• Aucun résultat trouvé

The CO2-induced acceleration of soil organic carbon mineralization counteracted by legumes

N/A
N/A
Protected

Academic year: 2021

Partager "The CO2-induced acceleration of soil organic carbon mineralization counteracted by legumes"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: hal-02785110

https://hal.inrae.fr/hal-02785110

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The CO2-induced acceleration of soil organic carbon mineralization counteracted by legumes

Camille Cros, Gaël Alvarez, Sébastien Fontaine

To cite this version:

Camille Cros, Gaël Alvarez, Sébastien Fontaine. The CO2-induced acceleration of soil organic car- bon mineralization counteracted by legumes. 6th International Workshop Advances in Science and Technology of Bioressources, Universidad de la Frontera. Temuco, CHL., Nov 2017, Pucon, Chile.

�hal-02785110�

(2)

The CO2-induced acceleration of soil organic carbon

mineralization counteracted by legumes

CROS Camille, ALVAREZ Gaël, KEUPER Frida, REVAILLOT

Sandrine, FALCIMAGNE Robert, SALCEDO Alexandre,

FONTAINE Sébastien

1

(3)

Impacts of human activities

Steffen et al., 2015

2

(4)

Impacts of human activities on CO2 emissions

IPPC 2016 report 3

(5)

Consequences of human activities

climate change

IPPC 2016 report 4

IPPC projections:

(6)

Effect of elevated CO2 on planted ecosystem

 Stimulation of growth primary production  increase plant production

Diaz et al., 1993 ; Zanetti et al., 1996;

Cheng 1999; hu 2001;

Schneider et al., 2004;

Groenigen et al., 2006 From Reddy et al., 2010

5

(7)

What is the consequences of

modification of plant functioning due to CO2 increase on soil

processes ?

N mineral

SOM

Soil organic matter

FOM

Fresh organic matter

N uptake

Immobilization

Humification

Rhizosphere Priming Effect Root exudation

soil

Microbial

biomass

Fontaine et al., 2011 Perveen et al., 2014 C fluxes

N fluxes

SOM builders

SOM decomposers

Mineralization

leaching

CO2

CO2

Soil

respiration Plant

respiration

6

(8)

Hypothesis

CO2 +

Decrease of

mineral N

Destockin g SOM RPE

increasing

Photosynthesis stimulation

Biomass increasing

(+ root exsudation )

1 2 3 4

What is the consequences of modification of plant functioning due to CO2 increase on soil processes ?

7

(9)

Bare soil

English ryegrass

monocrop Intercrop with white clover

Ambiant CO2

Ambiant CO2

Eleveted CO2

Eleveted CO2

 2 species

 Sown in September 2016

 CO2 levels

( C ambiant: 400 ppm; C eleveted: 700 ppm)

 4 replicates

 3 plants destructives harvests

Design

8

(10)

Two approaches : 1- continuous 13C labeling platform

2- continuous CO2 exchange measurements

Experimental devices

9

(11)

13C-depleted CO2 of fossil-fuel origin

Tracing source of respired carbon in presence of living

plants

13CO2

Follow humification and Rhizosphere Priming

Effect

Experimental devices

Labeling platform (13CO2)

10

(12)

Experimental devices

Gaz exchanges measurements

13CO2

air flux

Measure of

differential CO2 each 30 minutes on each pots

Calculation of net ecosystem exchange

Deduction of

ecosystem respiration and photosynthesis 11

(13)

Effect of eleveted CO2 on total plant production

Globally higher plant production in

elevated CO2 (p- value=0,04)

After summer, no significant difference in monocrop

After one year, higher production in

intercrop than monocrop

ab

Intercrop C- Intercrop C+

Monocrop C- Monocrop C+

a b a ab

bc a c bc

c a

b

March May November

Total plant biomass (g)

Shoot + root biomass along the year

12

(14)

Effect of eleveted CO2 on roots production

On one year, higher root

production in elevated CO2 (p- value=0,002)

à The higher plant production is especially due to higher root investissment

à Higher soil exploration in elevated CO2

Root biomass (g)

Root biomass production including the

3 harvests a

b

CO2 - CO2 +

13

(15)

Consequences of root exploration on mineral N in soil

Intercrop C-

Intercrop C+

Monocrop C- Monocrop C+

March May November

Nitrogen mineral : N03- +NH4 + (mg/kg)

Bare soil

Planted effect

Fastly mineral N exhaustion in

monocrop elevated CO2

 In november , absence of biomass difference due to N limitation ?

a

c bc c b b

a

a

b b b b b b b 14

(16)

Consequences of N limitation on RPE

Globally higher RPE in monocrop C+ compared to monocrop C-

0 2 4 6 8 10 12

*

* * * * * *

Close to alpha= 5%

Monocrop C- Monocrop C+

RPE (mg C / chambers)

Difference between monocrop C+ vs monocrop C-*

mowing

15

(17)

Consequences of N limitation on RPE

0 2 4 6 8 10 12

*

* * * * * *

Close to alpha= 5%

Monocrop C- Monocrop C+

RPE (mg C / chambers)

