans-locationonly.

49. KonT,OyamaT,Shimo-KonR,ImamulaK,ShimaT,SutohK, KurisuG:The2.8A˚ crystalstructureofthedyneinmotor domain.Nature2012,484:345-350.

50. SosnowskiP,UrnaviciusL,BolandA,FagiewiczR,BusselezJ, PapaiG,SchmidtH:TheCryoEMstructureofthe

SaccharomycescerevisiaeribosomematurationfactorRea1. eLife2018,7:e39163.

51. ChenZ,SuzukiH,KobayashiY,WangAC,DiMaioF, KawashimaSA,WalzT,KapoorTM:Structuralinsightsinto Mdn1,anessentialAAAproteinrequiredforribosome biogenesis.Cell2018,175:822-834.e18.

52. KaterL,MittererV,ThomsM,ChengJ,BerninghausenO, BeckmannR,HurtE:Constructionofthecentralprotuberance

StructureandfunctionofAAA+ATPaseinsertionsJessop,FelixandGutsche 127

(11)

andL1stalkduring60Ssubunitbiogenesis.MolCell2020, 79:615-628.e5.

53.

 JessopVerloopM,M,ArragainCattyP,B,FelixMirasJ,MaletR,FraudeauH,GutscheA,HuardI:StructuralK, Bacia-insightsintoATPhydrolysisbytheMoxRATPaseRavA andtheLdcI-RavAcage-likecomplex.CommunBiol2020, 3:46.

Thisstudypresentscryo-EMstructuresoftheclade7AAA+ATPaseRavA inanasymmetricspiralstateandatwofoldsymmetricclosedringstate withadoubleseam,andoftheunusualLdcI-RavAcage.Thesestructures revealanunexpectedsimilaritytoClpXcrystalstructuresandsuggesta commonATPasemechanism.

54. GlynnSE,MartinA,NagerAR,BakerTA,SauerRT:Structuresof asymmetricClpXhexamersrevealnucleotide-dependent motionsinaAAA+protein-unfoldingmachine.Cell2009, 139:744-756.

55. GleaveES,SchmidtH,CarterAP:Astructuralanalysisofthe AAA+domainsinSaccharomycescerevisiaecytoplasmic dynein.JStructBiol2014,186:367-375.

56. HolmL,LaaksoLM:Daliserverupdate.NucleicAcidsRes2016, 44:W351-W355.

57. YeQ,RosenbergSC,MoellerA,SpeirJA,SuTY,CorbettKD: TRIP13isaprotein-remodelingAAA+ATPasethatcatalyzes MAD2conformationswitching.eLife2015,2015:1-44.

58.

 LeeChoJY,C,JangSongJ,JJ:KangStructuralY,WatanabebasisH,ofUchihashinucleosomeT,KimassemblySJ,KatobyK, theAbo1AAA+ATPasehistonechaperone.NatCommun2019, 10:1-13.

AFM is usedto visualise transitions between asymmetric spiral and closedringstatesofAbo1,whicharealsosolvedbycryo-EM,providing directevidenceofastochasticATPasecycle.

59. GaubitzC,LiuX,MagrinoJ,StoneNP,LandeckJ,HedglinM, KelchBA:Structureofthehumanclamploaderrevealsan autoinhibitedconformationofasubstrate-boundAAA+ switch.ProcNatlAcadSciUSA2020,117:23571-23580http:// dx.doi.org/10.1101/2020.02.18.953257.

60. DemirciogluFE,ZhengW,McQuownAJ,MaierNK,WatsonN, CheesemanIM,DenicV,EgelmanEH,SchwartzTU:TheAAA+ ATPaseTorsinApolymerizesintohollowhelicaltubeswith 8.5subunitsperturn.NatCommun2019,10:1-12.

61. HolmL:DALIandthepersistenceofproteinshape.ProteinSci 2020,29:128-140.

62. KelleyLA,MezulisS,YatesCM,WassMN,SternbergMJE:The Phyre2webportalforproteinmodeling,predictionand analysis.NatProtoc2015,10:845-858.

63. LetunicI,BorkP:InteractiveTreeOfLife(iTOL)v4:recent updatesandnewdevelopments.NucleicAcidsRes2019,47: W256-W259.

Références

Documents relatifs

Article 5 – Le Directeur Général des Services du Conseil départemental, la Directrice Générale Adjointe du Pôle Solidarités, le Directeur Ingénierie, Partenariat

Sur proposition de M. Article 5 – Le tarif de réservation des lits en cas d'hospitalisation de plus de 72 heures correspond au prix de journée hébergement diminué du

Article 11 - Monsieur le Directeur Général des Services du Conseil départemental, Madame la Directrice Générale Adjointe du Pôle Solidarités, Monsieur le Directeur

D’AUTORISER Monsieur le Président du Conseil départemental de Vaucluse à signer la promesse de vente correspondante obtenue auprès du propriétaire concerné,

Article 7 – Le Directeur Général des Services du Conseil départemental, la Directrice Générale Adjointe du Pôle Solidarités, le Directeur Ingénierie,

VU la délibération n°2015-465 en date du 2 avril 2015 portant élection du Président du Conseil départemental, VU l’arrêté n°2016-3232 en date du 30 juin 2016

- de celles adressées au Président de la République, aux ministres, aux préfets, aux élus sauf si celles-ci concernent des pièces pour la constitution de

- de celles adressées au Président de la République, aux ministres, aux préfets, aux élus sauf si celles-ci concernent des pièces pour la constitution de dossiers et