• Aucun résultat trouvé

Comparison of modes of operation for guarded hot plate apparatus with emphasis on transient characteristics

N/A
N/A
Protected

Academic year: 2021

Partager "Comparison of modes of operation for guarded hot plate apparatus with emphasis on transient characteristics"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

NBS Special Publication, 302, pp. 229-240, 1969-04-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Comparison of modes of operation for guarded hot plate apparatus

with emphasis on transient characteristics

Shirtliffe, C. J.; Orr, H. W.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=2e7b99cb-5e18-4a93-9778-89ff0b68ff33

https://publications-cnrc.canada.ca/fra/voir/objet/?id=2e7b99cb-5e18-4a93-9778-89ff0b68ff33

(2)
(3)
(4)

C o m p a r i s o n of M o d e s of O p e r a t i o n f o r G u a r d e d H o t P l a t e

A ~ I

A e n x r s

A p p a r a t u s with E m p h a s i s on T r a n s i e n t C h a r a c t e r i s t i c s C. J. S h i r t l i f f e and H. W. O r r D i v i s i o n of Building R e s e a r c h N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a O t t a w a , C a n a d a T h e c o n s t a n t h e a t f l u x a n d c o n s t a n t t e m p e r a t u r e m o d e s of o p e r a t i o n of t h e g u a r d e d h o t p l a t e a p p a r a t u s a r e c o m p a r e d a n d t h e e x i s t e n c e of a n o p t i m u m h e a t f l u x b o u n d a r y condition is e x a m i n e d . T h e s t e p r e s p o n s e e q u a t i o n s f o r t h e d i f f e r e n t m o d e s and f o r v a r i o u s p r e c o n d i t i o n i n g t e m p e r a t u r e s a r e t a b u l a t e d a n d p r e s e n t e d in g r a p h i c a l f o r m . O p t i m u m p r e c o n d i t i o n i n g t e m p e r a t u r e s a r e d e t e r m i n e d . E f f e c t s of d i s t u r b a n c e s a n d p l a t e c a p a c i t y a r e d i s c u s s e d a n d c o n t r o l a n d m e a s u r e m e n t p r o b l e m s c o m p a r e d . A h y b r i d m o d e of o p e r a t i o n is s u g g e s t e d . T h e e x t e n s i o n of t h e r e s u l t s t o t h e u s e of h e a t m e t e r s a n d t r a n s i e n t h e a t flow a p p a r a t u s is d i s c u s s e d . C o n s t a n t t e m p e r a t u r e o r a h y b r i d m o d e of o p e r a t i o n i s found t o b e t h e m o s t p r a c t i c a l . T h e r e s p o n s e t i m e s c a n b e a n o r d e r of m a g n i t u d e l e s s t h a n c o n s t a n t h e a t f l u x o p e r a t i o n . U s e of t h e g u a r d e d hot p l a t e a p p a r a t u s i n t h e c o n s t a n t t e m p e r a t u r e m o d e is s u g g e s t e d f o r o t h e r m e a s u r e m e n t s . K e y W o r d s : G u a r d e d h o t p l a t e , h e a t m e t e r s , m o d e s , o p t i m u m b o u n d a r y c o n d i t i o n s , r e s p o n s e t i m e , t h e r m a l c o n d u c t i v i t y , t h e r m a l diffusivity, t r a n s i e n t e r r o r s , t r a n s i e n t h e a t flow. 1. I n t r o d u c t i o n 1 . H i s t o r i c a l l y , t h e g u a r d e d h o t p l a t e a p p a r a t u s (1) i s a " S t a n d a r d s Lab1' t y p e i n s t r u m e n t w h e r e t h e e m p h a s i s is on a c c u r a c y r a t h e r t h a n on m i n i m i z i n g t h e d u r a t i o n of t h e t e s t . T h e t r a n s i e n t h e a t flow c h a r a c t e r i s t i c s and c o n t r o l p r o b l e m s h a v e t h e r e f o r e b e e n n e g l e c t e d . O t h e r t y p e s of a p p a r a t u s h a v e b e e n evolved f o r s h o r t d u r a t i o n t e s t s of l e s s e r a c c u r a c y . It w a s b e l i e v e d t h a t t h e s t a n d a r d g u a r d e d h o t p l a t e a p p a r a t u s w a s m u c h m o r e v e r s a t i l e t h a n a s s u m e d and t h a t with t h e p r o p e r c o n t r o l s y s t e m a n d m e a s u r e m e n t t e c h n i q u e s i t s u s e could b e e x t e n d e d t o r a p i d , high a c c u r a c y t e s t i n g . T h e a p p a r a t u s w a s thought t o o f f e r a d v a n t a g e s i n t h e t r a n s i e n t h e a t flow a r e a a n d f o r u s e i n conjunction with h e a t m e t e r s . A l s o , s i n c e t h e g u a r d e d h o t p l a t e a p p a r a t u s is b e i n g p r o p o s e d f o r t e s t i n g " s u p e r " i n s u l a t i o n s with e x t r e m e l y l o n g r e s p o n s e t i m e s , i t w a s b e l i e v e d t h a t t h e c o n t r o l m o d e t h a t is o p t i m u m in t e r m s of s p e e d a n d a c c u r a c y s h o u l d b e d e t e r m i n e d a n d t h e r e s p o n s e f u n c t i o n s t a b u l a t e d t o allow e s t i m a t i o n of t h e t i m e t o r e a c h a n a d e q u a t e s t e a d y s t a t e condition. T h e g u a r d b a l a n c e is a s s u m e d t o b e c o n t r o l l e d a u t o m a t i c a l l y i n t h i s a n a l y s i s s o t h a t i t d o e s not i n t r o d u c e a d d i t i o n a l d i s t u r b a n c e s i n t o t h e s y s t e m . T h i s is b e l i e v e d t o b e a r e a s o n a b l e a s s u m p t i o n a s m o s t l a b o r a t o r i e s h a v e p r o v i d e d t h i s t y p e of c o n t r o l f o r t h e i r a p p a r a t u s . T h e t e m p e r a t u r e of t h e c o l d p l a t e is a s s u m e d t o b e c o n s t a n t . F i g u r e s i n p ~ r e n t h e s e s in d i c a t e t h e l i t e r a t u r e r e f e r e n c e s a t t h e and of t h i s paper.

