• Aucun résultat trouvé

Big data analytics :

N/A
N/A
Protected

Academic year: 2022

Partager "Big data analytics :"

Copied!
13
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Computers in Industry

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c o m p i n d

Big data analytics: Implementation challenges in Indian manufacturing supply chains

Rakesh D. Raut

a

, Vinay Surendra Yadav

b

, Naoufel Cheikhrouhou

c,∗

, Vaibhav S. Narwane

d

, Balkrishna E. Narkhede

e

aDept.ofOperationsandSupplyChainManagement,NationalInstituteofIndustrialEngineering(NITIE),ViharLake,NITIE,Powai,Mumbai,Maharashtra, Pin-400087,India

bDepartmentofMechanicalEngineering,NationalInstituteofTechnologyRaipur,India

cGenevaSchoolofBusinessAdministration,UniversityofAppliedSciencesWesternSwitzerland(HES-SO),1227Carouge,Switzerland

dDept.ofMechanicalEngineering,K.J.SomaiyaCollegeofEngineeringVidyanagar,VidyaViharEast,GhatkoparEast,Mumbai,Maharashtra400077,India

eDepartmentofIndustrialEngineeringandManagementSystems,NationalInstituteofIndustrialEngineering(NITIE),ViharLake,NITIE,Powai,Mumbai, Maharashtra,Pin-400087,India

a rt i c l e i nf o

Articlehistory:

Received24February2020 Receivedinrevisedform 14September2020 Accepted23November2020

Keywords:

Bigdataanalytics DEMATEL

Indianmanufacturingsupplychains Interpretivestructuralmodeling MICMACanalysis

a b s t ra c t

BigDataAnalytics(BDA)hasattractedsignificantattentionfrombothacademiciansandpractitioners alikeasitprovidesseveralwaystoimprovestrategic,tacticalandoperationalcapabilitiestoeventually createapositiveimpactontheeconomicperformanceoforganizations.Inthepresentstudy,twelve significantbarriersagainstBDAimplementationareidentifiedandassessedinthecontextofIndian manufacturingSupplyChains(SC).Thesebarriersaremodeledusinganintegratedtwo-stageapproach, consistingofInterpretiveStructuralModeling(ISM)inthefirststageandDecision-MakingTrialand EvaluationLaboratory(DEMATEL)inthesecondstage.Theapproachdevelopedprovidestheinterrela- tionshipsbetweentheidentifiedconstructsandtheirintensities.Moreover,FuzzyMICMACtechniqueis appliedtoanalyzethehighimpact(i.e.,highdrivingpower)barriers.Resultsshowthatfourconstructs, namelylackoftopmanagementsupport,lackoffinancialsupport,lackofskills,andlackoftechniques orprocedures,arethemostsignificantbarriers.Thisstudyaidspolicy-makersinconceptualizingthe mutualinteractionofthebarriersfordevelopingpoliciesandstrategiestoimprovethepenetrationof BDAinmanufacturingSC.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given the highly dynamic business environment, managers prefertakingdata-drivendecisionsratherthantrustingtheirintu- itions(Davenportetal.,2001;Arunachalametal.,2018).Firmsare developingtheirorganizationalandtechnologicalcapabilitiesfor extractingvaluefromthedata,whichwillprovidethemacompet- itiveedgeovertheotherfirms.However,analystsfacesignificant challengesinunderstandingthepotentialofextractingvaluefrom thecollecteddata/information.Thevaluegeneratedfromthedata dependsonthecapabilityoftheorganizationforcapturing,storing andanalyzingdatausingadvancedanalytictools/methodssuchas BigDataAnalytics(BDA)(Huetal.,2014).Indeed,inthelastdecade,

Correspondingauthor.

E-mailaddresses:rraut@nitie.ac.in(R.D.Raut),vinaysyadav93@gmail.com (V.S.Yadav),naoufel.cheikhrouhou@hesge.ch(N.Cheikhrouhou),

vsnarwane@somaiya.edu(V.S.Narwane),benarkhede@nitie.ac.in(B.E.Narkhede).

therewassignificantinterestinvariousinformationandcommu- nicationtechnologiesforthemanagementofsupplychains(SC), whicharegeneratingenormousamountsofdata(Yesudasetal., 2014;Arunachalametal.,2018).

Further,BDAhasemergedfromtwosources,i.e.,BigData(BD) andDataAnalytics(Russom,2011;WallerandFawcett,2013).Big datareferstothestorageandanalysisofcomplex,voluminousdata throughtheuseofaseriesoftechnologies(WardandBarker,2013).

ThesetechnologiesincludebutarenotlimitedtoNoSQL,MapRe- duce,artificialintelligenceandmachine learning,whichfurther makeuseofseriouscomputingpowertoanalyzemassivedatasets obtainedfromvarioussources(Russom,2011).Dataanalyticsrefers tothescienceofexaminingraw datatoderiveusefulinforma- tion,usinganalyticaltoolssuchasmining/predictiveanalyticsand descriptive analytics.Data analytics canhelp in identifyingthe trendsandpatternsfromthedatatosupportdecision-makingand includesprocessessuchasdatainspecting,cleansing,transforming andmodeling.Thus,thecombinationofbigdataanddataanalytics

https://doi.org/10.1016/j.compind.2020.103368

0166-3615/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

formsthebasisofBDA.ItisworthmentioningthatBDAcanimprove services,masscustomization,digitalmarketing,andoverallper- formanceoftheSCinhighlycompetitiveenvironments(Meredith etal.,2012;Tien,2015).ThedetailedapplicationsofBDAinsup- plychaincouldbeseeninthereviewworkofTiwarietal.(2018) andNguyenetal.(2018).Moreover,thefutureimpactsofBDAin supplychainsarediscussedbyRoßmannetal.(2018).Itwasfound thatBDAwouldimprovethemanagementofsupplierperformance, demandforecastsandreducesafetystocks.Moreover,bigdatamay play a significantrole insupply chainsustainabilityassessment (Belaud etal., 2019).Even thoughthebigdata phenomenonis believedtobethelatestglobalsensation,itsemergencehasnot beenprecipitated.Manyorganizationsresisttheimplementation ofBDAtechnologiesduetobehavioralandorganizationalissues, andambivalenceinunderstandingthepotentialbenefits.Signifi- cantresearchintheBDAdomainhasfocusedontheperspective oftechnologyforrationalizingitsfinancialgains,socialmedia,and itsapplicationsinsupplychainmanagement(SCM).However,the presentliteraturelacksresearchonidentifyingtheobstaclestoBDA implementationinthecontextofdevelopingcountrieslikeIndia.

