• Aucun résultat trouvé

Surface-driven, one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy film

N/A
N/A
Protected

Academic year: 2021

Partager "Surface-driven, one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy film"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-00966984

https://hal.archives-ouvertes.fr/hal-00966984

Submitted on 27 Mar 2014

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Surface-driven, one-step chemical vapor deposition of

γ-Al4Cu9 complex metallic alloy film

Nathalie Prud’Homme, Thomas Duguet, Diane Samélor, François Senocq,

Constantin Vahlas

To cite this version:

Nathalie Prud’Homme, Thomas Duguet, Diane Samélor, François Senocq, Constantin Vahlas.

Surface-driven, one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy film. Applied Surface

Science, Elsevier, 2013, vol. 283, pp. 788-793. �10.1016/j.apsusc.2013.07.019�. �hal-00966984�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 11271

To link to this article :

DOI:10.1016/j.apsusc.2013.07.019

URL :

http://dx.doi.org/10.1016/j.apsusc.2013.07.019

To cite this version :

Prud’homme, Nathalie and Duguet, Thomas and Samélor, Diane

and Senocq, François and Vahlas, Constantin Surface-driven,

one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy

film. (2013) Applied Surface Science, vol. 283 . pp. 788-793. ISSN

0169-4332

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Surface-driven,

one-step

chemical

vapor

deposition

of

g-Al

4

Cu

9

complex

metallic

alloy

film

Nathalie

Prud’homme

a,b

,

Thomas

Duguet

a,∗

,

Diane

Samélor

a

,

Franc¸

ois

Senocq

a

,

Constantin

Vahlas

a

aCIRIMAT,UniversitédeToulouse-CNRS,4alléeEmileMonso,BP-44362,31432ToulouseCedex4,France bUniversitéParis-Sud11,LEMHE/ICMMO,Bat410,91405OrsayCedex,France

a

b

s

t

r

a

c

t

Thepresentpaperisaparadigmfortheone-stepformationofcomplexintermetalliccoatingsby chem-icalvapordeposition.Itgenuinelyaddressesthechallengeofdepositinganintermetalliccoatingwith comparablecontentsofCuandAl.Dependingonprocessingconditions,apureg-Al4Cu9andmulti-phase

Al-Cufilmsaregrownwithwettingpropertiesoftheformerbeingsimilartoitsbulkcounterpart.The depositionprocessanditsparametricinvestigationaredetailed.Twometalorganicprecursorsareused takingintoaccounttheirtransportandchemicalproperties,anddepositiontemperatureranges.Online andexsitucharacterizationsenlightenthecompetitionwhichoccursatthegrowingsurfacebetween molecularfragments,andwhichlimitsgrowthrates.Notably,introducingapartialpressureofhydrogen gasduringdepositionreducesAlgrowthratefromdimethylethylaminealane(DMEAA),bydisplacingthe hydrogendesorptionequilibrium.ThisAlpartialgrowthratedecreaseisnotsufficienttoachieveaCu/Al atomicratiothatishighenoughfortheformationofintermetallicswithcloseAlandCucompositions. Afivefoldincreaseofthefluxofthegaseouscopper(I)cyclopentadienyltriethylphosphineCpCuPEt3,

whereastheDMEAAfluxremainsconstant,resultsinthetargetedAl/Cuatomicratioequalto44/56. Nevertheless,theglobalgrowthrateisrenderedextremelylowbythedepositioninhibitioncausedby amassivephosphineadsorption(-PEt3).Despitetheselimitations,theresultspavethewaytowardsthe

conformalcoatingofcomplexsurfacegeometriesbysuchintermetalliccompounds.

1. Introduction

Coating of complex 3-dimensional surfaces with complex

metallic alloys (CMAs) including quasicrystals provides added

valuematerialsforinnovativeapplications.Examplesarelow

stick-ingandlowfrictionglassmoldsthatsustainhightemperatures,

andporouspreformsinfiltrationfortheproductionofsupported

catalysts([1–3],andreferencestherein).CMAcoatingsshow

excel-lentmechanicalpropertiessuchaslowadhesion,anti-fretting,or

wearresistance,butthedrawbackoflowadhesionisthatitalmost

alwaysresultsintoautodelaminationthatcanonlybeovercome

byanefficientincreaseofinterfacialaccommodationandadhesion.