(5)

2. Modes of O p e r a t i o n and T r a n s i e n t C h a r a c t e r i s t i c s

T w o m o d e s of c o n t r o l of t h e hot p l a t e in t h e g u a r d e d hot p l a t e a p p a r a t u s a r e i n g e n e r a l u s e . F o r t h e s i m p l e s t and m o s t widely u s e d t h e p l a t e i s s u p p l i e d with c o n s t a n t p o w e r , t h e r e b y p r o d u c i n g a c o n s t a n t h e a t f l u x a t t h e s u r f a c e of t h e

late.

T h e s e c o n d , l e s s widely u s e d , method i s t o k e e p t h e t e m p e r a t u r e of t h e h o t p l a t e c o n s t a n t by c o n t r o l l i n g t h e p o w e r with a t e m p e r a t u r e c o n t r o l l e r . T h e l a t t e r m e t h o d w a s u s e d by S o m m e r s ( 2 ) f o r "high s p e e d t t t e s t s , but h a s not b e e n widely u s e d b e c a u s e of t h e e x t r a equipment involved and t h e l a c k of knowledge of t h e r e l a t i v e a d v a n t a g e s a n d p r o b l e m s of t h i s m o d e c o m p a r e d t o t h e c o n s t a n t h e a t f l u x m o d e . 2. 1. C o n s t a n t H e a t F l u x O p e r a t i o n T h e u s u a l s e q u e n c e of e v e n t s i n p e r f o r m i n g a t e s t with t h e g u a r d e d h o t p l a t e a p p a r a t u s with c o n s t a n t h e a t f l u x f r o m t h e hot p l a t e i s a s follows: ( i ) T h e s a m p l e i s conditioned t o t h e m e a n t e m p e r a t u r e of t h e t e s t ( i i ) T h e cold p l a t e s a r e a t t h e r e q u i r e d t e m p e r a t u r e

( i i i ) No p o w e r i s b e i n g s u p p l i e d t o t h e hot p l a t e and it i s not a t t h e r e q u i r e d t e s t t e m p e r a t u r e ( i v ) T h e t h e r m a l conductivity a n d , t h e r e f o r e , t h e p o w e r t o t h e t e s t a r e a a r e e s t i m a t e d

( v ) T h e s a m p l e i s p l a c e d i n t h e p l a t e s , t h e p o w e r t o t h e t e s t a r e a i n c r e a s e d f o r an u n s p e c i f i e d p e r i o d of t i m e , t o h e a t up t h e p l a t e and t h e s a m p l e , the"n r e d u c e d t o t h e esti-ted p o w e r . T h e conditions then a r e allowed t o r e a c h s t e a d y s t a t e

( v i ) Additional a d j u s t m e n t s of t h e p o w e r a r e u s u a l l y n e c e s s a r y and d i s t u r b a n c e s m u s t s e t t l e out.

T h e r e h a s b e e n n o e a s y way t o e s t i m a t e t h e t i m e r e q u i r e d t o r e a c h t h e s t e a d y s t a t e condition u s i n g t h i s p r o c e d u r e .

2. 2. C o n s t a n t T e m p e r a t u r e O p e r a t i o n

T h e u s u a l s e q u e n c e of o p e r a t i o n s for u s e with t h e hot p l a t e a t a c o n t r o l l e d t e m p e r a t u r e i s a s follows:

( i ) T h e s a m p l e i s conditioned t o t h e m e a n t e m p e r a t u r e of t h e t e s t ( i i ) Both t h e h o t and cold p l a t e s a r e a t t h e r e q u i r e d t e m p e r a t u r e s