Thus,thereisaneedtoaddressthefollowingResearchQuestions (RQ):

RQ1:WhatarethebarriersagainstBDAimplementationinthe IndianManufacturingSupplyChains?

RQ2:Howcantheinterrelationshipbetweenexistingbarriers beobtained?

RQ3:Whatistheintensityoftheseinterrelationships?

Theaboveinformationcanbeutilizedtobuildsuitablestrate- giesforeffectiveimplementationofBDA.Furthermore,noneofthe pastresearchstudieshaveaddressedthemutualinfluenceofthe critical barriersofBDAadoptionusingamulti-criteriadecision- making(MCDM)approachintheIndianmanufacturingSC.Hence, thepresent studyfillsa gapin thecollectivebody of research;

highlightingtheidentificationofthebarriersagainstBDAimple- mentationfromanexhaustiveliteraturereviewandexpertopinion analysis.Thisisfollowedbydevelopingahierarchicalstructural model of thebarriers exploring theinterrelationships between thembyusingISMandfuzzy-MICMACanalysis.Further,DEMATEL isutilizedtoobtaintheintensityoftheinterrelationshipsbetween theidentifiedbarriers.

Thenextsectiondescribesrelevantliterature,whiletheresearch methodology isexplained inSection3.The integratedmodelis developedinSection4.Section5discussesthemanagerialimpli- cations oftheproposedwork, andfinally, Section6 detailsthe conclusionandfurtherscopeofthestudy.

2. Literaturereview

BDAhasemerged asoneof themostinterestingstudyareas forresearchers,practitionersandindustrialistsintherecenttimes.

Thereexistseveralpublicationsthatdiscusstheimplementation ofBDAandelaboratethevariousfactorsassociatedwithitsadop- tion.Addo-TenkorangandHelo(2016)discussedtheapplications ofbigdatainoperations/SCM.Zhongetal.(2016)highlightedthe opportunities,challenges,andfutureperspectivesofbigdatafor SCMinthemanufacturingandservicesectors.WallerandFawcett (2013);Wangetal.(2016)andCheikhrouhouetal.(2016)investi- gatedtheapplicationsofBDAinSCandlogisticsmanagement.(Yu etal.,2018)exploredtheinfluenceofbigdata-drivencapabilitiesof SContheeconomicperformance,inthecontextoftheChineseman- ufacturingsector,usingstructuralequationmodeling(SEM).Itwas concludedthatthereexistsapositivecorrelationbetweendata- drivenSCandSCcapabilities.Arunachalametal.(2018)alsostudied BDA capabilities inthe SCMwitha focus on challenges,issues andimplicationsforpractitioners.Gangwar(2018)identifiedthe

driversofbigdataadoptionintheservicesandmanufacturingsec- torsofIndiausingSEManalysis.Asignificantchangeforacceptance ofbigdataadoptionwasreportedinthisstudy.Yadegaridehkordi etal.(2018)alsoidentifiedandsortedtheadoptionfactorsfavoring bigdataandpredictedtheinfluenceofbigdataadoptionontheper- formanceofmanufacturingfirmsusingahybridapproachthrough

“DEMATELandadaptive fuzzyneuroinferencesystems(ANFIS).

LambaandSingh(2018)foundthat“managementcommitment, financialsupportforbigdatainitiatives,bigdatacompetencies, organizationalstructure and changemanagement program”are fundamentalforthesuccessofbigdatainitiativesinIndianoper- ationsandSCmanagementorganizations.TheauthorsusedISM, fuzzyTotalInterpretiveStructuralModeling(TISM)andDEMATEL.

Moktadiretal.(2019)identifiedthemainbarriersagainstadopting BDAintheBangladeshimanufacturingSCsthroughaDelphi-based AnalyticalHierarchyProcess(AHP).Itemerged thatthebarriers arerelatedtodataandtechnology,i.e.,“lackofinfrastructure,the complexityofdataintegration,dataconfidentiality,andhighcost ofinvestments.”

Fewauthorshavestudiedbigdataforapplicationinbusiness activities.Inthisregard,Gunasekaranetal.(2018)interrogatedthe bigdatabusinessanalytics(BDBA)roleinimprovingthelevelof agilemanufacturingpracticesanddeducedthatmarketturmoilhas anegativeimpactandthatthegradualimplementationofBDBA andhelpstoachievebetterperformanceobjectives.Hazenetal.

(2016)proposedanagendabasedoneighttheoriesforexamining theBDPAimpactonsupplychainsustainabilityintheUSA.Dubey et al. (2019a) investigated BDPA’s influence on“environmental performance (EP)and social performance (SP)”by employing a variance-basedSEMapproachanditwasfoundthatBDPAsignifi- cantlyinfluencedbothEPandSP.Zhongetal.(2015)proposedabig dataapproachforinvestigatingthelogisticstrajectoryfromRFID toenablelogisticsdataintheChinesecontext.ShuklaandMattar (2019)draftedaroadmapforinterventions,prioritizingtofacili- tatetheadoptionofBDAinsustainableauditsystems,usingthe ISMapproach.

Severalemergingvoicesareraisingtheneedforintegratingbig datawithothertechnologiestoleveragethebenefitsofintegra- tion.Yangetal.(2017)reviewedtheconsequencesandadvantages ofusingcloudcomputing(CC)foranalyzingbigdatainthedigital earthandrelated scienceareas.ItwashighlightedthatCCpro- videsmeaningfulsolutionsforbigdata(BD).Hashemetal.(2015) reviewedtheriseofbigdatainCC.Theinterrelationshipbetween CC, BD, Hadoop technologyand big data storage systems was detailed.Also, theresearchchallengeswerehighlighted.Mishra etal.(2017)utilizedsocialmediabigdatatodesignaconsumer- centricbeefSC.Dubeyetal.(2016)identifiedvariousfactorsfor enablingworld-classsustainablemanufacturingthroughbigdata bydeveloping a conceptualframework using confirmatoryfac- toranalysis.Zhong(2018)analyzedRFIDdatasetsforintelligent manufacturingworkshopswithPythoncleaningandclassification algorithms.Byintroducinganintegrativeframeworktoimprove theunderstandingofthecirculareconomy(CE)andarelational matrixillustratingthecomplexityoflarge-scaledatamanagement, Jabbouret al.(2019)demonstrated theCEand BDapplications.