Difference between monocrop C+ vs monocrop C-*

mowing

16

Globally higher RPE in monocrop C+ compared to monocrop C-

Sensitivity of extreme temperature higher in monocrop C+ compared to monocrop C-

NA 4,43°C 11,65°C 16,15°C 0,49°C 8,37°C 15,77°C 27,98°C 21,32°C 24,14°C NA 7,23°C

Temperature effect

(18)

Consequences of N limitation on RPE

Globally no difference of RPE in intercrop

0 2 4 6 8 10 12

*

*

Intercrop C- Intercrop C+

RPE (mg C / chambers)

*

Difference between intercrop C+ vs intercrop C- mowing

17

(19)

Consequences of N limitation on RPE

 N limitation in elevated CO2 induce more RPE in ryegrass monoculture depending on season

0 2 4 6 8 10 12

Temperature effect

**

* * * Close* to alpha= 5%* *

*

Intercrop C- Intercrop C+

Monocrop C- Monocrop C+

RPE (mg of C / chambers)

**

Difference between intercrop C+ vs intercrop C- Difference between monocrop C+ vs monocrop C- mowing

NA 4,43°C 11,65°C 16,15°C 0,49°C 8,37°C 15,77°C 27,98°C 21,32°C 24,14°C NA 7,23°C

18

(20)

Correlation between

photosynthesis proxy and RPE

p – value = 0,0002 Spearman

R2 =0,77

p – value = 0,01 Spearman

R2 =0,63

cumulative RPE (mg of C / chambers) cumulative RPE (mg of C / chambers)

cumulative RP (mg of C / chambers) cumulative biomasse (g)

cumulative RP vs cumulative RPE cumulative biomass vs cumulative RPE

More biomass = more RPE

 Destocking in monocrop elevated CO2

19

(21)

In long term, increase of SOM decomposition  decrease of soil stock

Attenuation with legumes

Conclusion

Our results in front of others papers

Plant biomass Mineral N

Soil C storage

Adapted from Perveen et al., 2014

In intercop In monocrop Effect of elevated CO2 in adequation

Hu et al., 2001; Dijsktra et al., 2013;

Perveen et al., 2014; Nie et al., 2016;

Vestergard et al., 2016;

20

(22)

Thank for your attention 

21

(23)

Consequences of N limitation on RPE

Globally higher RPE in monocrop C+ compared to monocrop C-

Sensitivity of extreme temperature higher in monocrop C+ compared to monocrop C-

0 2 4 6 8 10 12

*

* * * * * *

Close to alpha= 5%

Monocrop C- Monocrop C+

RPE (mg of C / chambers)

Difference between monocrop C+ vs monocrop C-*

mowing

22

NA 4,43°C 11,65°C 16,15°C 0,49°C 8,37°C 15,77°C 27,98°C 21,32°C 24,14°C NA 7,23°C

(24)

Matching with the model ?

Perveen et al., 2014

Raygrass en monoculture

Mitigé: sensibilité chaleur

 Remise en question du choix de l’espèce

Oui au départ puis seulement tendance

 Suit-on la courbe ? Récolte novembre

Résultats de bilan de C important MAIS

Décomposition SOM plus élevée en CO2+

hormis été

23

(25)

Matching with the model ?

Perveen et al., 2014

Raygrass associé au trèfle

Biomasse très élevée en CO2+ Aucune différence

 Fixation symbiotique du N  atténuation

Résultats de bilan de C important MAIS

implantation trèfle, décomposition SOM pas différente

+

Biomasse très élevé

 STOCKAGE ??

24

(26)

Effect of eleveted CO2 on roots production

On one year, higher root production in elevated CO2 (p-value=0,002)

Intercrop C- Intercrop C+

Monocrop C- Monocrop C+

Root biomass (g)

Exemple of root biomass in srping a a

b b

25

Références

Documents relatifs

The advantage of choosing a small watershed is that it allows testing several hypotheses for the biogeochemical transformation of the DOC in boreal landscape continuum,

To separate mineral phases of the clay size fraction we performed a size fractionation on samples taken from 4 different plots at 5 different dates (0, 10, 22, 52, and 79 years

Our results showed that in spite of the heterogeneity of the soils at the 5 LTBF sites, organic carbon that has persisted in soils for several decades have similar and defined

le changement de phase liquide-vapeur sleffectue par un processus d'dbullition. Suivant l'homogdndi- t6 du matdriau, l1dbullition peut Ctre r6guliSre ou d'allure explosive.

Empirical cumulative distribution functions (ecdf) for the two spatial estimates presented in this paper (using the Extra model and the JRC estimate) as well as for the observed

This current work shows that GC- FID-REA measurements of speciated monoterpenes are in good agreement with simultaneous measurements of total monoterpenes by PTR-MS-EC, however,

The frequency of dry-wet cycles dit not affect soil carbon mineralization in sudano-sahelian context, except the first period of drying following the re-wetting of mulched

The increase of C mineralization with the number of dry-wet cycles can be assigned to microbial death upon rewetting of dry soil (Van Gestel et al., 1991), solubilization of