• Aucun résultat trouvé

Few-cycle solitons in supercontinuum generation dynamics

N/A
N/A
Protected

Academic year: 2021

Partager "Few-cycle solitons in supercontinuum generation dynamics"

Copied!
93
0
0

Texte intégral

(1)

HAL Id: hal-02572726

https://hal.univ-angers.fr/hal-02572726

Preprint submitted on 13 May 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Few-cycle solitons in supercontinuum generation dynamics

Hervé Leblond, Philippe Grelu, Dumitru Mihalache

To cite this version:

Hervé Leblond, Philippe Grelu, Dumitru Mihalache. Few-cycle solitons in supercontinuum generation

dynamics. 2020. �hal-02572726�

(2)

Non-SVEA models for supercontinuum generation

Herv´ e Leblond

1

, Philippe Grelu

2

, Dumitru Mihalache

3

1Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´e d’Angers, France

2Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France

3Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania

(3)

1 Models for few-cycle solitons

The mKdV-sG equation General Hamiltonian

2

Supercontinuum generation The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )2 / 47

(4)

1 Models for few-cycle solitons

The mKdV-sG equation General Hamiltonian

2

Supercontinuum generation The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

(5)

Introduction

The shortest laser pulses: a duration of a few optical cycles.

Autocorrelation trace, R. Ell et al., Optics Letters 26 (6), 373 (2001).

Pulse duration down to a few fs. Ex. above: 5

fs

=

5×10−15s.

How to model the propagation of such pulses?

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )4 / 47

(6)

Solitary wave vs envelope solitons

Envelope soliton: the usual optical soliton in the ps range

Pulse durationLλwavelength Typical model: NonLinear Schr¨odinger equation (NLS)

Solitary wave soliton: the hydrodynamical soliton

A single oscillation

Typical model: Korteweg-de Vries equation (KdV)

Few-cycle optical solitons:

L∼λ

The slowly varying envelope approximation is not valid

(7)

Solitary wave vs envelope solitons

Envelope soliton: the usual optical soliton in the ps range

Pulse durationLλwavelength Typical model: NonLinear Schr¨odinger equation (NLS)

Solitary wave soliton: the hydrodynamical soliton

A single oscillation

Typical model: Korteweg-de Vries equation (KdV)

Few-cycle optical solitons:

L∼λ

The slowly varying envelope approximation is not valid Generalized NLS equation

We seek a different approach based on KdV-type models

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )5 / 47

(8)

Solitary wave vs envelope solitons

Envelope soliton: the usual optical soliton in the ps range

Pulse durationLλwavelength Typical model: NonLinear Schr¨odinger equation (NLS)

Solitary wave soliton: the hydrodynamical soliton

A single oscillation

Typical model: Korteweg-de Vries equation (KdV)

Few-cycle optical solitons:

L∼λ

The slowly varying envelope approximation is not valid Generalized NLS equation

(9)

A transparent medium

The general spectrum of a transparent medium

1/p

12

A simple model: A two-component medium, each component is described by a two-level model

We assume that the FCP duration

τp

is such that

ω1

(1/τ

p

)

ω2

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )6 / 47

(10)

A transparent medium

The general spectrum of a transparent medium

1/p

12

A simple model: A two-component medium, each component is described by a two-level model

1/

p

1

2

We assume that the FCP duration

τp

is such that

ω1

(1/τ

p

)

ω2

(11)

A transparent medium

The general spectrum of a transparent medium

1/p

12

A simple model: A two-component medium, each component is described by a two-level model

1 / 

p

1

2

We assume that the FCP duration

τp

is such that

ω1

(1/τ

p

)

ω2

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )6 / 47

(12)

A transparent medium

A simple model: A two-component medium, each component is described by a two-level model

1 / 

p

1

2

We assume that the FCP duration

τp

is such that

ω1

(1/τ

p

)

ω2

In a first stage, the two components are treated separately UV transition only, with (1/τ

p

)