ItmaybenotedthatanefficientSCenablestheefficientflowof data/informationalongwiththefinanceandmaterialflows,and duetoICTadoption.SCcanmonitortheflowofinformationfor dataanalysisforextractingvaluefromthesame(ChaeandOlson, 2013;Souza,2014).90%ofavailabledatatodayhasbeengener- atedinthelasttwoyears(Loechner,2016), and2.50quintillion bytesdataisbeingcreatedperday(Jacobson,2013).Furthermore, itispredictedthatinafewyears,suchanexponentialincreaseof datawillreachzettabyteperyear(Tiwarietal.,2018).

Inthepresentscenario,theindustryisrecognizingthevalueof bigdataandthelatestanalytictoolstoimprovebusiness,finan-

(3)

cial, and sustainability performance. Further, to improve costs, performance and consolidate the influence of big data; Dubey et al. (2019b) developed a model describing theimportance of externalresourcesandpressuresusingapre-testedquestionnaire.

Badiezadehetal.(2018)assessedtheperformanceofsustainable SCinthepresenceofbigdatausing“networkdataenvelopment analysis”forestimatingtheefficiencyofmultistageprocesses.Yu etal.(2018)analyzedtheeffectofsupply-drivenSCcapabilities on financial performance using SEM, and a significantpositive effectandlinkagewereobserved.Positiveandsignificantcoordina- tionexistsbetweenresponsivenessandfinancialperformancetoo.

WithaTacticalProcurementPlanningModel(TPPM),OhandJeong (2019)foundanoptimaltrade-offbetweendelayand profit,an optimalsupplyflowoveraplanninghorizon,called“SmartSupply ChainPerformance(SSCP).”Zakietal.(2019)cameupwithacon- ceptualframeworkreflectingtheemergingconnectionsbetween bigdataand manufacturingbystudyingthepatternsandman- ufacturingfactorsaswellastheroleandimpactofbigdata.To understandbigdataandtheseapplications,Brinch etal.(2018) implementedasequentialmixedtechniquealongwiththeDelphi method,aswellasa“SupplyChainOperationsReference(SCOR)”

adjustedbaselineprocessframework.Theyobservedthatdatacol- lectiondominated themanagementand useofdata,whichwas lessrelevantforprocurementormanufacturingthanforlogistics, serviceandplanning.Xuetal.(2019)analyzedthebigdatainflu- enceonassessingthequalityofmanufacturers’decisionsonthe manufacture/repackagingofafixedcollectionfeemechanismand adiscriminatorycollectionfeemechanism.Itwasfoundthatthe manufacturervalues differentchargingmechanismsofthecollec- tionaccordingtothelevelsofvalueperceivedbyconsumersofthe productsusedandtheacquisitioncostofbigdata.

3. Researchmethodology

Thepurposeofthepaperistoidentifyanddevelopastructural modelofthecriticalbarriersagainstBDAimplementationandto setuptheirinterrelationshipinthecaseofmanufacturingsupply chainsusinganISMapproach.Furthermore,MICMACanalysiswas utilizedtoidentifythedrivinganddependencepowerofeachbar- rier.Moreover,DEMATELwasalsousedtoovercomethelimitation ofISMmethodologyinestimatingtheintensityofinterrelationship between identified barriers.The research methodologyis illus- tratedinFig.1.

3.1. InterpretiveStructuralModeling

ISM isone ofthewell-known techniquesforidentifyingthe interrelationshipbetweenvariouslinkedparametersofacomplex system(Warfield,1974;Mudgaletal.,2009).ISMpossessesthe uniquepropertyoftransferringunclearenunciatedmentalmod- elsintoawell-definedstructure.Thus,ithelpsinunderstanding inflictingorderaswellasthedirectionofcomplicatedrelationships (Gardasetal.,2015).Forthis,ISMmakesuseofthegraphtheory.

Therelationshipsofcomplexsystemsareanalyzedbydecompos- ingthemintodifferentlevels.Thus,itmaybeseenasa“structural relationshipdiagram,”whichillustratesthesimplifiedformatof acomplexsystem(Sage,1977;Sagheeretal.,2009;Singhetal., 2003).

TheISMprocedurecanbeexplainedthroughthefollowingsteps (Sagheeretal.,2009;Ravi,2015;FaisalandTalib,2016;Gardasetal., 2017;Rautetal.,2017):

Step1:Theconstructofthesystemunderstudyareidentified andlisted.

Step 2: Identified constructs are evaluated for the contex- tualrelationship,whichresultsintheformationofa“structural

self–interactionmatrix(SSIM)”torepresentapair-wiseinterrela- tionshipamongstthem.

Step3:AbinarymatrixisdevelopedfromSSIMbasedonrules (explainedlater),andiscalledas“initialreachabilitymatrix(IRM).”

Step4:ThetransitivityisevaluatedinIRMtoobtainthe“final reachabilitymatrix(FRM).”Thisfollowstherelation“ifaconstruct

‘A’islinkedto‘B’and‘B’islinkedto‘C’then‘A’iscertainlycorrelated to‘C’.TheobtainedFRMispartitionedintodifferentlevels.

Step5:Thelevel-wiseconstructsareconnectedgraphicallywith thedirectlinksandtransitiveisdroppedtoget“Digraph”andthe finalmodelisobtainedbyreplacingwithconstructname.

Step6:Finally,theobtainedmodelisevaluatedforanyconcep- tualdisagreementsandmodifiedaccordingly.

3.2. FuzzyMICMACanalysis

ThestepsforFuzzyMICMACareasfollows(BhosaleandKant, 2016):

Step1:“Binarydirectrelationshipmatrix(BDRM)”isacquired byconsideringalldiagonalelementsaszeroandrestareunchanged intheIRMmatrix.

Step 2: Develop a “linguistic assessment direct reachability matrix.”

Step3:Developa“FuzzyMICMAC-stabilizedmatrix.”