Severalsolutionshavebeenproposedtofacethisproblem;one

beingtheuseofabufferlayerofamaterialthatshowsintermediate

electronicandstructuralpropertiesbetweenthoseofthesubstrate

andthecoating[4,5].TheAl-Cusystempresentssuch

intermedi-atephaseswhichhaveproventheirefficiencyforaccommodating

icosahedralAl-Pd-MnandAl-Cu-Fequasicrystals[5,6].

∗ Correspondingauthor.

E-mailaddresses:thomas.duguet@ensiacet.fr,doug181@gmail.com(T.Duguet).

Actually,thereisnosatisfactorytechniquefortheprocessing

ofsuchcoatingsoncomplexsurfaces.Byoperatinginthesurface

reactionlimitedregime,chemicalvapordepositioncaninprinciple

meetthisrequirement.Inthispaperwepresentforthefirsttime

thedirect,one-stepprocessingofapureCMA-containingcoating

bymetalorganicchemicalvapordeposition(MOCVD).Specifically,

wereportontheMOCVDofAl-Cualloyedcoatings,includingthe

g-Al4Cu9 approximantphasewithsimilarpropertiestothebulk

crystal.

PreviousCVDco-depositionexperimentsofAl-Cufilms were

performedintheearlyninetiesinordertoreplacepureAl

intercon-nectionsinverylargescaleintegrationtechnologybya-(Al)solid

solutionswhoseelectromigrationandresistivityarelower.

Tomo-haruetal.[7]andEiichietal.[8]useddimethylaluminumhydride,

DMAH,andcoppercyclopendadienyltriethylphosphine,CpCuPEt3

asprecursorsfortheco-depositionofAlandCu,respectively.They

obtainedpurefilmswithhomogeneousdistributionofCuintheAl

matrix,containingAl2CuprecipitatestypicalofhypoeutecticAl-Cu

alloys.Themajordifferencebetweentheseworksandthepresent

oneliesinthelowconcentrationofCuintheformer,whichisin

theorder1wt%.Processingoffilmswithcomparablecontentof

(4)

phaseand/orsurfaceinteractionsbetweenthetwoprecursorsor

theirfragments.InafirstapproachtotheMOCVDofAl-Cucoatings,

werecentlypublishedresultsonthesequentialdepositionofAl

andCufollowedbyannealing.Intermetallicsarealsoobtainedbut

whilethemethodissimplerthantheoneproposedhere,itpresents

additionalstepsthataresourceoffilmscontaminationandinvolve

higherthermalload[9].

Inaco-depositionprocess,cautionhastobetakenregarding

compatibilitybetweentheselectedmetalorganicprecursors.

Com-patibilityconcernsdepositiontemperatures,chemicalcomposition

(O, F, and C contaminants release), chemical interactions, and

transportinthegasphase.Forthisreason,thepresentworkhas

beenprecededbytheinvestigationoftheMOCVDofunaryfilms

of Aland Cu. Cuis obtained by decomposition of CpCuPEt3, a

solidprecursor,thesaturatedvaporpressureofwhichis0.2Torr

at 60◦C [10]. Its thermal decomposition in the gas phase at

150◦C<T<270C results in theformation of PEt3gas and a

sur-face intermediate {CuCp}surf that rapidlyconvertsinto metallic

Cuand(Cp2)gas.Above270◦C,themechanismispresentedas

fol-lows: CpCuPEt3→Cusurf+HCpgas+other organic fragments [10].

In vacuum, mass spectrometry experiments show an intensity

decrease of themolecular peak at temperaturehigher than ca.

150◦C, whereasdecompositionwithhydrogenissomehow

sta-bilized and shifted at approx. T>170◦C. CuCpPEt

3 is therefore

suitableforMOCVDinthesurfacetemperaturerange150–290◦C.

In this range, growth rate increases with increasing precursor

feedingrateindicatingthatdepositiontakesplaceinadiffusion

controlledregime.Nonetheless,massspectrometryexperiments

show that the growing surface saturates with adsorbed

phos-phine leading to a continuous decrease of the Cu growthrate

withdepositiontime.Thiscanbecounterbalancedbyincreasing

deposition temperature above 240◦C in order to desorb

by-products andofferenoughfreesurfaceforprecursoradsorption

[11].