ω2

=⇒

Long-wave approximation

(13)

A transparent medium

A simple model: A two-component medium, each component is described by a two-level model

1 / 

p

1

2

We assume that the FCP duration

τp

is such that

ω1

(1/τ

p

)

ω2

In a first stage, the two components are treated separately UV transition only, with (1/τ

p

)

ω2

=⇒

Long-wave approximation

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )7 / 47

(14)

A transparent medium

A simple model: A two-component medium, each component is described by a two-level model

1 / 

p

1

2

We assume that the FCP duration

τp

is such that

ω1

(1/τ

p

)

ω2

In a first stage, the two components are treated separately UV transition only, with (1/τ

p

)

ω2

1/

p

2

(15)

A transparent medium

In a first stage, the two components are treated separately UV transition only, with (1/τ

p

)

ω2

1/

p

2

=⇒

Long-wave approximation

modified Korteweg-de Vries (mKdV) equation

∂E

∂ζ

= 1 6

d3k dω3 ω=0

3E

∂τ3

ncχ(3)

(ω;

ω,ω,−ω) ω=0

∂E3

∂τ

H. Leblond and F. Sanchez,Phys. Rev. A67, 013804 (2003)

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )8 / 47

(16)

A transparent medium

In a first stage, the two components are treated separately IR transition only, with

ω1

(1/τ

p

)

=⇒

Short-wave approximation sine-Gordon (sG) equation:

2ψ

∂z∂t

=

c1

sin

ψ

with

c1

=

w

wr

: normalized initial population difference and

∂ψ

∂t

=

E

Er

: normalized electric field

H. Leblond and F. Sanchez,Phys. Rev. A67, 013804 (2003)

(17)

A transparent medium

In a first stage, the two components are treated separately IR transition only, with

ω1

(1/τ

p

)

1/

p

1

=⇒

Short-wave approximation sine-Gordon (sG) equation:

2ψ

∂z∂t

=

c1

sin

ψ

with

c1

=

w

wr

: normalized initial population difference and

∂ψ

∂t

=

E Er

: normalized electric field

H. Leblond and F. Sanchez,Phys. Rev. A67, 013804 (2003)

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )9 / 47

(18)

A transparent medium

In a first stage, the two components are treated separately IR transition only, with

ω1

(1/τ

p

)

1/

p

1

=⇒

Short-wave approximation sine-Gordon (sG) equation:

2ψ

∂z∂t

=

c1

sin

ψ

with

c1

=

w

wr

: normalized initial population difference and

∂ψ

∂t

=

E Er

: normalized electric field

(19)

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

2ψ

∂z∂t

+

c1

sin

ψ

+

c2

∂t ∂ψ

∂t 3

+

c3

4ψ

∂t4

= 0

∂u

∂z

+

c1

sin

Z t

u

+

c2

∂u3

∂t

+

c3

3u

∂t3

= 0 with

u

=

∂ψ

∂t

=

E

Er

: normalized electric field

Integrable by inverse scattering transform in some cases:

,

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )10 / 47

(20)

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

2ψ

∂z∂t

+

c1

sin

ψ

+

c2

∂t ∂ψ

∂t 3

+

c34ψ

∂t4

= 0 Or

∂u

∂z

+

c1

sin

Z t

u

+

c2∂u3

∂t

+

c33u

∂t3

= 0 with

u

=

∂ψ

∂t

=

E

Er

: normalized electric field

Integrable by inverse scattering transform in some cases:

,

(21)

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

∂u

∂z

+

c1

sin

Z t

u

+

c2

∂u3

∂t

+

c3

3u

∂t3

= 0 with

u

=

∂ψ

∂t

=

E

Er

: normalized electric field

Integrable by inverse scattering transform in some cases:

,

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )10 / 47

(22)

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

∂u

∂z

+

c2

∂u3

∂t

+

c3

3u

∂t3

= 0 with

u

=

∂ψ

∂t

=

E Er

: normalized electric field

Integrable by inverse scattering transform in some cases:

mKdV,

(23)