Step4:Obtainthe“drivinganddependencepowers”ofeach constructanddrawtheMICMACplot.

3.3. DEMATEL

TheDecision-MakingTrialandEvaluationLaboratory(DEMA- TEL)techniquewasdevelopedbytheGenevaResearchCentreof theBattelleMemorialInstituteforunderstandingcausalrelation- shipstructureofacomplexsystem.DEMATELnotonlyevaluates themostcriticalfactorsofthestudiedsystemviaanimpactrela- tiondiagrambut alsotransformsinterdependencyrelationships intocauseandeffectgroupsthroughdigraphandmatrices.

StepsofDEMATEL:

Step1:Compute the“direct relationship matrix”: For this,sup- posetherearemexpertsandnconstructstobestudied.Foreach construct,theexpertgives theiropinionabouttheinfluence of constructionconstructjandsimilarlyforallconstructsusingan integerscaleof“noinfluence(0),”“lowinfluence(1),”“medium influence(2),”“highinfluence(3),”and“veryhighinfluence(4).”

Supposeeachexpertdecisionmatrixisgivenby

xijk

n∗n,thenaver- age“directinfluencematrix”(X=xijn∗n)isgivenbyEq.1:

xij= 1 m

m k=1

xijkn*ni,j= 1,2,...n (1)

Step2:Normalizethe“directinfluencematrix”:Thenormalized average“directinfluencematrix”(A=

aij

nn)isgivenbyEq.2:

A=X

s (2)

Wheres=max

max

1≤i≤n

n j=1

xij,max

1≤i≤n

n i=1

xij

Every element in matrix A obeys the rule 0≤aij≤1,0≤

n j=1

aij≤1andwehaveatleastoneisuchthat

n j=1

xij≤s.

Step3:Findthe“totalinfluencematrix”:The“totalinfluence matrix”T=

tij

n*niscalculatedbyEq.3:

T=A+A2+A3+...Ah=A(I−A)−1 (3)

(4)

Fig.1.Researchmethodology.

Whereh→∞,and“Iisdenotedasidentitymatrix.”

Step4:Formulatethe“influencerelationshipmap”:Thisisformed usingtwovectorsRandC,wheretheyarethesumsofrowsand columns,respectively,inthe“totalinfluencematrix”asshownin followingEq.4and5:

R=[ri]n*1=

n

j=1

tij

n*1

(4)

C=[ci]1*n=

n

i=1

tij

1*n

(5)

Where“ri isthesumofithrowintotalinfluencematrix”T and depictsthetotalimpactsofconstructni onallotherconstructs.

Similarlycjisthesumofthejthcolumnin“totalinfluencematrix”

T anddepicts totalimpactsthatconstructni is gettingfromall otherconstructs.Withthehelpofthesetwovectors,“influence relationshipmap”isdrawnwhere(R+C)istakenasxaxisand(R− C)asyaxisforeachconstruct.Onthehorizontalaxis,(R+C)value (alsocalledas“Prominence”)ofaconstructdenotesitsstrengthand isalsothecentralpartofthesystem.Ontheverticalaxis,(R−C) value(alsoknownas“Relation”)istheneteffectofconstructwhich

itputsonthesystem.If(ri−cj)valueofaconstructispositive,it showsthatthisconstructhasanetinfluenceontheotherconstructs andcanbeclusteredintothecausegroup.Ontheotherhand,if (ri−cj)isnegative,theparticularconstructisinfluencedbyanother constructinthesystemandcanbeclusteredintotheeffectgroup.

4. Applicationoftheproposedapproachand interpretationsofresults

Theconstructsusedfordevelopingthestructuralmodelswere identifiedthroughanexhaustiveliteraturereview.Thesearchkey- words used were “challenges, hindrances, barriers,constraints, obstacles,bigdata,bigdataanalytics,businessanalytics,manufac- turingsupplychains,andmulti-criteriadecisionmaking(MCDM).”

ThesekeywordswerefoundonlineindatabasessuchasScopus, WebofScience,ScienceDirect,EmeraldinsightandIEEEexplorer.

ThesearchislimitedtotheEnglishlanguagearticlesonlyandomit- teddissertations.Afterreviewingthearticlesfromtheaboveonline databasesandfromtheopinionofexperts,15barrierswerelisted.

Theexpert team consistedof 47 members dividedinto two groups:theInternetofThingsgroupandtheSCgroup;threedata analysts,twobigdatavisualizers,twobigdatasolutionarchitects, threebigdataengineers,threebigdataresearchers,twodataware-

(5)

Table1

IdentifiedbarrierstoBDAimplementation.

S.N Barrier Explanation References

1 Poordataqualityand lackoftrustindata

Dataisintangible,andmeasuringitsqualityisamulti-dimensionalproblem.Poor qualityofthedataisabigbarriertotheactivitiesoftheanalytics,andit significantlyaffectsthedecisionsofthemanagement.Thequalityofthedatacan becategorizedintotwodimensions,namelyintrinsic(completeness,consistency, timeliness,andaccuracy),andcontextual(datareputation,accessibility, believability,quantity,value-added,andrelevancy).Itmaybenotedthatthe trustworthinessofthedataobtainedfromsocialmediaisaseriousissue.

WangandStrong(1996);Leeetal.(2002);

Hazenetal.(2014);Hashemetal.(2015);

Tanetal.(2015);Arunachalametal.(2018)

2 Time-consuming activity

Theactivityofpredictiveanalysisisatime-consuminginitiativeandcomprises variousphasesofdevelopment,testing,andadoption.Itisalongtasktobring expertstogetherfromdifferentsectionswithdifferentmindsets.Itmaybenoted thatthecommitmentfromthetopmanagementisrequiredforthe

implementationofBDA,whichmaytakeoneyeartooneandhalfyears.Also, collectingdatafromvarioussectionsoftheorganizations,combining,validating, andcleansingthesameandtrackingthedevelopmenttogetherconstitutea tediousactivity.

Blackburnetal.(2015);Hashemetal.