( i i i ) T h e s a m p l e is p l a c e d i n t h e a p p a r a t u s a n d t h e t e s t a r e a p o w e r i n c r e a s e s a u t o m a t i c a l l y t o supply t h e r e q u i r e d h e a t a n d t h e n d r o p s t o t h e s t e a d y s t a t e value. It should b e noted t h a t n o g u e s s i n g o r s e c o n d a d j u s t m e n t s a r e r e q u i r e d . 2. 3. O p t i m u m B o u n d a r y Conditions C o n s t a n t t e m p e r a t u r e o p e r a t i o n i s e a s i e r t h a n c o n s t a n t h e a t f l u x o p e r a t i o n , a n d p r o b a b l y f a s t e r , but t h e q u e s t i o n r e m a i n s a s t o w h e t h e r t h e r e i s a b o u n d a r y condition t h a t w i l l g i v e e v e n f a s t e r r e s p o n s e . A s s u m i n g t h e r e i s a b e t t e r , n o n c o n s t a n t , h e a t f l u x b o u n d a r y condition, F ( t ) , w h e r e t is t i m e , a n d t h e a p p r o p r i a t e unit s t e p r e s p o n s e of t h e s a m p l e is V ( x , t ) , t h e s u r f a c e t e m p e r a t u r e of t h e h o t p l a t e c a n b e w r i t t e n a s given i n r e f . (3).

(6)

where t' i s t h e dummy tirne v a r i a b l e , and s u b s c r i p t t indicates t h e t i m e derivative.

By n o r m a l r e s p o n s e factor methods, F ( t ) can be found f o r any d e s i r e d r e s p o n s e . Since the a n s w e r depends, however on the s t e p r e s p o n s e of t h e sample, V(x, t ) , which i s a function of t h e unknown t h e r m a l p r o p e r t i e s , t h e r e i s no p r a c t i c a l way t o find t h i s optimum condition for t h e r m a l conductivity a p p a r a t u s . The m o s t p r a c t i c a l boundary conditions would a p p e a r t o be the constant t e m p e r a t u r e boundary condition, since it i s the only boundary condition that can be specified without r e g a r d to s a m p l e p r o p e r t i e s .

2. 4. Response T i m e s

T h e t h e o r e t i c a l solutions t o the heat t r a n s f e r p r o b l e m s corresponding t o t h e constant t e m p e r a t u r e and constant heat flux m o d e s of operation a r e given in Appendix I. The solutions have been derived in nondimensional f o r m to make t h e m s e n e r a l . The t e m p e r a t u r e i s nondimensionalized a s shown in Appendix I t o be z e r o a t the cold p l a t e and 1 a t the hot plate under steady s t a t e conditions. The non- dimensional heat flux i s a l s o 1 under steady conditions. T i m e z e r o i s r e f e r r e d t o a s the t i m e at which the boundary conditions a r e applied, that i s , the t e s t i s s t a r t e d , and i s nondimensionalized by t h e t h e r m a l diffusivity "a" and t h e t h i c k n e s s , L,

T h e solutions a r e given in g e n e r a l f o r m and a l s o f o r s p e c i f i c locations in the s a m p l e a t which t h e m e a s u r e m e n t s a r e t o be m a d e for determining t h e t h e r m a l cbnductivity, s i n c e it i s t h e s e values that must approach s t e a d y s t a t e b e f o r e t h e m e a s u r e m e n t s can be made a c c u r a t e l y .

T h e r e s p o n s e t i m e of a s a m p l e i s defined h e r e t o m e a n the t i m e r e q u i r e d for t h e uncontrolled, or unspecified, v a r i a b l e at the hot p l a t e t o r e a c h an adequate steady s t a t e so a s t o give an e r r o r in t h e m e a s u r e m e n t of t h e r m a l conductivity of l e s s than the specified value. A curve of e r r o r in the

m e a s u r e m e n t v e r s u s t i m e will r e s u l t for each mode. The equations f o r e r r o r a r e given in Appendix I I. R e s p o n s e t i m e s for t h e constant t e m p e r a t u r e and constant heat flux modes with t h e initial

t e m p e r a t u r e equal to t h e s t e a d y mean t e m p e r a t u r e , W

=

0. 5, a r e given in figure 1. T h e r e s p o n s e t i m e for constant t e m p e r a t u r e mode i s s e e n t o be a l m o s t an o r d e r of magnitude l e s s than for t h e constant heat flux mode when the e r r o r s a r e s m a l l .

T h e r e s p o n s e t i m e s for s p e c i m e n s a t v a r i o u s i n i t i a l t e m p e r a t u r e s , W , a r e s h o w n i n f i g u r e s 2 and 3, for values of W x 0 , t h e cold p l a t e t e m p e r a t u r e , t o W = 1 , the hot p l a t e t e m p e r a t u r e . In each mode t h e r e i s an optimum value of W a t which the r e s p o n s e t i m e i s l e a s t . The e r r o r r e v e r s e s sign, that i s , overshoots, when t h e i n i t i a l t e m p e r a t u r e i s g r e a t e r than 0. 5 for t h e constant t e m p e r a t u r e mode and 0 . 6 3 5 for the constant heat flux m o d e , and the negative portion of t h e c u r v e can govern t h e r e s p o n s e t i m e of a t e s t . T h e optimum values of t h e initial t e m p e r a t u r e , W , a r e t h e r e f o r e approximately 0. 52 and 0. 64, r e s p e c t i v e l y , f o r the two modes. The r e s p o n s e t i m e s for the two m o d e s a t the optimum W a r e approximately the same. The r e s p o n s e t i m e for t h e constant flux mode a t optimum conditioning i s an o r d e r of magnitude l e s s than t h a t for conditioning to & e mean

t e m p e r a t u r e ; t h i s can b e useful in c a s e s w h e r e the t h e r m a l conductivity of a specimen i s being checked and the steady s t a t e h e a t flux can b e determined beforehand. If t h e t h e r m a l conductivity i s not known then t h e final hot p l a t e t e m p e r a t u r e and t h e r e f o r e the optimum W cannot be determined.