Ontheotherhand,Alfilmsareobtainedbydecompositionof

dimethylethylaminealane,DMEAA–aliquidprecursor.The

mech-anismattributedtoitsdecompositionatsurfacescanbestressed

asfollows:adsorption,breakingoftheAl-Nbond,desorptionof

thedimethylethylamine,cracking ofthealaneAlH3 into

metal-licAlandadsorbedHatomsthatrecombinetoformH2gas[12].

Aboveasubstratetemperatureof150◦C,Fouriertransforminfrared

spectroscopyrevealedthatDMEAAdecomposesinthegasphase

[13],andchemicalkineticmodelingallowedtoestimatethatonly

ca. 5% of theprecursor participates in the depositionreaction,

with a stickingcoefficient onAl(111)closeto unity [14].Jang

et al. [15] showed that the Al films with the lowest electrical

resistivity,highestdensity,andhighestpurity,areobtainedata

substrate temperature of 160◦C which alsocorresponds tothe

highestAlgrowthrateintheinvestigated100–220◦Ctemperature

range.

Obviously, a compromise must be found for co-deposition

involving thetwo aforementionedprecursors. Specifically,

sub-stratetemperaturemustbechoseninsuchawaythatgrowthrates

arecompatiblewiththetargetedAl-Cuphases’compositionswhile

minimizinghomogeneousdecompositionofprecursors.Itis

reas-suring thoughthatpreliminarymassspectrometryexperiments

during co-deposition show nointeractions betweenprecursors

[11].

Thearticleispresentedasfollows.Theexperimentalprotocol

involvingMOCVDofAl-Cufilmsispresentedindetails,first.Then,

thecomposition,theobtainedAl-Cuphasesandthemorphologyof

thefilmsarepresentedanddiscussed.Finally,preliminaryresults

ofthewettingbywateroftheg-Al4Cu9bulkandMOCVDprocessed

phasearepresented,priortoprovidingconcludingremarks.

2. Materialsandmethods

Depositionsareperformedintheexperimentalsetupdescribed

indetailsandmodeledinRef. [16].Thesetupiscomposed ofa

stagnantflow,cylindrical,stainlesssteelreactor.Thedeposition

chamberfeaturesadoubleenvelopeallowingthemonitoringof

wallstemperaturethroughthecirculationofthermallyregulated

silicon oil. A turbomolecular pumpensures a base pressure of

1.3×10−4Pa.Thepumpinggroupisprotectedfromthecorrosive

by-productsbyaliquidnitrogentrap.Gasisdistributedthrough

ashowerheadsystem,describedandmodeledinRef.[17].Gases

arefedthroughelectropolishedstainlesssteelgaslineswithVCR

fittingsandtheirflowrateiscontrolledbycomputerdrivenmass

flowcontrollers.HFcleaned10×5mm2siliconcouponsareused

assubstrates. For each experiment,fivesamplesare positioned

horizontallyona58mmdiametersusceptorandheatedbya

resis-tancecoilgyredjustbelowthesurfaceofthesusceptor.DMEAA

(Epichem)(99%pure)isusedasreceivedandCpCuPEt3(Strem)is

purifiedbyvacuumsublimationat70◦C.N2(99.9992%pure)andH2

(99.995%pure)(airproducts)arefedthroughelectropolished

stain-lesssteelgaslineswithVCRfittingswithatotalfluxmaintainedat

325standardcubiccentimetersperminute,sccm.Allexperiments

areperformedat10Torr;i.e.areduced,althoughtechnologically

convenientpressure.

Table1isanoverviewofexperimentalconditionsandofresults

thatwillbediscussedinthefollowingsection.Thevaporization

ves-selofDMEAAismaintainedat8◦C,correspondingtoasaturated

vaporpressureof0.5Torr.TransportofDMEAAinvolvesaflowrate

ofN2 throughtheprecursorFN2,DMEAA,equalto5sccm.Inthese

conditions,themaximumflowrateofDMEAA,FDMEAAiscalculated

asbeingequalto0.26sccminallexperiments[18].Thesublimation

vesselofCuCpPEt3ismaintainedat75±5◦C.Twosetsoftransport

conditionsofCuCpPEt3areinvestigated,correspondingtotwo

dif-ferentflowratesofN2throughtheprecursor(30and150sccm).

FCpCuPEt3isestimatedfromweightlossoftheprecursorsublimator

andusingtheanalyticalformulaofRefs.[18,19].Additionally,two

substratetemperatures(200and260◦C)areinvestigatedaswellas

depositionwithandwithoutH2intheinputgas.