(2015);Arunachalametal.(2018)

3 Lackofsufficient resources

Inasupplychainnetwork,theresourcecapabilitiesofthedataandanalyticsvary significantlyacrossorganizations.LackofsufficientITcapabilitiesforsharing informationanddatacancauseconsiderabledifferences.Fortheeffective implementationofBDA,formationofcross-functionalteamsandcollaboration betweenthevariouselementswithinthefirmisnecessary.However,while formingtheteam,issuessuchaspoliciesofdatasharing,arrangementsof incentives,etc.needtobetakencareof.FortheefficientutilizationofBDAand businessvaluecreation,fact-basedmanagementanddata-drivencultureneedto bemotivated.

Seahetal.(2010);DuttaandBose(2015);

Hashemetal.(2015);Arunachalametal.

(2018)

4 Lackofsecurityand privacy

TherearevariousissuesassociatedwiththeBDAsystemsimplementation,i.e., ineffectivedataprocessing,unethicalusageofdata,security,andprivacy,which couldinfluencethefinalresultsoftheinvestigation.

Tien(2012);Huetal.(2014);Alfaroetal.

(2015);Hashemetal.(2015);Richeyetal.

(2016);Arunachalametal.(2018) 5 Lackoffinancial

support

LackoffinancialsupportinfluencestheBDAimplementationdecision significantly.Itmaybenotedthatsupportingandleveragingthecapabilityof cloudcomputingforstoringthedatacouldaddcosttothefirm.Increasingdata generationdemandsmorecloudspace,whichfurtherincreasesthefinancial burdenontheorganization.

Hashemetal.(2015);Rehmanetal.

(2016);Arunachalametal.(2018)

6 Behavioralissues BDAimplementationmayleadtosomebehavioralissueslikeoverand

underestimationduetoreal-timedataandinformationavailability.Here,overand underestimationreferstoanydeviationfromthestandardoperatingprocedure.

ThismayleadtoincreasedinventorycostsandSCrisk.Theemployeemayalsofear joblossduetotechnologyupgradation.Thesebehavioralissuesmaysometime resultinacceptanceofstatisticallysignificantandunconnectedcorrelations.

Moreover,BDAimplementationleadstobehavioralissuesduetoculturechange.

Hashemetal.(2015);RadkeandTseng (2015);Tachizawaetal.(2015);

Arunachalametal.(2018)

7 Returnoninvestment (ROI)issues

AmbiguityandunclearbenefitsonROImakestakeholdersreluctanttoimplement bigdata.Further,fearofBDAimplementationfailureresultsinlossofconfidence torecovertheinvestmentmade.

Davenportetal.(2001);Hashemetal.

(2015);Richeyetal.(2016);Sanders (2016);Arunachalametal.(2018) 8 Lackoftop

managementsupport

ThetopmanagementleadershipshouldleverageandsupportBDAacrossthefirm, asBDAimplementationcanimprovetheoverallperformanceofSC.Lackof motivationfromtopmanagementresultsinlowmomentumforBDA implementation.

Seahetal.(2010);DuttaandBose(2015);

Hashemetal.(2015);Wambaetal.(2015);

Gunasekaranetal.(2017);Arunachalam etal.(2018)

9 Lackofskills Arecentinvestigationhashighlightedthatalackofexpertsinthebigdatadomain isasignificantissue.Thedatascientistneedstohaveexpertiseinbothanalytical anddomainskills.Duetoinsufficientprofessionalskills,therecouldbeaninability toidentifyappropriatedataanddevelopadaptedmodels.

Russom(2011);WallerandFawcett (2013);Hashemetal.(2015);Schoenherr andSpeier-Pero(2015);Richeyetal.

(2016);Arunachalametal.(2018) 10 Datascalability Datascalabilityreferstotheabilityorcapacitytoaccommodatechangeindata

sizesbyusingextraresources.Itisoftenobservedthatdatasizekeepson increasingwithtime.Afteraparticularperiod,thefirmsneedtodumptheirdata forstoringnewlygenerateddata.Fortacklingthescalabilityissues,cloud computingcapabilitymaybeconsidered.

Huetal.(2014);Hashemetal.(2015);

Kangetal.(2016);Richeyetal.(2016);

Rehmanetal.(2016);Arunachalametal.

(2018)

11 Lackoftechniquesor procedures

Lackofefficienttechniquesorproceduresleadstopoorqualityofobtaineddata.In BDAimplementation,lousydataqualityisabigproblem.

MeixellandWu(2001);Fildesetal.

(2009);Blackburnetal.(2015);Hashem etal.(2015);Arunachalametal.(2018) 12 Lackofdataintegration

andmanagement

Dataintegrationmanagementisthecapabilityoftheorganizationtoutilizethe techniquesandtoolsfor“collecting,integrating,transforming,andstoringdata fromvariousdatasources.”DuetothecomplexnatureofBD,theconventional databasemanagementsystemssuchasRDBMSarenotcompatible.Therefore, cloud-basedorweb-basedelectronicdatainterchangesystemsmaybeemployed forenhancingthedataintegrationcapability.Theintegrationcapabilityimproves responsivenessandvisibility.

ChaeandOlson(2013);GeandJackson (2014);Huetal.(2014);RadkeandTseng (2015);Stefanovic(2015);Tanetal.

(2015);Wambaetal.(2015);Sanders (2016);Arunachalametal.(2018)

housemanagers,twodataarchitects,twodatabasemanagers,three businessintelligenceanalysts,twodatawarehouseanalysts,two datamodelers,twodatabasedevelopers,twobusinesssystemana- lysts,twodatamininganalysts,twobusinessdataanalysts,two datascientists,threeprofessorsfromthedepartmentofcomputer engineering,threeprofessorsfromthedepartmentofoperations andSCmanagement,andfivesupplychainandlogisticsmanagers

fromthemanufacturingindustriesmadeuptheteam.According toRobbins(1994),thenumber of expertsbetween5and 50 is statisticallyappropriate.Moreover,MurryandHammons(1995) advocatedtheideaof10–30expertsinthedecision-makingpro- cess.TworoundsofDelphiwerecarriedoutamongsttheexperts toreachconsensusabouttheselectionofthebarriersagainstBDA

(6)

Table2

“Structuralself-interactionmatrix”ofbarriers.

implementation.Thisfurtherreducedthenumberofbarriersto12.

ThefinalidentifiedbarriersarelistedinTable1.

After identifying the twelve critical barriers, the interre- lationships between them are established in the “Structural Self-InteractionMatrix (SSIM)”inTable2bytakinginputsfrom theexperts.Forinterpretationofinterrelationship, fourtypesof symbolswereutilized:

V-“Barrierileadstobarrierj.”