T h e equations and f i g u r e s do not t a k e into account t h e heat s t o r a g e capacity of t h e p l a t e s , t h e t h r e e - d i m e n s i o n a l n a t u r e of the heat flow, or the t e m p e r a t u r e dependence of the p r o p e r t i e s . It should t h e r e f o r e b e recognized that the equations and f i g u r e s a r e only a guide t o the a c t u a l r e s p o n s e t i m e and that checks should be m a d e on t h e applicability of t h e f i g u r e s t o a n y p a r t i c u l a r a p p a r a t u s by t e s t i n g s a m p l e s of known t h e r m a l diffusivity.

A t e a t was made on a f o a m polystyrene s a m p l e , 2. 5 c m thick with a 20- by 20-cm guarded hot p l a t e t o c o m p a r e t h e t h e o r e t i c a l r e s p o n s e t i m e s t o the actual values. F o r constant heat flux operation, the r e s p o n s e t i m e t o

2

p e r cent e r r o r was l e s s than 1 5 s e c , when t h e hot p l a t e was p r e h e a t e d to t h e s t e a d y s t a t e t e m p e r a t u r e , and over 10 h r when t h e p l a t e was not p r e h e a t e d . In e a c h c a s e the exact constant h e a t flux w a s used to obtain t h e d e s i r e d hot p l a t e t e m p e r a t u r e . T h e t h e o r e t i c a l value was approximately 40 s e c for the specimen. In constant t e m p e r a t u r e mode t h e m e a s u r e d r e s p o n s e t i m e was approximately 70 sec. T h e r e s p o n s e c u r v e s a r e , t h e r e f o r e , better e s t i m a t i o n s of the a c t u a l r e s p o n s e t i m e s for t h e constant t e m p e r a t u r e mode than t h e constant h e a t flux mode.

(7)