Electronprobemicroanalysis(EPMA)isusedfordetermining

theatomiccompositionsofthefilms,andX-Raydiffraction(XRD)

isusedforstructuralinvestigation.Growthrate(GR)iscalculated

by weightgain of each sample prior and after depositionover

thedepositionduration. Table1presentsGRsandatomic

com-positions (at±1%) averagedover the 5 samplesplaced in each

experiment.Thiswaytoquantifythegrowthratedoesnotprovide

directaccesstothethicknessof thefilm.However,it has been

adoptedsincethemeasurementisstraightforwardanditismore

accuratethaninvestigation ofcrosssections bySEMduetothe

roughnessandporosityofsomesamplesaswillbeshowninthe

nextsections.GRsoftheindividualelementsduringco-deposition

areestimatedwiththefollowingformulas:GR(Al)+GR(Cu)=GR

Table1

Investigatedoperatingconditionsandresultingaveragegrowthrates(inmg/cm2/h),averageelementalcompositionsandstructureofthefilms. Experiment# t(h) T(◦C) H2(sccm) FN

2DMEAA/FN2CpCuPEt3 FCpCuPEt3(sccm) GR EstimatedGR(Al) EstimatedGR(Cu) Al/Cu(at.%) Phases

1 2 200 25 5/30 0.07 80 78.1 1.9 99/1 Al+Al2Cu

2 2 260 25 5/30 0.04 30 24.8 5.2 33/67 Al2Cu+Al4Cu9

3 2 260 0 5/30 0.06 50 42.5 7.5 93/7 Al+Al2Cu

(5)

and[GR(Al)/MAl]/[GR(Cu)/MCu]=[Al/Cu](withMEmolecularmass

ofelementE), usingEPMAresults.Oxygen has beensubtracted

fromelementalcompositionsonpurposebecausesystematic

mon-itoringofthegasphaseduringallexperimentsbyonlinemass

spectrometrydoes notshowsignificantamountofoxygenorof

watervapors,thusensuringthatallexperimentswereconducted

intheabsenceofdetectableleaksordesorptionfromthereactor

walls.

Wettabilitybywaterisperformedbythesessiledropmethod

withaGBXDigidropinstrument.

3. Resultsanddiscussion

3.1. Averagecompositionsandgrowthrates,andcrystallographic

phases

Itiswellknownthatsublimation ofafixedbedisneithera

robustnorareproduciblemeanforfeedingthedeposition

cham-berwithvaporsofa solid precursor.Indeed,statistical analysis

over10experimentsofCuprecursorsublimationwithourreactor

demonstratesthatitisnotpossibletodiscriminatetheresults#1–3

attheFN2,DMEAA/FN2,CpCuPEt3 fluxratioof5/30inTable1.Hardly,

weareabletoconfirmthatthe5/150fluxratiodoescorrespond

toahigherfeedingrateofCuprecursor(0.12sccmcomparedto

0.04–0.07sccm).Anadditionalreasonforthisdiscrepancyisthe

observeddegradationoftheprecursoronthereactorwallsand

insidethesublimatorbecauseofitsreducedstabilityaboveroom

temperature.Moreover,itappearsthattheelementalcomposition

ofthefilmsdoesnot followthatofthegasphasebasedonthe

estimationofFprecursor.Let’sconsiderexperiments#2and#3at

260◦C inTable1,forwhichtheonlydifferenceliesinthe

pres-enceofhydrogenornot.TheestimationsofFCpCuPEt3,at0.04and

0.06sccm,canbeconsideredclosevalues.With(without)

hydro-gen,thefilmscontain33at.%Al(93at.%Al)andtheglobalgrowth

rateis30mg/cm2/h(50mg/cm2/h).Amoredirectcomparisoncan

bedonethroughtheindividualgrowthrates.SuppressionofH2

intheinputgasleadstodoublingGR(Al),whereas GR(Cu)only

increasesfrom5.2to7.5mg/cm2/h.Werecallthatthemechanism

ofAldepositionfromDMEAAinvolvesdesorptionofH2gasfrom

thegrowingsurface,afterthealanedecomposition.Asa

rule-of-thumb,wepostulatethattheincreaseofthepartialpressureof

H2inthereactordisplacesthereactionequilibrium,andtherefore

decreasesthereactionrateofDMEAAatthesurface.

