• Aucun résultat trouvé

The power of AAA-ATPases on the road of pre-60S ribosome maturation — Molecular machines that strip pre-ribosomal particles

N/A
N/A
Protected

Academic year: 2022

Partager "The power of AAA-ATPases on the road of pre-60S ribosome maturation — Molecular machines that strip pre-ribosomal particles"

Copied!
10
0
0

Texte intégral

(1)

A,Multiple sequence alignmentofCdc48/p97,Drg1,and Rix7/NVL overthe D1 and D2 AAA-ATPase domains.The alignment was generated with ClustalW [76]and displayed with Jalview [77].Secondary structure elements (α-helices and β-strands)are according to the crystalstructure ofp97 (pdb 3CF2)[20].In the D2 domain,the positions ofα-helix 8 and ofthe lastα-helix are according to secondary structure prediction (PSIPRED)[78].Numbering ofα-helices and β-strands as wellas nomenclature ofsequence elements is according to [17].Elements ofthe ATPase core are coloured in red (α-helices)and green (β-strands), the lid domain and its α-helices are depicted in lightblue.The additionalα-helix ofclassicalclade AAA-ATPases and the post the lid domain and its α-helices are depicted in lightblue.The additionalα-helix ofclassicalclade AAA-ATPases and the post helix7 insertion are indicated in dark blue.Specific ATPase elements are labelled.The classicalWalkerA (K>A,defective nucleotide binding)and WalkerB mutations (E>Q,impaired ATP hydrolysis)are also indicated [11].Unique features ofthe classicalclade are highlighted:(i)replacementofthe generally conserved sensor-IIarginine atthe base ofα-helix7 by an alanine;(ii)shortinsertion within the arginine fingerregion leading to the occurrence oftwo conserved arginines thatare usually separated by proline and glycine.

usually separated by proline and glycine.B,Representation ofthe secondary-structure distribution within each ATPase domain with the α/β domain depicted in green (β-strands)and red (α-helices)and the α-helicalelements ofthe α-helicallid domain depicted in lightblue.The classic-clade-specific additionalα-hel1 ix and the posthelix7 insertion are shown in dark blue.

(2)

Figure S2:

A,The N-terminaldomain ofDrg1 is composed oftwo sub-domains:a double-ψ β barrelNn-domain and a four-stranded β-barrelNc-domain.A,Multiple sequence alignmentofDrg1 (S.cerevisiae,amino acids 31-249),Cdc48 (S.cerevisiae, amino acids 33-218)and p97 (M.musculus,amino acids 23-208).The alignmentwas generated with ClustalW [76]and displayed with Jalview [77].Secondary structure elements (α-helices in red and β-strands in green)are derived from secondary structure prediction (PSIPRED)[78],a Drg1 structure model,orcrystalstructures ofp97 (pdb 3CF2,1R7R, and 1E32)[20,22,23].Numbering ofα-helices and β-strands is according to [22].Note thatthe alignmentwas refined and 1E32)[20,22,23].Numbering ofα-helices and β-strands is according to [22].Note thatthe alignmentwas refined in orderto properly position the predicted β-strand 10 ofDrg1.B,Structure modelofthe N-terminaldomain ofDrg1.The structure modelwas calculated,based on HHpred alignments [79],by the MODELLER software from a p97 reference structure (pdb 3CF2)[20].The PyMOL program was used to display the structure [80].As in A,the structuralelements ofthe Nc-domain are distinguished from the ones ofthe Nn-domain by the use ofdarkercolours.

2

(3)

A  

α1   α2   α3   α  

NVL   N3   GG  

NLS  

N1   N2  

Rix7   GG  

B  

C  

D   N   E  

C   α1  

α2   α3  

ScRix7-­‐N1  model   conserved  N2-­‐helix  

α  

Figure S3:

Structural analysis of the N-terminal domain of Rix7. A, Schematic representation of the N-terminal domains of Rix7 and NVL.