2. 5. M e a s u r e m e n t P r o b l e m s E a c h m o d e of o p e r a t i o n h a s i n h e r e n t m e a s u r i n g p r o b l e m s . T h e constant h e a t f l u x m o d e of o p e r a t i o n h a s s u c h long r e s p o n s e t i m e s t h a t t h e t r u e s t e a d y s t a t e v a l u e c a n b e difficult t o r e c o g n i z e . M e a s u r e m e n t s m u s t b e m a d e o v e r a n e x t e n d e d p e r i o d t o e n s u r e t h a t it h a s b e e n r e a c h e d . T h e c o n s t a n t t e m p e r a t u r e m o d e of o p e r a t i o n r e q u i r e s t h a t t h e t e m p e r a t u r e of t h e h o t p l a t e b e c o n t r o l l e d , b y c o n t r o l l i n g t h e p o w e r t o t h e h e a t e r . T h e s t e a d y s t a t e p o w e r t o t h e h e a t e r w i l l , by d e f i n i t i o n , v a r y a s m a l l a m o u n t with t i m e . It i s n e c e s s a r y t o a v e r a g e t h e p o w e r o v e r a s u f f i c i e n t l e n g t h of t i m e t o obtain t h e m e a n v a l u e s . T h e a v e r a g i n g t i m e w i l l depend on t h e c o n t r o l l e r c h a r a c t e r i s t i c s a n d t h e t e m p e r a t u r e s e n s o r . T h e p r o b l e m of a v e r a g i n g c a n b e e a s e d c o n s i d e r a b l y by u s i n g z s t r i p c h a r t r e c o r d e r , a u t o m a t i c d a t a l o g g e r , o r a s i g n a l a v e r a g i n g c i r c u i t . 2. 6. H y b r i d M o d e T h e b e s t of both m e t h o d s c a n b e o b t a i n e d by s t a r t i n g t h e t e s t i n t h e c o n s t a n t t e m p e r a t u r e m o d e and s w i t c h i n g l a t e r t o t h e c o n s t a n t h e a t f l u x m o d e . T h i s h y b r i d m o d e of o p e r a t i o n r e q u i r e s a s i g n a l a v e r a g e r and i s a c c o m p l i s h e d b y s t a r t i n g i n t h e c o n s t a n t t e m p e r a t u r e m o d e , m o n i t o r i n g t h e a v e r a g e p o w e r s u p p l y v o l t a g e , a n d when i t b e c o m e s s u f f i c i e n t l y c o n s t a n t , s e t t i n g t h e output of t h e c o n t r o l l e r t o t h a t v a l u e , a n d s w i t c h i n g t h e c o n t r o l l e r t o m a n u a l m o d e , t h e r e b y supplying c o n s t a n t h e a t f l u x t o t h e h o t p l a t e . Depending on t h e s u c c e s s of t h e t r a n s f e r t o c o n s t a n t h e a t flux o p e r a t i o n , t h e m e a s u r e - m e n t c a n b e m a d e w i t h a s h o r t s e t t l i n g t i m e , a n d w i t h n o r m a l m e a s u r i n g i n s t r u m e n t s . 2. 7. D i s t u r b a n c e s a n d R e a d j u s t m e n t s If t h e t e m p e r a t u r e o r t h e h e a t flux of t h e h o t p l a t e m u s t b e r e a d j u s t e d s o a s t o c o n f o r m t o a s t a n d a r d t e s t condition, o r if i t i s d i s t u r b e d , t h e t i m e f o r t h e t r a n s i e n t t o s e t t l e c a n b e e s t i m a t e d f r o m t h e r e s p o n s e t i m e c u r v e s . A c h a n g e i n a p a r a m e t e r a t o n e s u r f a c e c o r r e s p o n d s t o t h e c a s e of a c h a n g e a t t h e s u r f a c e a n d z e r o i n i t i a l t e m p e r a t u r e . T h e e r r o r t h a t t h e d i s t u r b a n c e p r o d u c e s i n t h e s t e a d y s t a t e v a l u e should b e u s e d i n d e t e r m i n i n g t h e r e s p o n s e t i m e . F o r e x a m p l e , a 10 p e r c e n t c h a n g e n e e d o n l y s e t t l e t o 10 p e r c e n t of i t s f i n a l v a l u e t o p r o d u c e a 1 p e r c e n t e r r o r i n t h e m e a s u r e - m e n t . 2. 8. P l a t e C a p a c i t a n c e T h e h o t p l a t e a s s e m b l y c a n h a v e m o r e t h a n 100 t i m e s t h e t h e r m a l c a p a c i t a n c e of t h e s a m p l e and c a n t h e r e f o r e b e t h e m a j o r f a c t o r i n d e t e r m i n i n g r e s p o n s e t i m e ( 3 ) . F a i l u r e t o p r e h e a t t h e h o t - p l a t e a s s e m b l y t o t h e d e s i r e d t e m p e r a t u r e c a n g r e a t l y e x t e n d t h e t e s t , e s p e c i a l l y f o r t h e c o n s t a n t h e a t f l u x m o d e w h e r e t h e s m a l l s o u r c e of h e a t m u s t r a i s e t h e t e m p e r a t u r e of t h e l a r g e t h e r m a l m a s s . T h e i n c r e a s e i n r e s p o n s e t i m e , o r l a g , d e c r e a s e s a s t h e c o n d u c t a n c e of s a m p l e s i n c r e a s e s , and c a n v a r y f r o m a few s e c o n d s t o m a n y h o u r s . F o r c o n s t a n t t e m p e r a t u r e o p e r a t i o n , t h e hot p l a t e i s n o r m a l l y a t t h e r e q u i r e d t e m p e r a t u r e and t h e t h e r m a l m a s s c a n b e u s e d t o a d v a n t a f t e t o s u p p l e m e n t t h e h e a t e r c a p a c i t y i n h e a t i n g t h e s p e c i m e n . In t h e h y b r i d m o d e , t h e t h e r m a l c a p a c i t a n c e i s h e l p f u l d u r i n g t h e c o n s t a n t t e m p e r a t u r e i n t e r v a l a n d d e t r i m e n t a l in t h e c o n s t a n t h e a t flux i n t e r v a l . 2. 9. C h a r a c t e r i s t i c s of C o n t r o l S y s t e m s f o r Hot P l a t e s It h a s b e e n found t h a t t h e r e s p o n s e t i m e f o r t h e n o r m a l d e s i g n of h o t p l a t e s a n d n o r m a l s a m p l e s i s oo g r e a t t h a t r e s e t i s r e q u i r e d , i. e . i n t e g r a l a c t i o n with "anti-windup'' f e a t u r e a l o n g with t h e p r o p o r t i o n a l a c t i o n in t h e c o n t r o l l e r . T h e s u d d e n c h a n g e s in p o w e r output r e q u i r e d when high c a p a c i t a n c e s a m p l e s a r e p l a c e d i n t h e a p p a r a t u s m a k e i t d e s i r a b l e t o h a v e r a t e , i . e . d e r i v a t i v e a c t i o n , a s well. P r o p e r d e s i g n of t h e h o t p l a t e and p l a c e m e n t of t h e t e m p e r a t u r e s e n s o r c a n d e c r e a s e t h e l a g s i n t h e c o n t r o l s y s t e m a n d e a s e t h e s e r e q u i r e m e n t s . 2.10. F u r t h e r R e f i n e m e n t

If

t h e s h o r t e s t p o s s i b l e t e s t t i m e i s r e q u i r e d , t h e r e i s n o r e a s o n why t h e s a m p l e s c a n n o t b e p r e c o n d i t i o n e d t o t h e p r o p e r t e m p e r a t u r e g r a d i e n t in a l a r g e , s i m p l i f i e d p a i r of t e m p e r a t u r e

(8)

c o n t r o l l e d p l a t e s . T h e s a m p l e s could then b e t e s t e d r a p i d l y i n an a p p a r a t u s o p e r a t e d in t h e confitant t e m p e r a t u r e mode.