Thedifferencesobservedforexperiments#1and#2inTable1

aremorestraightforwardandmainlyrelyonthedeposition

tem-perature. At 200–220◦C, the deposition conditions of Al from

DMEAAareoptimal.Abovethistemperature,gasphasereactions

consumemorethan97%oftheprecursorandgrowthratedecreases

rapidly[14].Inversely,increasingTfrom200to260◦Cleadstoa

highergrowthrateofCufromCuCpPEt3[10].Consecutively,the

individualgrowthratesofCuandAlvaryinoppositedirections

fromT=200◦CtoT=260C;GR(Cu)beingmultipliedby≈2.5while

GR(Al)isdividedby≈3.However,increasingtemperatureto260◦C

isnotanappropriateoptionforincreasingtheCucontentofthefilm

sinceitdrasticallyaffectstheglobalgrowthratethatdecreasesfrom

80to30mg/cm2/h.ThesolutionforgettingCuenrichmentmust

comefromthegasphaseandnotfromahighersurface

tempera-ture.

Therefore, an attempt has been made (experiment #4 in

Table 1) with a substrate temperature of 200◦C and a lower

FN2,DMEAA/FN2,CpCuPEt3 ratio,equalto5/150.H2isalsointroduced

inordertofavorCudepositionattheexpenseofAl.Inthese

condi-tions,theestimatedCuprecursorfluxhasincreasedto0.12sccm.

Theobtainedglobalgrowthrateof25mg/cm2/histhelowestin

thisseriesofexperiments,mainlybecauseitisgovernedbyGR(Al)

whichislow.DuringCuunarydeposition,ithasbeendemonstrated

bymass spectrometrythat PEt3 isextensively adsorbedonthe

growingsurfacewithsubsequenthinderingofprecursorsupplyto

thedepositionzone,resultinginself-inhibitionofCudeposition

andgradualdecreaseofthegrowthrate[11].Here,thissituationis

validinalltheexperimentsbutweprobablyattainsucha

precur-sorconcentrationinexperiment#4,thatinhibitingeffectsbecome

predominantandaffectthedepositionmechanismsofAl,aswell.

Consequently,inadditiontothedisadvantageofusingH2,Al

depo-sitionrateisfurtherreducedbythesaturationofthesurfaceby

adsorbedPEt3.

Tofurthersupporttheabove-mentionedassumptions,wenow

considerexperimentally-determinedgrowthratesofunaryAl

depo-sitions.ThesegrowthratesaredifferentfromtheestimatedGR(Al)

reported in Table1. They result fromdedicated Al depositions

performed without H2(g) witha flow rate of 0.26sccm. In

co-depositionconditionsbeneficialtotheDMEAAprecursor,i.e.either

200◦CorwithoutH2,growthratesofexperiment#1(80mg/cm2/h)

and#3(50mg/cm2/h)aresimilartoexperimentally-determinedAl

depositionsgrowthrates(128and40mg/cm2/h,respectively).In

co-depositionconditionsbeneficialtotheCpCuPEt3precursor,i.e.

either260◦C(experiment#2)orhighF

CpCuPEt3 at200◦C

(exper-iment#4), thepollution ofthesurface byphosphine resultsin

(i) a low globalgrowthrate,and (ii) a low GR(Al),to be

com-paredwiththeexperimentally-determinedAlgrowthrateat200◦C

(128mg/cm2/h). Therefore, theformation of Cu-rich samplesis

more due totheinefficient depositionof Alrather than tothe

increaseofthegrowthrateofCu.

Fromtheresultsreportedaboveweconcludethatwecan

suc-cessfully obtain intermetallic compounds of interest. Despite a

majordrawbackreferringtothereducedgrowthrateandprobably

theprocessyield,solutionsareavailabletocircumventthose

prob-lemswhichareattributedtothecontroloftheco-depositionby

synergeticphenomena.Fromtheanalysisoftheresultsreported

inTable1itappearsthatbetterconditionsforthegrowthof

Al-CucompoundsfromCuCpPEt3andDMEAAshouldinclude:(i)the

useofbothprecursors–butmoreimportantly ofCpCuPEt3–in

liquidsolutionincombinationwitharegulated deliverysystem

(e.g.directliquidinjection,pulsedinjection,...),(ii)avoidingthe

useofH2formaximizingAlgrowth,(iii)determiningacoupleof

[T;FCpCuPEt3]parametersthatallowtheproperdesorptionofPEt3

fromthesurface,andpreventthethermaldegradationofDMEAA

inthegasphase,and(iv)elucidatesurfacemechanismsthatare

Fig.1.XRDspectraofsamplesfromexperiments#1–4withgivenidentificationsof phases.Phasesreportedontheright-handsideofthefigurewhereidentifiedwith aidofJCPDS#04-0787forfcc-Al,#25-0012for-Al2Cu,and#24-003forg-Al4Cu9.