A-“Barrierjleadstobarrieri.”

X-“Barrierileadstobarrierjandviceversa.”

O-“Norelationshipbetweenthebarriers.”

TheSSIMistransformedinto“InitialReachabilityMatrix(IRM)”

throughtheapplicationofthefollowingrules:

“If(i,j)entryinSSIMisV,thenitisreplacedby1,andcorre- sponding(j,i)entrybecomes0inIRM.

If(i,j)entryinSSIMisA,thenitisreplacedby0,andcorrespond- ing(j,i)entrybecomes1inIRM.

If(i,j)entryinSSIMisX,thenitisreplacedby1,andcorrespond- ing(j,i)entryalsobecomes1inIRM.

If(i,j)entryinSSIMisO,thenitisreplacedby0,andcorrespond- ing(j,i)entryalsobecomes0inIRM.”

TheobtainedIRM(Table3)wascheckedfortransitivityissues andthesamewasincorporatedtogetaFRM(Table4).Thispro- cedure was followed by level partitioning which makes use of threesetsi.e.“reachability,antecedentandintersectionset.”The reachability setcontains itself and anotherconstruct onwhich it hasanimpact. However,the “antecedent set”contains itself and allother constructs that help in attaining it. The intersec- tion of these two sets forms the intersectionset. Also, for the construct whose reachability set and intersection set are the same arecategorized aslevel 1and form“thetop levelof ISM hierarchy”(Sage,1977).

Furtherforthenextiteration,theseconstructswereeliminated and asimilarprocedurewasfollowed untilthelast levelofthe hierarchywasreached(Warfield,1974;Rautetal.,2017;Jhaetal., 2018).Table5shows“thereachabilityset,antecedentset,intersec- tionset,andfinallevels”ofallbarriers.Thelevelpartitioningofall constructswascompletedinsixiterations.WiththehelpofFRM andlevelpartitioning,aninitialdiagraphwasdrawn.Transitivity waseliminatedfromtheobtaineddiagraphtogetafinaldiagraph andthefinalinterpretivestructuralmodel(ISM)wasobtainedby replacingtheconstructnameinthefinaldiagraph.Theinterpretive structuralmodeloftheBDAimplantationbarriersispresentedin

Fig.2,whereBDABxdenotestheBigDataAnalyticsBarriersnumber x.

AFuzzy-MICMACanalysiswasdevelopedtoidentifythemost criticalbarriersagainstBDAimplementationinthemanufactur- ingSCbasedon“thedrivinganddependencepower.”Traditional MICMACconsidersanequal relationshipbetweentheidentified constructs,whichmayormaynotdepictactualscenariosinreal practice.Forexample,supposetherearethreeconstructsA,Band CwhereAisassociatedwithBaswellasC.However,theextent ofassociationofAwithBandAwithCmayvarydependingon anactualcaseofthesystemunderstudy.Insomecases,Amight haveagreaterassociationwithBascomparedwithCandvice- versa.TraditionalMICMACalwaysconsidersanequalassociation betweeneachassociatedconstructs,whichdoesn’tresembleactual circumstances.Thus,toincreasethesensitivityofMICMAC,theuse offuzzyMICMACispreferredoverthetraditionalone(Bhosaleand Kant,2016).

FuzzyMICMACisafour-stepmethodology,wherethefirststep consistsoftheconstructionofa“binarydirectreachabilitymatrix (BDRM)”andisobtainedbymakingalldiagonalelementsaszeroin IRM.Thesecondstepisthedevelopmentof“linguisticassessment directreachabilitymatrix(LADRM)”.Weconsiderfuzzy“triangu- larmembershipfunction(TFN)”(showninFig.3),whichisdefined byanupperlimit u,amiddlevaluemandlowervalue l,where l<m<u.Theu,mandlarex-coordinateverticesofamembership function(A(x)),whichmapsfuzzysetAinputintorealnumber interval[0,1]. Themembershipfunction (A(x)) isgiven bythe followingEq.6:

A(x)=

⎢ ⎢

⎢ ⎢

⎢ ⎣

0x<l x−l

m−ll≤x≤m u−x

u−mm≤x≤u 0x>u

⎥ ⎥

⎥ ⎥

⎥ ⎦

(6)

ThelinguisticscaleforassessmentispresentedinTable6.Torate therelationshipbetweentheconsideredconstructs,theresponses ofthesameexpertswhoparticipatedinanearlierphaseofstudies wereconsidered.TheseresponsesweresuperimposedonBDRMto getLADRM,asshowninTable7.Thedefuzzificationmethodusedis the“bestnon-fuzzyperformance(BNP).”TheformulatoobtainBNP

(7)

Table3

“Initialreachabilitymatrix”ofbarriers.

S.N Barriers 1 2 3 4 5 6 7 8 9 10 11 12

1 Poordataqualityandlackoftrustondata 1 1 0 1 0 0 1 0 0 0 0 0

2 Timeconsumingactivity 0 1 0 0 0 1 1 0 0 0 0 0

3 Lackofsufficientresources 1 1 1 1 0 0 0 0 0 0 0 1

4 Lackofsecurityandprivacy 1 0 0 1 0 1 1 0 0 0 0 0

5 Lackoffinancialsupport 0 1 1 1 1 1 1 1 0 0 0 0

6 Behavioralissues 0 0 0 0 0 1 0 0 1 0 0 1

7 Returnoninvestment(ROI)issues 0 0 0 0 1 1 1 0 0 0 0 0

8 Lackoftopmanagementsupport 0 0 1 0 1 1 1 1 1 0 0 0

9 Lackofskills 1 1 0 1 0 0 1 0 1 1 1 1

10 Datascalability 1 1 0 0 0 0 0 0 0 1 0 1

11 Lackoftechniquesorprocedures 1 1 0 1 0 0 0 0 1 0 1 1

12 Lackofdataintegrationandmanagement 1 1 0 1 0 0 1 0 0 0 0 1

Table4

“Finalreachabilitymatrix”ofbarriers.