3 . Application to Heat M e t e r A p p a r a t u s

T h e g u a r d e d hot p l a t e a p p a r a t u s , when o p e r a t e d in t h e constant t e m p e r a t u r e m o d e , f o r m s t h e b a s i c c o n f i g u r a t i o n r e q u i r e d f o r m e a s u r i n g t h e r m a l c o n d u c t i v i t y with a h e a t m e t e r ; t h e a d v a n t a g e of t h i s h e a t m e t e r m e t h o d i s t h e s i m p l i c i t y of t h e m e a s u r e m e n t s .

T h e s o l u t i o n s in Appendtx I c a n be a p p l i e d t o t h e h e a t m e t e r a p p a r a t u s a s w e l l , a s long a s t h e h e a t m e t e r i s thin and h a s a low t h e r m a l c a p a c i t a n c e . E q u a t i o n s ( 5 ) , ( 6 ) , and (7) of Appendix I show t h a t t h e r e a r e t h r e e l o c a t i o n s i n a s a m p l e w h e r e o p t i m u m r e s p o n s e without o v e r s h o o t c a n b e a t t a i n e d . T h e l o c a t i o n s and r e l e v a n t c o n d i t i o n s a r e l i s t e d below. T e s t Conditions ( i ) t h e s a m p l e i s conditioned to a u n i f o r m t e m p e r a t u r e ( i i ) t h e t e m p e r a t u r e of t h e h o t and cold p l a t e s a r e c o n t r o l l e d . L o c a t i o n s and I n i t i a l T e m p e r a t u r e s ( i ) a t t h e hot s u r f a c e - s a m p l e a t t h e m e a n t e m p e r a t u r e ( i i ) a t t h e cold s u r f a c e

-

s a m p l e a t t h e m e a n t e m p e r a t u r e ( i i i ) at t h e c e n t e r of t h e s a m p l e - a n y u n i f o r m t e m p e r a t u r e .

T h e t h i r d l o c a t i o n , a t t h e c e n t e r of t h e s a m p l e , i s not only i d e a l in t e r m s of r e s p o n s e but a l s o p r o v i d e s s o m e i s o l a t i o n f r o m a n y s m a l l independent d i s t u r b a n c e s a t t h e p l a t e s and, ideally, d o e s not r e q u i r e t h e s a m p l e t o b e conditioned t o a n y s p e c i f i c t e m p e r a t u r e . T h e i n i t i a l t e m p e r a t u r e m u s t b e u n i f o r m o r a t l e a s t s y m m e t r i c about t h e c e n t e r point. If t h e r e i s t h e p o s s i b i l i t y that t h e r m a l c o n d u c t i v i t y i s a function of t e m p e r a t u r e , t h e c e n t e r p o s i t i o n a f f o r d s t h e p r o p e r location t o i n d i c a t e if t h e t e m p e r a t u r e h a s d e v i a t e d f r o m t h e m e a n value. T h e c e n t e r p o s i t i o n r e q u i r e s two i d e n t i c a l s a m p l e s . L a n g ( 4 ) h a s developed a n a p p a r a t u s with t h e h e a t m e t e r in t h i s location but i t is not c l e a r if a l l t h e a d v a n t a g e s w e r e r e c o g n i z e d . N o r r i s and F i t z r o y ( 5 ) g a v e t h e t h e o r e t i c a l j u s t i f i c a t i o n f o r t h e m e t h o d .

4. E x t e n s i o n t o T r a n s i e n t M e a s u r e m e n t C o n d i t i o n s

B e c k ( 6 ) h a s d e t e r m i n e d t h e o p t i m u m c o n f i g u r a t i o n f o r t r a n s i e n t h e a t flow a p p a r a t u s f o r s i m u l - t a n e o u s d e t e r m i n a t i o n of t h e r m a l conductivity and s p e c i f i c h e a t . When t h e t h e r m a l conductivity i s low, t h e o p t i m u m c o n f i g u r a t i o n i s a l a r g e t h e r m a l m a s s ''cold p l a t e , " p r e c o n d i t i o n e d but not continuously

c o o l e d , and a c o n s t a n t t e m p e r a t u r e w a r m s i d e with h e a t flux m e t e r e d . T h e cold p l a t e i s i n s u l a t e d on a l l but t h e a c t i v e s u r f a c e . T h e t h e r m a l p r o p e r t i e s a r e i n f e r r e d f r o m t h e cold p l a t e t e m p e r a t u r e and t h e hot s i d e h e a t flux, u s i n g a " n o n l i n e a r e s t i m a t i o n " p r o c e d u r e . T h e g u a r d e d hot p l a t e a p p a r a t u s with t e m p e r a t u r e c o n t r o l l e d h o t p l a t e c a n b e m o d i f i e d t o a t t a i n t h e r e q u i r e d configuration; t h i s a l l o w s t h e e x t e n s i o n of t h e a p p a r a t u s t o m e a s u r e m e n t of both t h e r m a l c o n d u c t i v i t y and s p e c i f i c h e a t .

With s a m p l e s of high t h e r m a l conductivity, t h e o p t i m u m c o n f i g u r a t i o n at t h e c o l d p l a t e r e m a i n s t h e s a m e w h i l e t h a t of t h e hot s i d e condition i s z e r o h e a t f1u.x. T h e r m a l p r o p e r t i e s a r e i n f e r r e d f r o m t e m p e r a t u r e s m e a s u r e d on t h e two s i d e s b y t h e s a m e p r o c e d u r e . By r e m o v i n g t h e hot p l a t e f r o m t h e g u a r d e d h o t p l a t e a p p a r a t u s , t h i s condition c a n b e a c c o m p l i s h e d .