(6)

responsibleforthosesynergeticeffectsandtunethesubstrate

reac-tivity,accordingly.

Fig.1showstheXRDpatternforasprocessedsamplesof

exper-iments#1–4.Thefilmsarecomposedof3differentphases:fcc-Al,

-Al2Cu,andg-Al4Cu9.ComparisonofthesephaseswiththeAl/Cu

ratios shown inTable1,allows concludingthatAl-rich

compo-sitions(experiments#1and#3)correspondtotheformationof

eitherpureAlorofana-(Al)solidsolutionplus-Al2Cu,

eventu-ally.Indeed,whencompositiongetsricherinCu(fromexperiments

#1–3)thenthecontributionofthe-Al2CuphasetotheXRD

dia-grambecomes larger. If thecompositionin Cu is large enough

thenthetargetedg-Al4Cu9isformed,eitherpureorwith-Al2Cu.

Hence,phaseformation qualitativelyfollowsthesimplemixing

rulethatcanbededucedfromtheAl-Cuphasediagram.Itisworth

(7)

notinghowever,thatthesampleofexperiment#2whichshows

theelementalcompositiontheclosesttothetheoreticalAl4Cu9

composition(Al33Cu67andAl31Cu69,respectively)isnottheone

giving rise to the formation of a single-phase g-Al4Cu9

coat-ing. This is observed for the sample of experiment #4 whose

elementalcompositionissomehowshiftedfromthisideal

com-position.Thisresultisincontrastwithreports,followingwhich

fora given coatingcompositionthecorrespondingpoint in the

phase diagram can beused to predict the final phase fraction

[6,20]. It is rather attributed to partial alloying giving rise to

transient phases, mainly-Al2Cu and g-Al4Cu9 because of the

relativelylow activationenergy required fortheir formation in

thinfilms [9,21].Moreover,it hasbeenreportedthat,

indepen-dentlyoftheAl/Curatio,thermalannealingofAl-Cubilayersfirst

yields-Al2Cu at temperatures aslow as 130◦C followed by a

smallamount ofa secondphase, AlCu3. Thesubsequent phase

formation wasfoundtodepend ontheCu:Al atomic ratio. For

Cuconcentrationshigherthan50at.%,thereactionsubsequently

proceedstowardthephasesg-Al4Cu9 anda-Cu.ForCu

concen-trationlowerthan50at.%,AlCu3transformstoanewhexagonal

phaseAlxCuwhichsubsequentlytransformsbacktoAlCu3before

the reaction proceeds toward the end phases AlCu and Al2Cu

[22].

EPMAandRutherfordbackscatteringexperimentsrevealthat

oxygen concentration in the films is high, ranging from 13

to 61%. Taking into account that on line mass spectrometry

unambiguouslyshowsbackgroundlevel forall oxygen

contain-ing species, it is concluded that oxidation of the films occurs

ex situ.Based onSEM observations illustratedin the next

sec-tion,thehighsurfacetovolumeratiois mostlikelyresponsible

for surface oxidation in addition to O2 and water

adsorp-tion.

3.2. Morphology

Fig.2regroupssurfaceandcross-sectionSEMimages.Thefirst

obvious observation is that rough morphologies correspond to

Al-richcompositions(experiment#1and#3)whereassmoother

morphologiesarefoundonCu-richsamples(experiment#2and

#4).However,sinceAl-richfilmsaremuchthickerbasedonweight

gainandonSEMcross-sectionsanalysis,itisunclearwhetherhigh

thicknessorAlgrowthorthecombinationofbothisresponsible

forroughnessandporosity.Agoodindicationcomesfrom

deposi-tiontemperatures.Thefilmofexperiment#1wasgrownat200◦C

whereasthefilmofexperiment#3wasgrownat260◦C.At200C,

growthrateishigherbecauselessprecursorisconsumedin

homo-geneousreactions.Fromthesurfacepointofview,itcorrespondsto

ahigherfluxofprecursor.Inversely,ahighertemperatureresultsin

thecombinationofalowerprecursorfluxandhigherbulkand

sur-facediffusionrates;bothmechanismsarebeneficialtothesurface

smoothness.