S.N Barriers 1 2 3 4 5 6 7 8 9 10 11 12 DrivingPower

1 Poordataqualityandlackoftrustondata 1 1 0 1 1* 1* 1 0 0 0 0 0 6

2 Timeconsumingactivity 0 1 0 0 1* 1 1 0 1* 0 0 0 5

3 Lackofsufficientresources 1 1 1 1 0 1* 1* 0 0 0 0 1 7

4 Lackofsecurityandprivacy 1 1* 1* 1 1* 1 1 0 1* 0 0 0 8

5 Lackoffinancialsupport 1* 1 1 1 1 1 1 1 1* 0 0 1* 10

6 Behaviouralissues 1* 1* 0 1* 0 1 1* 0 1 1* 1* 1 9

7 Returnoninvestment(ROI)issues 0 1* 1* 1* 1 1 1 1* 1* 0 0 1* 9

8 Lackoftopmanagementsupport 1* 1* 1 1* 1 1 1 1 1 0 0 1* 10

9 Lackofskills 1 1 0 1 1* 1* 1 0 1 1 1 1 10

10 Datascalability 1 1 0 1* 0 1* 1* 0 0 1 0 1 7

11 Lackoftechniquesorprocedures 1 1 0 1 0 1* 1* 0 1 1* 1 1 9

12 Lackofdataintegrationandmanagement 1 1 0 1 1* 1* 1 0 0 0 0 1 7

DependencePower 10 12 5 11 8 12 12 3 8 4 3 9 95

*transitivelinks.

Fig.2.TheISMmodelforBDAimplantationbarriers.

(8)

Table5

Levelpartitionsofthe“finalreachabilitymatrix”(IterationItoVI).

IterationNo. ReachabilitySet AntecedentSet InteractionSet Level

1. 1,2,4,5,6,7 1,3,4,5,7,8,9,10,11,12 1,4,5,7

2. 2,5,6,7,9 1,2,3,4,5,6,7,8,9,10,11,12 2,5,6,7,9 I

3. 1,2,3,4,6,7,12 3,4,5,7,8 3,4,7

4. 1,2,3,4,5,6,7,9 1,3,4,5,6,7,8,9,10,11,12 1,3,4,5,6,7,9

5. 1,2,3,4,5,6,7,8,9,12 1,2,4,5,7,8,9,10,11,12 1,2,4,5,7,8,9,12

6. 1,2,4,6,7,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,2,4,6,7,9,10,11,12 I

7. 2,3,4,5,6,7,8,9,12 1,3,4,5,7,8,9,10,11,12 3,4,5,7,8,9,12

8. 1,2,3,4,5,6,7,8,9,12 5,7,8 5,7,8

9. 1,2,4,5,6,7,9,10,11,12 2,4,5,6,7,8,9,11 2,4,5,6,7,9,11

10. 1,2,4,6,7,10,12 6,9,10,11 10

11. 1,2,4,6,7,9,10,11,12 6,9,11 6,9,11

12. 1,2,4,5,6,7,12 3,5,6,7,8,9,11,12 5,6,7,12

1. 1,4,5,7 1,3,4,5,7,8,9,10,11,12 1,4,5,7 II

3. 1,3,4,7,12 3,4,5,7,8 3,4,7

4. 1,3,4,5,7,9 1,3,4,5,7,8,9,10,11,12 1,3,4,5,7,9 II

5. 1,3,4,5,7,8,9,12 1,4,5,7,8,9,10,11,12 1,4,5,7,8,9,12

7. 3,4,5,7,8,9,12 1,3,4,5,7,8,9,10,11,12 3,4,5,7,8,9,12 II

8. 1,3,4,5,7,8,9,12 5,7,8 5,7,8

9. 1,4,5,7,9,10,11,12 4,5,7,8,9,11 4,5,7,9,11

10. 1,4,7,10,12 9,10,11 10

11. 1,4,7,9,10,11,12 9,11 9,11

12. 1,4,5,7,12 3,5,7,8,9,11,12 5,7,12

3. 3,12 3,5,8 3

5. 3,5,8,9,12 5,8,9,10,11,12 5,8,9,12

8. 3,5,8,9,12 5,8 5,8

9. 5,9,10,11,12 5,8,9,11 5,9,11

10. 10,12 9,10,11 10

11. 9,10,11,12 9,11 9,11

12. 5,12 3,5,8,9,11,12 5,12 III

3. 3 3,5,8 3 IV

5. 3,5,8,9 5,8,9,10,11 5,8,9

8. 3,5,8,9 5,8 5,8

9. 5,9,10,11 5,8,9,11 5,9,11

10. 10 10 10 IV

11. 9,10,11 9,11 9,11

5. 5,8,9 5,8,9,10 5,8,9 V

8. 5,8,9 5,8 5,8

9. 5,9,11 5,8,9,11 5,9,11 V

11. 9,11 9,11 9,11 V

8. 8 8 8 VI

Table6 Linguisticscale.

Linguisticconstruct TFN

“Noinfluence(No)” “(0,0,0)”

“Verylowinfluence(VL)” “(0,0.1,0.3)”

“Lowinfluence(L)” “(0.1,0.3,0.5)”

“Mediuminfluence(M)” “(0.3,0.5,0.7)”

“Highinfluence(H)” “(0.5,0.7,0.9)”

“Veryhighinfluence(VH)” “(0.7,0.9,1)”

“Completeinfluence(C)” “(1,1,1)”

isgiveninEq.7.Thedefuzzified“Fuzzydirectreachabilitymatrix (FDRM)”ispresentedinTable8.

BNPij= (u−l)+(m−l)

3 +l (7)

Thethirdstepistoobtainthefuzzy-stabilizedmatrix,which followstheruleasgiveninEq.8.

C=A,B=maxk

min(aik,bkj

whereA=[aik]andB=

bkj

(8) Where Ais theBDRM,B isthe defuzzifiedLADRM andC is theresultantstabilizedmatrix. Finally,each rowandcolumnis summedtoobtainthedrivinganddependencepower,respectively, ofeachconstructs,asshowninTable9.Thefourthstepistouse thisinformationtoplotFuzzyMICMACdiagramasdependenceon x-axisanddrivingony-axis,whichisfurtherdividedintofourclus- ters,i.e.autonomous,dependence,linkagesanddrivingclusteras illustratedinFig.4.

Fig.3. TriangularFuzzyNumber(TFN).