F u r t h e r w o r k should b e c o n s i d e r e d on t h e a d a p t a t i o n of t h e g u a r d e d h o t p l a t e a p p a r a t u s t o t h i s t y p e of m e a s u r e m e n t , and a s t u d y of t h e s o u r c e s of e r r o r . Modification in d e s i g n of t h e h o t and cold p l a t e s m i g h t b e r e q u i r e d t o m a k e t h e m " u n i v e r s a l , " o r i n t e r c h a n g e a b l e p l a t e s m i g h t b e c o n s i d e r e d .

(9)

5. C o n c l u s i o n T h e c o n s t a n t t e m p e r a t u r e a n d h y b r i d m o d e s of o p e r a t i o n h a v e b e e n shown t o b e t h e m o s t p r a c t i c a l f o r t h e g u a r d e d hot p l a t e a p p a r a t u s . T h e r e s p o n s e t i m e s c a n b e a n o r d e r of m a g n i t u d e b e t t e r t h a n f o r c o n s t a n t h e a t f l u x o p e r a t i o n . T h e f i g u r e s p r e s e n t e d c a n b e u s e d a s a guide to e s t i m a t e t h e t i m e r e q u i r e d t o r e a c h a n a d e q u a t e s t e a d y s t a t e . G u a r d e d hot p l a t e a p p a r a t u s with t e m p e r a t u r e - c o n t r o l l e d p l a t e s c a n b e u s e d f o r r a p i d m e a s u r e - m e n t s , e i t h e r a l o n e o r i n conjunction with a h e a t m e t e r . T h e a p p a r a t u s a l s o m i g h t b e u s e d f o r t h e s i m u l t a n e o u s d e t e r m i n a t i o n of t h e r m a l conductivity and t h e r m a l diffusivity.

T h i s r e p o r t is a c o n t r i b u t i o n f r o m t h e Division of Building R e s e a r c h , National R e s e a r c h C o u n c i l of C a n a d a , a n d i s p u b l i s h e d with t h e a p p r o v a l of t h e D i r e c t o r of t h e Division. 6. R e f e r e n c e s (1) Method of t e s t f o r t h e r m a l conductivity of m a t e r i a l s by m e a n s of t h e g u a r d e d hot p l a t e

.

(C177 -63. B o o k of ASTM S t a n d a r d s , 1963, P a r t 3. ( 2 ) S o m e r s , E. V. , H i g h - s p e e d g u a r d e d hot p l a t e a p p a r a t u s f o r t h e r m a l conductivity of t h e r m a l insulation. T r a n s . , ASME, 7 8 , August 1956, p. 1191-6. (4 ) L a n g , D. L. , A q u i c k t h e r m a l conductivity t e s t on i n s u l a t i n g m a t e r i a l s , ASTM B u l l e t i n No. 216, S e p t e m b e r 1965, p. 58-60. (5) N o r r i s , R. H. a n d F i t z r o y , ( M r s . ) Nancy D. : A quick t h e r m a l conductivity t e s t on i n s u l a t i n g m a t e r i a l s , M a t e r i a l s R e s e a r c h and S t a n d a r d s , VI, S e p t e m b e r 1961, p. 727-729. ( 3 ) C h u r c h i l l , R. V. , O p e r a t i o n a l m a t h e m a t i c s , (6) B e c k , J. V. , T h e o p t i m u m a n a l y t i c a l S e c o n d Edition, M c G r a w - H i l l B o o k Co. I n c . , d e s i g n of t r a n s i e n t e x p e r i m e n t s f o r s i m u l - New York, 1958. t a n e o u s d e t e r m i n a t i o n s of t h e r m a l conduc

-

t i v i t y and s p e c i f i c h e a t . M i c h i g a n S t a t e . u n i v e r s i t y , Ph. D. , 1 9 6 4 E n g i n e e r i n g , M e c h a n i c a l . Appendix I R e s p o n s e T i m e s f o r a n Infinite S l a b 1. B a s i c Equation T h e n o n d i m e n s i o n a l i z e d h e a t equation f o r a n i n f i n i t e s l a b with u n i f o r m b o u n d a r y c o n d i t i o n s is w h e r e

0

=

[T ( x . f )

-

T ( o , ~ ) ]

/

[T ( b m )

-

T ( 0 ,

J]

X =

X/L, T a a t / L 2 , L .:t h e t h i c k n e s s of t h e s l a b , x

=

t h e s p a c e v a r i a b l e , running f r o m 0 t o L , t

=

t i m e , a

=

t h e t h e r m a l diffusivity. T h e ncx-~dimensionalized h e a t f l u x is w r i t t e n a s w h e r e q = h e a t flux, q l = t h e s t e a d y s t a t e h e a t f l u x ( - A T ( L , m)

-

T ( O , m)] /L),

X

m t h e t h e r m a l conductivity,

-

=

i n d i c a t e s t h e 234

(10)