The surface of the sample of experiment #2 is composed

of a dense film with equiaxed grains on top of which

quasi-unidirectionalfilamentsarepointingawayfromthesurfaceplane.

In Fig. 3, similar filaments are found for experiments #2–4.

It was not possible to determine their structure and

compo-sition due to their size which is not compatible with SEM,

XRD or EPMA. Experiment #4 is the most promising

applica-tion wise:the film is single-phase g-Al4Cu9 (within thelimits

of XRD characterization) and it shows large surface regions

like the one illustrated in Fig. 3 with no parasite filament

grains.

Thissampleprovides thefirstexperimental proofofconcept

accordingto which MOCVD co-deposition canform a complex

metallicalloycoatinginonestep.

3.3. Wettingof -Al4Cu9surfacesbywater

The useof MOCVD films containing approximant phases as

buffer layers for the interfacial accommodation and adhesion

betweenametallicsubstrateandaquasicrystallinecoatingis

sub-jectedtotheirsurfaceenergy,whichinturnimpactstheirwetting

byliquids,e.g.water.Itiswellknownthatinambientair,typical

valuesforaquasicrystalofhighlatticeperfectionlikeanannealed

singlegrainicosahedralAl-Pd-Mnareintherange90◦<<100,

whereaspurealuminummetalshowsvaluesaround70◦ [23].In

thiscontext,itisexpectedthatag-Al4Cu9 single-phasedsurface

shouldpresentacontactanglewithwaterbetween70◦ and90.

Inordertoverifythispointaseriesofwettingexperimentswere

performedwithultrapurewater(resistivity18.2MOhm/cm)onthe

surfaceofsample#4(pureg-Al4Cu9)andonthesurfaceofapure

g-Al4Cu9bulksample.Beforewettingexperiments,thesurfaceof

thebulksamplewaspolishedwithSiCdisks.Threesurfacefinishes

wereobtainedwith600,2400and4000grit,providingsurfaces

withmeanroughnessRaof246nm,16nmand7nm,respectively.

Fourmeasurementsofcontactanglewithwaterwereperformedon

eachsurfacefinish.Theobtainedvaluesare82◦,84,and87(±2)

fromtheroughertothesmoothersurface.Theseresultsconfirmthe

intermediatevalueofthecontactanglewithwateronthesurface

oftheg-Al4Cu9approximantbetweenthoseobtainedonthe

sur-faceofaluminummetalandoficosahedralcrystals.Theyarealso

consistentwithWenzel’stheory,followingwhichanintrinsically

hydrophilicsurfacebecomesmorehydrophilicwhenitsroughness

increases[24].Followingthesameprotocol,fourmeasurements

ofcontactanglewithwaterwerealsoperformedonthesurface

oftheMOCVDprocessedpureg-Al4Cu9film.Theobtainedmean

valueis89(±2◦).TakingintoaccountthatRaofthelatter

sam-plewasmeasuredtobe5nm,thisresultistobecomparedwith

theoneof87◦obtainedonabulkg-Al4Cu9surfacewith

compara-bleroughness.ItisconcludedthatMOCVDprocessedapproximant

phasespresentsimilarsurfacecharacteristicstothose of

equiv-alentbulkcrystals.Inamore prospectiveview,itispossibleto

engineerthesurfaceenergyofMOCVDAl-Cufilmbyproper

selec-tionofdepositionconditionsleadingtoamixtureofintermetallic

phasesincludingapproximantones.

4. Conclusions

We present a one-step process for the deposition of Al-Cu

intermetallic coatings by metalorganic chemical vapor

deposi-tion.Dimethylethylaminealane(DMEAA),aliquidprecursor,and

copper(I)cyclopentadienyltriethylphosphine(CpCuPEt3),asolid

precursor,arechosenasprecursorsfortheco-depositionofAland

Cubecausetheycontainnooxygen,theyarechemicallycompatible,

andtheirdepositiontemperaturesaresimilar.