TheoutputoftheISMmodelintheformofFRMwasutilizedfor consideringdirectinfluencefortheDEMATELcase.Theresponsesof expertsweregatheredfortheconstructswhereinterrelationship existedinFRMoftheISMmodelusinganintegerscale(seethe firststepofDEMATELintheresearchmethodologysection).The

“averagedirectinfluencematrix”isillustratedinTable10,while the“normalizeddirectmatrix”ispresentedinTable11.Moreover, the“totalinfluencematrix”isshowninTable12,whichpresentsthe detailsaboutthecasualandeffectclusters.Basedonthesedata,the influencerelationshipplotwasdrawnshowingprominence(R+C) onthex-axisandrelation(R-C)onthey-axis(Fig.5).Forevaluating thesignificantrelationshipbetweentheidentifiedconstructs,the

(9)

Fig.4.“FuzzyMICMACPlot”.

thresholdvalueconceptwasadoptedfromtheworkof(Gardas etal.,2019).

4.1. ISMresults

Fig.2showstheISMmodelofBDAimplementationbarriersin manufacturingSC.TheobtainedISMhierarchyisasix-levelstruc- ture,whichdemonstratesthevariousinterrelationshipsbetween the identified barriers.Fig. 2 is also embeddedwiththe result obtainedfromDEMATEL,intheformofintensitiesbetweenthe differentbarriers.Forinstance,therelationshipintensityofBDAB1 withBDAB2is0.1188.ThebarriersintheISMmodelcanbecate- gorizedintothreegroups,i.e.,mostsignificant,mediumsignificant andleastsignificantbarriers.Thebarriersatthebottomtwolev- elsaremostsignificant,followedbymediumsignificantbarriers in thenexttwo levels.Thetop two levelsaretheleast signifi- cantbarriers.Thus,itisevidentthatthe“LackofTopManagement Support (BDAB8)”atthesixth level and “Lackof financialsup- port (BDAB5)”,“Lackofskills (BDAB9)”and“Lackoftechniques orprocedures(BDB11)”atthefifthlevelisthemostcriticalbar-

Fig.5. DEMATELRelationshipMap.

riersagainstBDAimplementationinmanufacturingfirms.Thus, thesebarriersdemandthemaximumattentionofthedecisionand policymakersfortheirsuccessfuleliminationandimprovingthe performanceoftheentiresupplychain.Moreover,thesebarriers drivetheotherbarrierspresent intheabove levels.Thefourth leveloftheISMmodelconsistsofthebarriers“LackofSufficient Resources(BDAB3)”and“DataScalability(BDAB10),”whichfur- therdrivestheothertopthreelevelbarriers.Thethirdlevelconsists ofasinglebarrieri.e.,“LackofDataIntegrationandManagement (BDAB12)”thatdrivesthebarrierspresentinthetoptwolevels.

“PoorDataQualityandLackoftrustonData (BDAB1)”,“Lackof SecurityandPrivacy(BDAB4)”and“ReturnofInvestmentIssues (BDAB7)”areatthesecondleveldrivesthebarriersatthefirstlevel, i.e.,“Time ConsumingActivity (BDAB2)” and “BehavioralIssues (BDAB6).”

4.2. FuzzyMICMACanalysis

TheBDAimplementationbarriersinmanufacturingSCinthe Indian contextwere clusteredintofour groups aspresented in Table7

“LinguisticAssessmentDirectReachabilityMatrix”.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

B1 0 H 0 VL 0 0 M 0 0 0 0 0

B2 0 0 0 0 0 M M 0 0 0 0 0

B3 C C 0 VH 0 0 0 0 0 0 0 C

B4 VL 0 0 0 0 VH H 0 0 0 0 0

B5 0 L VH M 0 M M L 0 0 0 0

B6 0 0 0 0 0 0 0 0 M 0 0 L

B7 0 0 0 0 H M 0 0 0 0 0 0

B8 0 0 VH 0 VH M VH 0 L 0 0 0

B9 H VH 0 VH 0 0 L 0 0 VL VH H

B10 VH C 0 0 0 0 0 0 0 0 0 C

B11 M M 0 H 0 0 0 0 H 0 0 H

B12 VH L 0 M 0 0 M 0 0 0 0 0

Table8

“DefuzzifiedFDRM”.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

B1 0 0.7 0 0.1333 0 0 0.5 0 0 0 0 0

B2 0 0 0 0 0 0.5 0.5 0 0 0 0 0

B3 1 1 0 0.8667 0 0 0 0 0 0 0 1

B4 0.1333 0 0 0 0 0.8667 0.7 0 0 0 0 0

B5 0 0.3 0.8667 0.5 0 0.5 0.5 0.3 0 0 0 0

B6 0 0 0 0 0 0 0 0 0.5 0 0 0.3

B7 0 0 0 0 0.7 0.5 0 0 0 0 0 0

B8 0 0 0.8667 0 0.8667 0.5 0.8667 0 0.3 0 0 0

B9 0.7 0.8667 0 0.8667 0 0 0.3 0 0 0.1333 0.8667 0.7

B10 0.8667 1 0 0 0 0 0 0 0 0 0 1

B11 0.5 0.5 0 0.7 0 0 0 0 0.7 0 0 0.7

B12 0.8667 0.3 0 0.5 0 0 0.5 0 0 0 0 0

Références

Documents relatifs

They are especially powerful for the first steps of the data exploration process, namely understanding the data and generating hypotheses about the data, but they also

We note once again, that this analysis is carried out on the 9 socio-demographic questions at issue here, and as 14 supplementary questions, these were questions related to

It is evident that there is a serious need to capture and integrate environmental and agricultural knowledge from various heterogeneous data sources including sensor

A lot of work has been done in the concerned direction by different authors, and the following are the contribu- tions of this work: (1) An exhaustive study of the existing systems

The big data analytics architecture [26] is built and implemented on big data open source technologies for the enrichment of massive scale data including spatial data.. The

Moreover, it permitted us to de- fine a set of Dimensional Fact Models (DFM) [23] able to describe a typical fetal-ma- ternal test, along with its variable aspects. A simplified

In conjunction with the demand for more and more frequent data from many different sources and for each of these entities, this results in generating vast

Big Data is a new term used to identify the datasets that due to their large size, we can not manage them with the typical data mining software tools.. Instead of defining “Big Data”