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

∂u

∂z

+

c1

sin

Z t

u

= 0

with

u

=

∂ψ

∂t

=

E Er

: normalized electric field

Integrable by inverse scattering transform in some cases:

mKdV, sG,

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )10 / 47

(24)

A transparent medium

Then the two approximations are brought together to yield a general model:

The mKdV-sG equation

∂u

∂z

+

c1

sin

Z t

u

+

c2∂u3

∂t

+ 2c

23u

∂t3

= 0 with

u

=

∂ψ

∂t

=

E

Er

: normalized electric field

Integrable by inverse scattering transform in some cases:

mKdV, sG, and

c3

= 2c

2

.

(25)

The analytical breather solution

1 2

2 4 6

-4 -2

-6 0

-0.05 0.05

0

E

-2 0

-1

A few cycle soliton:

Not spread out by dispersion Stable

However, oscillates (breather)

H. Leblond, S.V. Sazonov, I.V. Mel’nikov, D. Mihalache, and F. Sanchez, Phys. Rev. A74, 063815 (2006)

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )11 / 47

(26)

1 Models for few-cycle solitons

The mKdV-sG equation General Hamiltonian

2

Supercontinuum generation The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

(27)

More than two atomic levels

UV transitions:

mKdV model generalizes without modification to a general Hamiltonian.

H. Triki, H. Leblond, D. Mihalache,Opt. Comm.285, 3179-3186 (2012)

IR transitions: Not so simple The sG model

Hence population inversion

w

is explicitly involved.

Generalization: one

w

for each transition.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )13 / 47

(28)

More than two atomic levels

UV transitions:

mKdV model generalizes without modification to a general Hamiltonian.

H. Triki, H. Leblond, D. Mihalache,Opt. Comm.285, 3179-3186 (2012)

IR transitions: Not so simple The sG model

Hence population inversion

w

is explicitly involved.

Generalization: one

w

for each transition.

(29)

More than two atomic levels

IR transitions: Not so simple The sG model can be written as:

∂E

∂z

=

−N ε0c

ΩQ

~∂w

∂t

=

−EQ

~∂Q

∂t

=

|µ|2Ew

identical to Self Induced Transparency equations,

but with real

E

and

Q.

Hence population inversion

w

is explicitly involved.

Generalization: one

w

for each transition.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )13 / 47

(30)

More than two atomic levels

IR transitions: Not so simple The sG model can be written as:

∂E

∂z

=

−N ε0c

ΩQ

~∂w

∂t

=

−EQ

~∂Q

∂t

=

|µ|2Ew

identical to Self Induced Transparency equations,

but with real

E

and

Q.

Hence population inversion

w

is explicitly involved.

Generalization: one

w

for each transition.

(31)

More than two atomic levels

IR transitions: Not so simple

The sG model for 2 transitions (4 level), generalizes to:

∂E

∂z

=

−NΩ

ε0c

(Ω

1Q1

+ Ω

2Q2

)

~

∂wj

∂t

=

−EQj, j

= 1, 2

~∂Qj

∂t

=

j|2Ewj, j

= 1, 2 Hence population inversion

w

is explicitly involved.

Generalization: one

w

for each transition.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )13 / 47

(32)

The above system reduces to

∂u

∂z

+

c1

sin

Z τ

udτ0

+

qc1

sin

ν Z τ

udτ0

= 0

−→

a generalized double sine-Gordon equation Both admit breather solutions:

H. Triki, H. Leblond, D. Mihalache,Phys. Rev. A86, 063825 (2012)

(33)

The above system reduces to

∂u

∂z

+

c1

sin

Z τ

udτ0

+

qc1

sin 2

Z τ

udτ0

= 0

−→

a generalized double sine-Gordon equation

Under certain conditions: the double sine Gordon equation (ν = 2).