1.1. B o u n d a r y Conditions (B. C. ) 2 C o n s t a n t t e m p e r a t u r e a t X

=

0 T w o s e p a r a t e b o u n d a r y conditions a t X = 1 will b e c o n s i d e r e d : ( i ) C o n s t a n t t e m p e r a t u r e : 0(1, T)

=

1 , a n d ( i i ) C o n s t a n t h e a t flux: In e a c h c a s e t h e s t e a d y s t a t e t e m p e r a t u r e d i f f e r e n c e a n d s t e a d y s t a t e h e a t flux a r e e q u a l t o unity. 1. 2. I n i t i a l C o n d i t i o n s T h e following u n i f o r m i n i t i a l condition i s a s s u m e d : e ( x , 0)

=

W w h e r e W i s a f i n i t e constant. 1. 3. S o l u t i o n s t o B a s i c P r o b l e m S o l u t i o n s h a v e b e e n d e t e r m i n e d u s i n g b a s i c s o l u t i o n s a n d t h e "Superposition P r i n c i p l e " a s given by C h u r c h i l l (3). T h e s o l u t i o n s a r e given in t e r m s of t h e v a r i a b l e not s p e c i f i e d a t X r 1 , t h a t i s , in t e r m s of h e a t flux f o r c o n s t a n t t e m p e r a t u r e b o u n d a r y condition, a n d i n t e r m s of t e m p e r a t u r e f o r t h e c o n s t a n t h e a t f l u x b o u n d a r y condition. T h e s o l u t i o n s a r e f i r s t given i n g e n e r a l f o r m , t h e n f o r s p e c i a l c a s e s with X, o r both X a n d W, specified. T a b l e s of t h e f u n c t i o n s m a y b e obtained by w r i t i n g t h e a u t h o r s d i r e c t l y . (1) G e n e r a l F o r m of S o l u t i o n s ( a ) C o n s t a n t T e m p e r a t u r e B. C. m

a

e

-

r

ax

X.

,

= 1 t 2

L

(-1).

.

c o s (AnX)

.

exp ( - A n

4

t 4W

e

c o s (BnX)

.

exp ( - B n 7) (1)

n = l n = l

w h e r e An P n n , Bn

=

(2n-1) n , exp ( ) i s the exponential function, e (

1

(b) 'Constant H e a t F l u x B. C. e(X, T) = X

-

8 [(-l)"-'/~:]

.

s i n ( B n X /2)

.

exp (-B:T/~) n = l 4W

e

( I / B ~ )

.

s i n (BnX/2)

.

exp (-B:T/~) n = l B o u n d a r y c o n d i t i o n s will b e a b b r e v i a t e d a s B. C.

(11)

(2) Special C a s e s

(a) Constant T e m p e r a t u r e B. C.

,

with X = I

m

"

2 T 2

ax

X , T = 1 t 2 n=

f

1 exp ( -A n T ) - 4 W n = 1 exp ( -Bnr) (b) Constant Heat F l u

B.

C . , with =

(c) Constant T e m p e r a t u r e B. C. , with X

=

0. 5, W finite

(d) Constant T e m p e r a t u r e B.C.

,

with X

=

1 , W 0. 5

"

)

ax

= right -hand s i d e of eq (5) 0. 5,T ( e ) Constant T e m p e r a t u r e B. C . , with X = 0 , W

=

0. 5

a e j

-

r right-hand s i d e of eq (5) a x l o , T (f) Constant T e m p e r a t u r e , with

X

=

1 , W = 1 2. Calculation of E r r o r s E r r o r s in determination of t h e r m a l conductivity, if m e a s u r e m e n t s a r e m a d e b e f o r e s t e a d y s t a t e conditions a r e attained, a r e derived below.

2.1. Constant T e m p e r a t u r e B. C. E r r o r a t t i m e T and position X.

s i n c e

(12)

2. 2. Constant Heat F l u x B. C. E r r o r at t i m e T and a t position X E r r o r

=

L o ( x , ~ ) - 8 ( o B r n ) J

-

[ e x

r

- N o . T I ] 1 =

-

- 1 a t X = l 0 ( 1 , r ) s i n c e 0 ( 0 , ~ )

=

0 , all T , and 0 ( X , w )

=

X.

(13)

F i g u r e 1 R e a p o n s e T i m e s for M e a s u r i n g T h e r m a l Conductivity

-

E r r o r a t Time T A f t e r S t a r t of T e s t

-

Constant T e m p . and Constant Heat Flux M o d e s

-

Initial T e m p . , W = 0. 5

(14)

C O N S T A N T H E A T F L U X M O D E

I N I T I A L T E M P E R A T U R E

=

W

O P T I M U M W

h . 6 3 5

Figure 2 Response T i m e s for Measuring Thermal Conductivity

- Error at Time 7 After Start of T e s t

-

Constant Heat Flux Mode

(15)

T =

a t / P

Figure 3 R e s p o n s e T i m e s for Measuring Thermal Conductivity

-

E r r o r at T i m e T After Start of T e s t

-

Constant Temp. Mode

Figure

Figure  2  Response  T i m e s   for  Measuring  Thermal Conductivity  -  Error  at  Time  7  After  Start  of  T e s t
Figure  3  R e s p o n s e   T i m e s  for  Measuring  Thermal  Conductivity

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including