The distinct N-terminal regions are denoted by N1, N2 and N3 and they are followed by a bipartite nuclear localization signal (NLS). Relevant predicted α-helices are indicated. The two glycines (GG) indicate the start of the AAA-domain D1. B, Multiple sequence alignment of the N-terminal domains of fungal Rix7 proteins (S. cerevisiae, C. glabrata, A. gossypii and S. pombe). The alignment was generated with ClustalW [76] and displayed with Jalview [77]. Secondary structure elements (α-helices in red and β-strands in green) are derived from secondary structure prediction (PSIPRED) [78]. The conserved α-helix at the end of the N2 region is underlined in blue. C, Multiple sequence alignment of the N1 regions of fungal Rix7 (S. cerevisiae and S. pombe) and mammalian NVL (M. musculus). Secondary structure elements are derived from secondary structure prediction (PSIPRED) [78], a Rix7 (S. cerevisiae) structure model, or an NMR structure of mouse NVL (pdb 2RRE) [29]. D, Structure model of the N1 region of Rix7 (S. cerevisiae amino acids 1-113). The structure model was calculated, based on HHpred alignments [79], by the MODELLER software from a mouse NVL reference structure (pdb 2RRE) [29]. The PyMOL program was used to display the structure [80]. The colour of the α-helices is as in A. E, Multiple sequence alignment of the conserved α-helix at the end of the N2 region of fungal Rix7 (S. cerevisiae and S. pombe) and mammalian NVL (H. sapiens and M. musculus). The position of this α-helix (red) is derived from secondary structure prediction (PSIPRED) [78].

(4)

Figure S4:

Ef f ect s of mut at i onal i nact i vat i on of Ri x7 on t he f at e of Nsa1- cont ai ni ng pr e- 60S par t i cl es. I n wi l d- t ype

cel l s ( RI X7, upper gr een pat hway) , Ri x7 r el eases Nsa1 f r om l at e nucl eol ar pr e- 60S par t i cl es. Upon

mut at i onal i nact i vat i on of Ri x7 ( r i x7, l ower r ed pat hway) , t he maj or i t y of pr e- 60S par t i cl es do not f ur t her

evol ve and ar e degr aded ( 1) , whi l e a f r act i on of pr e- 60S par t i cl es gai n an ear l i er composi t i on and ar e

r et ai ned i n t he nucl eol us ( 2) . Nsa1 r emai ns associ at ed wi t h pr e- 60S par t i cl es t hat have escaped f r om

di sassembl y or nucl eol ar r et ent i on, and accumul at es over t i me on ‘ aber r ant ’ cyt opl asmi c 60S subuni t s

di sassembl y or nucl eol ar r et ent i on, and accumul at es over t i me on ‘ aber r ant ’ cyt opl asmi c 60S subuni t s

( 3) . [ 15, 19] . For si mpl i ci t y, t he Rea1- medi at ed r el ease of t he t r i mer i c Yt m1- Er b1- Nop7 sub- compl ex

has been omi t t ed.

(5)
(6)
(7)
(8)
(9)
(10)

Figure S6:

Multiple sequence alignmentofRea1 full-length was done with ClustalW [76]and displayed with Jalview [77].Secondary structure prediction ofS.cerevisiae Rea1,done with PSIPRED [78],is depicted below and ATPase specific elements are labelled (α-helices are shown in red,β-strands in green,the AAA-ATPase specific lid domain is indicated in lightblue and the clade-specific helix2 insertand pre-sensor-Iinsert(PSI)are indicated in dark blue.A red line marks the MIDAS domain.

Références

Documents relatifs

Indoor air - Part 10: Determination of the emission of volatile organic compounds from building products and furnishing -- Emission test cell method. Internal

Parmi les élèves reçus, calcule le pourcentage d'élèves sans mention en 2018, puis

Le champ de la recherche reproductive est un des domaines les plus illustratifs de ce biais méthodologique et des relations de pouvoir en jeu dans une

Une cité pleine de charme 4 Chef-lieu de la Gruyère, une région connue dans le monde entier pour ses produits du terroir, sa gastronomie, son artisanat, son folklore, ses

La philosophie de la présente méthode d'assemblage des murs préfabriqués en béton repose sur le fait que le mur consiste d'un ensemble des panneaux de béton et des joints

ABSTRACT: Organocatalyzed enantioselective consecutive Michael addition of diethyl glutaconate to a nitro-olefin/ reductive cyclization sequence has been developed, directly

Couverture: Ferdinand Hodler, Chant lointain (détail, retouché), 1911, huile sur toile, 178 x 136 cm, Dépôt du Fonds cantonal d’art contemporain, Genève © Musée d’art

En France métropolitaine, le nombre de demandeurs d’emploi inscrits en catégories A, B, C depuis un an ou plus augmente de 0,6 % au mois de février 2014 (+11,4 % sur un an) et