Both admit breather solutions:

H. Triki, H. Leblond, D. Mihalache,Phys. Rev. A86, 063825 (2012)

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )14 / 47

(34)

The above system reduces to

∂u

∂z

+

c1

sin

Z τ

udτ0

+

qc1

sin

ν Z τ

udτ0

= 0

−→

a generalized double sine-Gordon equation Both admit breather solutions:

0 10

20 30

Z

-0.5 -1 0.5 0

1.5 1

T

-30 -20 -10 0 10 20 30

ψ

0 5

10 15

20 25

Z

-1 -1.5 0 -0.5

1 0.5

T

-30 -20 -10 0 10 20 30

ψ

Left:ν= 2,q= 0.2; right:ν=

3,q= 0.4.

(35)

1

Models for few-cycle solitons The mKdV-sG equation General Hamiltonian

2 Supercontinuum generation

The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )15 / 47

(36)

1

Models for few-cycle solitons The mKdV-sG equation General Hamiltonian

2 Supercontinuum generation

The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

(37)

Supercontinuum generation

Supercontinuum generation in PCF. Femto-st lab., Besan¸con, France

An intense laser pulse launched in a fiber (photonic crystal fiber especially) turns into white coherent light

The usual theory uses a generalized NLS model, i.e. slowly varying envelope.

In principle, SVEA assumes a narrow spectral width!

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )17 / 47

(38)

Supercontinuum generation

M. Andreanaet al.,Opt. Express 20, 10750 (2012).

An intense laser pulse launched in a fiber (photonic crystal fiber especially) turns into white coherent light

The usual theory uses a generalized NLS model, i.e. slowly varying

envelope.

(39)

Supercontinuum generation

M. Andreanaet al.,Opt. Express 20, 10750 (2012).

An intense laser pulse launched in a fiber (photonic crystal fiber especially) turns into white coherent light

The usual theory uses a generalized NLS model, i.e. slowly varying envelope.

In principle, SVEA assumes a narrow spectral width!

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )17 / 47

(40)

Evidence for supercontinuum generation

The mKdV equation:

∂u

∂z

+

c2∂u3

∂t

+

c33u

∂t3

= 0 Input is a Gaussian pulse:

u(0,t) =A

sin(ωt )e

−t22.

Normalized (dimensionless),

c2

=

c3

= 1 Optical period 2π

ω

and pulse duration

τ

: same as a 100 fs long pulse,

λ

= 1µm.

Numerical resolution...

(41)

z

ν

50

40

30

20

10

00 1 2 3 4 5

-160 -140 -120 -100 -80 -60 -40 -20 0 (dB)

mKdV, input withFWHM= 100,ν= 0.3,A= 0.7.

A very broad spectrum is reached quickly.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )19 / 47

(42)

1

Models for few-cycle solitons The mKdV-sG equation General Hamiltonian

2 Supercontinuum generation

The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

(43)

Question: generation of frequencies lower than

ω?

We solve numerically the mKdV, sG and mKdV-sG models starting with a 100 fs pulse,

λ

= 1µm

−→

Compare the evolution of the spectrum

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )21 / 47

(44)

Comparison between

mKdV,sG, andmKdV-sG

models

Forz= 0, 6, 12, and 16.

sG

extends first towards

Stokes

side,

mKdV

extends first towards

anti-Stokes.

(45)

Recall that

mKdV accounts for UV transitions, and sG for IR transitions.

Usual Raman broadening yields extension of the spectrum towards low frequencies at the beginning of the process and is due to IR

transitions.

Although Raman effect itself

is not taken into account by sG model, the corresponding spectral broadening is.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )23 / 47

(46)

Recall that

mKdV accounts for UV transitions, and sG for IR transitions.

Usual Raman broadening yields extension of the spectrum towards low frequencies at the beginning of the process and is due to IR

transitions.

Although Raman effect itself

is not taken into account by sG model,

the corresponding spectral broadening is.

(47)

Recall that

mKdV accounts for UV transitions, and sG for IR transitions.

Usual Raman broadening yields extension of the spectrum towards low frequencies at the beginning of the process and is due to IR

transitions.

Although Raman effect itself

is not taken into account by sG model, the corresponding spectral broadening is.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )23 / 47

(48)

1

Models for few-cycle solitons The mKdV-sG equation General Hamiltonian

2 Supercontinuum generation

The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

(49)

A quasi monochromatic wave

u

=

U

(z,t)e

i(kz−ωt)

+

cc

+

u1

(z,t), (1)

U

: fundamental wave amplitude;

u1

: small correction.

Neglect dispersion, and disregard third harmonic generation:

U

=

A

2 exp

i

c1

3

+ 3ωc

2

A2

4

z

.

(2)

Self phase modulation.

−→

broadening of the spectrum

with typical oscillations of the spectral density.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )25 / 47

(50)

A quasi monochromatic wave

u

=

U

(z,t)e

i(kz−ωt)

+

cc

+

u1

(z,t), (1)

U

: fundamental wave amplitude;

u1

: small correction.

Neglect dispersion, and disregard third harmonic generation:

U

=

A

2 exp

i

c1

3

+ 3ωc

2

A2

4

z

.

(2)

Self phase modulation.

−→

broadening of the spectrum

with typical oscillations of the spectral density.

(51)

A quasi monochromatic wave

u

=

U

(z,t)e

i(kz−ωt)

+

cc

+

u1

(z,t), (1)

U

: fundamental wave amplitude;

u1

: small correction.

Neglect dispersion, and disregard third harmonic generation:

U

=

A

2 exp

i

c1

3

+ 3ωc

2

A2

4

z

.

(2)

Self phase modulation.

−→

broadening of the spectrum

with typical oscillations of the spectral density.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )25 / 47

(52)

Numerical

mKdV

vs analytical

self-phase modulation, Eq. (2)

0 30 60

0.28 0.3 ν 0.32 0.34

0 20 40

0.28 0.3 ν 0.32 0.34

0 15 30

0.28 0.3 0.32 0.34

spectrum ν

0 15 30

0.28 0.3 ν 0.32 0.34

0 10 20

0.28 0.3 ν 0.32 0.34

FWHM= 100,ν= 0.3,A= 0.7, forz= 0, 2, 4, 10, 20.

Then

actual broadening

becomes asymmetric,

while

analytic formula

remains symmetric.

(53)

Numerical

mKdV

vs analytical

self-phase modulation, Eq. (2)

0 30 60

0.28 0.3 ν 0.32 0.34

0 20 40

0.28 0.3 ν 0.32 0.34

0 15 30

0.28 0.3 0.32 0.34

spectrum ν

0 15 30

0.28 0.3 ν 0.32 0.34

0 10 20

0.28 0.3 ν 0.32 0.34

FWHM= 100,ν= 0.3,A= 0.7, forz= 0, 2, 4, 10, 20.

Analytic envelope approximation OK until

z '

4, Then

actual broadening

becomes asymmetric,

while

analytic formula

remains symmetric.

The very beginning of the broadening process is due to self phase modulation.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )26 / 47

(54)

Numerical

mKdV

vs analytical

self-phase modulation, Eq. (2)

0 30 60

0.28 0.3 ν 0.32 0.34

0 20 40

0.28 0.3 ν 0.32 0.34

0 15 30

0.28 0.3 0.32 0.34

spectrum ν

0 15 30

0.28 0.3 ν 0.32 0.34

0 10 20

0.28 0.3 ν 0.32 0.34

FWHM= 100,ν= 0.3,A= 0.7, forz= 0, 2, 4, 10, 20.

Analytic envelope approximation OK until

z '

4, Then

actual broadening

becomes asymmetric,

while

analytic formula

remains symmetric.

(55)

Numerical

mKdV

vs analytical

self-phase modulation, Eq. (2)

0 30 60

0.28 0.3 ν 0.32 0.34

0 20 40

0.28 0.3 ν 0.32 0.34

0 15 30

0.28 0.3 0.32 0.34

spectrum ν

0 15 30

0.28 0.3 ν 0.32 0.34

0 10 20

0.28 0.3 ν 0.32 0.34

Then

actual broadening

becomes asymmetric, while

analytic formula

remains symmetric.

The very beginning of the broadening process is due to self phase modulation.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )26 / 47

(56)

1

Models for few-cycle solitons The mKdV-sG equation General Hamiltonian

2 Supercontinuum generation

The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3

Few cycle solitons in supercontinuum generation The sG model

The mKdV model

(57)

A lot of high harmonics are created and involved in the process The SVEA does not account for high harmonic generation

z

ν

4.5 4 3.5 3 2.5 2 1.5 1 0.5

00 2 4 6 8 10 12 14 16 18

-160 -140 -120 -100 -80 -60 -40 -20 0 20

(dB)

Up to 15 harmonics can be seen

FWHM= 80,ν= 0.375, andA= 5, sG model.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )28 / 47

(58)

Spectral width of harmonics

Assume a Gaussian profile

u

=

Ae

−t2 τ2 e−iω0t.

Its Fourier transform is ˆ

u

= 2

π Aτ e

−(ω−ω0)2τ2

4 .

The

nth harmonic is then un

=

Ae−nt

2

τ2 e−inω0t,

and its width is

τ

√n

. Consequently its Fourier transform is

(u

dn

) = 2

√ nπ Aτ e

−(ω−nω0)2τ2

4n .

Hence the spectral width of the

nth harmonic is

2

√ n τ

; it increases as

n.

(59)

Spectral width of harmonics

Assume a Gaussian profile

u

=

Ae

−t2 τ2 e−iω0t.

Its Fourier transform is ˆ

u

= 2

π Aτ e

−(ω−ω0)2τ2

4 .

The

nth harmonic is then un

=

Ae−nt

2

τ2 e−inω0t,

and its width is

τ

√n

. Consequently its Fourier transform is

(u

dn

) = 2

√ nπ Aτ e

−(ω−nω0)2τ2

4n .

Hence the spectral width of the

nth harmonic is

2

√ n τ

; it increases as

n.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )29 / 47

(60)

Spectral width of harmonics

Assume a Gaussian profile

u

=

Ae

−t2 τ2 e−iω0t.

Its Fourier transform is ˆ

u

= 2

π Aτ e

−(ω−ω0)2τ2

4 .

The

nth harmonic is then un

=

Ae−nt

2

τ2 e−inω0t,

and its width is

τ

√n

. Consequently its Fourier transform is

(u

dn

) = 2

√ nπ Aτ e

−(ω−nω0)2τ2

4n .

Hence the spectral width of the

nth harmonic is

2

√ n τ

; it increases as

n.

(61)

Spectral width of harmonics

Assume a Gaussian profile

u

=

Ae

−t2 τ2 e−iω0t.

Its Fourier transform is ˆ

u

= 2

π Aτ e

−(ω−ω0)2τ2

4 .

The

nth harmonic is then un

=

Ae−nt

2

τ2 e−inω0t,

and its width is

τ

√n

. Consequently its Fourier transform is

(u

dn

) = 2

√ nπ Aτ e

−(ω−nω0)2τ2

4n .

Hence the spectral width of the

nth harmonic is

2

√ n τ

; it increases as

n.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )29 / 47

(62)

Spectral width of harmonics

Assume a Gaussian profile

u

=

Ae

−t2 τ2 e−iω0t.

Its Fourier transform is ˆ

u

= 2

π Aτ e

−(ω−ω0)2τ2

4 .

The

nth harmonic is then un

=

Ae−nt

2

τ2 e−inω0t,

and its width is

τ

√n

. Consequently its Fourier transform is

(u

dn

) = 2

√ nπ Aτ e

−(ω−nω0)2τ2

4n .

Hence the spectral width of the

nth harmonic is

2

√ n τ

; it increases as

n.

(63)

Spectral widths of the harmonics.

mKdV

compared to

Gaussian

with width increasing as

√ n

-140 -120 -100 -80 -60 -40 -20 0 20

0 0.5 1 1.5 2 2.5 3 3.5 4

spectrum (dB)

ν

FWHM= 100,ν= 0.3, andA= 0.7, forz= 2.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )30 / 47

(64)

Spectral broadening due to parametric interaction between the sidebands of the harmonics

and the ones of the fundamental.

ω0

: fundamental frequency. Assume a sideband

ω0

+

δω,

the third harmonics contains the sideband 3 (ω

0

+

δω).

It may interact with the fundamental

±ω0

:

−→

3 (ω

0

+

δω)−ω0−ω0

=

ω0

+ 3δω Hence

ω0

+

δω

creates

ω0

+ 3δω:

spectrum broadens

(65)

Spectral broadening due to parametric interaction between the sidebands of the harmonics

and the ones of the fundamental.

ω0

: fundamental frequency. Assume a sideband

ω0

+

δω,

the third harmonics contains the sideband 3 (ω

0

+

δω).

It may interact with the fundamental

±ω0

:

−→

3 (ω

0

+

δω)−ω0−ω0

=

ω0

+ 3δω Hence

ω0

+

δω

creates

ω0

+ 3δω:

spectrum broadens

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )31 / 47

(66)

Spectral broadening due to parametric interaction between the sidebands of the harmonics

and the ones of the fundamental.

ω0

: fundamental frequency. Assume a sideband

ω0

+

δω,

the third harmonics contains the sideband 3 (ω

0

+

δω).

It may interact with the fundamental

±ω0

:

−→

3 (ω

0

+

δω)−ω0−ω0

=

ω0

+ 3δω Hence

ω0

+

δω

creates

ω0

+ 3δω:

spectrum broadens

(67)

Spectral broadening due to parametric interaction between the sidebands of the harmonics

and the ones of the fundamental.

ω0

: fundamental frequency. Assume a sideband

ω0

+

δω,

the third harmonics contains the sideband 3 (ω

0

+

δω).

It may interact with the fundamental

±ω0

:

−→

3 (ω

0

+

δω)−ω0−ω0

=

ω0

+ 3δω Hence

ω0

+

δω

creates

ω0

+ 3δω:

spectrum broadens

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )31 / 47

(68)

Spectral broadening due to parametric interaction between the sidebands of the harmonics

and the ones of the fundamental.

ω0

: fundamental frequency. Assume a sideband

ω0

+

δω,

the third harmonics contains the sideband 3 (ω

0

+

δω).

It may interact with the fundamental

±ω0

:

−→

3 (ω

0

+

δω)−ω0−ω0

=

ω0

+ 3δω Hence

ω0

+

δω

creates

ω0

+ 3δω:

spectrum broadens

(69)

1

Models for few-cycle solitons The mKdV-sG equation General Hamiltonian

2

Supercontinuum generation The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3 Few cycle solitons in supercontinuum generation

The sG model

The mKdV model

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )32 / 47

(70)

1

Models for few-cycle solitons The mKdV-sG equation General Hamiltonian

2

Supercontinuum generation The phenomenon

Towards long wavelengths Self-phase modulation High harmonics generation

3 Few cycle solitons in supercontinuum generation

The sG model

The mKdV model

(71)

The sG equation,

∂u

∂z

+

c1

sin

Z τ

udτ0

= 0

c1= 50,A= 1 ( a change inc1results only in a change of the unit along thez-axis).

Input is a Gaussian pulse:

u(0,t) =A

sin(ωt )e

−t22.

A few FCP solitons form and tend to separate

-2

0 2

-200 -100 0 100 200 300 400 500

u

z

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )34 / 47

(72)

The sG equation,

∂u

∂z

+

c1

sin

Z τ

udτ0

= 0

c1= 50,A= 1 ( a change inc1results only in a change of the unit along thez-axis).

Input is a Gaussian pulse:

u(0,t) =A

sin(ωt )e

−t22.

A few FCP solitons form and tend to separate

-2

0 2

-200 -100 0 100 200 300 400 500

u

z

(73)

The sG equation,

∂u

∂z

+

c1

sin

Z τ

udτ0

= 0

c1= 50,A= 1 ( a change inc1results only in a change of the unit along thez-axis).

Input is a Gaussian pulse:

u(0,t) =A

sin(ωt )e

−t22.

A few FCP solitons form and tend to separate

-2

0 2

-200 -100 0 100 200 300 400 500

u

z

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )34 / 47

(74)

The sG equation,

∂u

∂z

+

c1

sin

Z τ

udτ0

= 0

c1= 50,A= 1 ( a change inc1results only in a change of the unit along thez-axis).

Input is a Gaussian pulse:

u(0,t) =A

sin(ωt )e

−t22.

A few FCP solitons form and tend to separate

-2 0 2

-200 -100 0 100 200 300 400 500

u

z

(75)

FCP solitons don’t separate completly, but interact

A

= 1 a few FCP solitons form and tend to separate

-2 -1 0 1 2

100 150 200 250 300 350 400 450

u

t

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )35 / 47

(76)

FCP solitons don’t separate completly, but interact

t

z

250 200 150 100 50 0 -50 -100

-1500 1 2 3 4 5 6 7 8

Initial pulse withFWHM= 100,ν= 0.3, andA= 2.5

(77)

FCP solitons form, don’t separate, but interact

−→

ultrabroad supercontinuum

0 1 2 3 4 5 6 7 8

-300 -200 -100 0 100

z

t

0 1 2 3 4 5 6 7 8

0 2 4 6 8 10

z

ν

-160 -120 -80 -40 (dB) 0

Initial pulse withFWHM= 100,ν= 0.3, andA= 2.5, according to the sG model.

H. Leblond, Ph. Grelu, D. Mihalache, H. Triki ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Non-SVEA models for supercontinuum generation e d’Angers, France, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Dijon, France, Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest, Romania )36 / 47

(78)

Evolution of the spectrum according to sG

-140 -120 -100 -80 -60 -40 -20 0 20

0 1 2 3 4 5

spectrum (dB)

ν

-

Input

as above,

z = 0

-

Harmonic

generation,

z = 4

-

Broadening

of harmonics,

z = 8

- Arising of the

first soliton,z = 9.2

- The

second soliton

is just formed,

z = 11.16

Références

Documents relatifs

We review several propagation models that do not rely on the slowly-varying-envelope approximation (SVEA), and can thus be considered as fundamental models addressing the formation

Des modèles faisant intervenir l'équation de Korteweg-de Vries modifiée (mKdV), ou sine-Gordon (sG), ont été établis, initialement à partir d'un modèle quantique à deux niveaux,

Fig.2 Left: Evolution of an initial Gaussian pulse according to the mKdV model (a) initial pulse (z = 0), (b) set of emerging FCP solitons (z = 999), and (c) zoom on some FCP

Usual Raman broadening yields extension of the spectrum towards low frequencies at the beginning of the process and is due to IR transitions. Although Raman

Pulse duration L λ wavelength Typical model: NonLinear Schr¨ odinger equation (NLS) Solitary wave soliton: the hydrodynamical soliton.. A

Kamal Hammani, Laurent Markey, Manon Lamy, Bertrand Kibler, Juan Arocas, Julien Fatome, Alain Dereux, Jean-Claude Weeber, Christophe Finot.. To cite

Suspended core tellurite glass optical fibers for infrared supercontinuum generation.. Dudley,

The  paper is organized as follows: in Section  2 we present the underlying physical picture of SC generation, which is based on femtosecond filamentation, emphasizing the