Theelementalcompositionofthefilmsdoesnotfollowthatof

thegasphase.Thepresenceofhydrogengasplaysanimportantrole

intheco-depositionprocessbydisplacingthereactionequilibrium

ofDMEAAatthesurface,thereforedecreasingtheAlgrowthrate.

Additionally,whentheCpCuPEt3gasfluxishighenoughfor

achiev-ingAl/Cucompositionsofinterest,theexperimentalgrowthrateof

Al-Cufilmsislimitedbytheadsorbedphosphineoriginatingfrom

CuCpPEt3decompositiononthegrowingsurface.Encouragingly,

solutionsareavailabletocircumventthoseproblemswhich are

attributedtothecontroloftheco-depositionbysynergeticsurface

phenomena.

Thesingle-phaseg-Al4Cu9isformedwhentheCucomposition

intheAl-Cufilmsishighenough.Thesurfaceroughnessofsuch

filmsisverylow,withaRavalueequalto5nm.Wetting

measure-mentswithwateronthissurfaceprovideacontactangleof89±2◦;

i.e.roughlythesameastheoneonabulkpolycrystallineg-Al4Cu9of

(8)

approximantphasepresentsimilarsurfacepropertieswiththose

ofequivalentbulkcrystalsandcan,thereforebeusedas

interfa-ciallayerbetweenmetallicsubstratesandquasicrystallinecoatings

accommodatingthemismatchofsurfaceenergybetweenthem.

ThepresentworkdemonstratesthatitispossiblebyMOCVD

toprocessinasinglestepandatrelativelylowtemperature,films

containingintermetallicphasesincludingapproximantones.This

workmaybeconsideredasapreliminaryapproachpavingtheway

totheconformalcoatingofcomplexsurfacegeometriesbysuch

intermetalliccompounds.

Acknowledgments

WeareindebtedtoLyacineAlouiandtoMaëlennAufray,both

atCIRIMAT,Toulouseforperformingthe,andforadviceon,

con-tact angle measurements,respectively, to Philippe de Parseval,

Observatoire Midi-Pyrénées,Toulouse,forEPMAanalysisandto

Marie-CéciledeWeerd,InstitutJeanLamour,Nancy,forproviding

theg-Al4Cu9crystal.Thisworkwassupportedbythe6th

Frame-workEUNetworkofExcellence‘ComplexMetallicAlloys’(Contract

No.NMP3-CT-2005-500140),andbytheFrenchAgenceNationale

delaRecherche(ANR)undercontractNo.NT05-341834.Itwould

neverhavebeencompletedwithoutthepersistentsupportof

Jean-MarieDubois,CNRS,Nancy.

References

[1]J.-M.Dubois,P.Brunet,W.Costin,A.Merstallinger,Frictionandfrettingon quasicrystalsundervacuum,JournalofNon-CrystallineSolids334–335(2004) 475.

[2]J.-M.Dubois,M.-C.DeWeerd,J.Brenner,M.Sales,G.Mozdzen,A.Merstallinger, E.Belin-Ferré,Surfaceenergyofcomplex–andsimple–metalliccompounds asderivedfromfrictiontestinvacuum,PhilosophicalMagazine86(2006)797. [3]B.Ngoc,C.Geantet,J.Dalmon,M.Aouine,G.Bergeret,P.Delichere,S.Raffy, S.Marlin,Quasicrystallinestructuresascatalystprecursorsforhydrogenation reactions,CatalysisLetters131(2009)59–69.

[4]M.Bielmann,A.Barranco,P.Ruffieux,O.Gröning,R.Fasel,R.Widmer,P. Grön-ing,FormationofAl4Cu9onthe5foldsurfaceoficosahedralAlPdMn,Advanced EngineeringMaterials7(2005)392.

[5]T.Duguet,J.Ledieu,J.M.Dubois,V.Fournée,Surfacealloysasinterfaciallayers betweenquasicrystallineandperiodicmaterials,JournalofPhysics:Condensed Matter20(2008)314009.

[6]T.Duguet,S.Kenzari,V.Demange,T.Belmonte,J.M.Dubois,V.Fournee, Struc-turallycomplexmetalliccoatingsintheAl-Cusystemandtheirorientation relationshipswithanicosahedralquasicrystal,JournalofMaterialsResearch 25(2010)764–772.

[7]K.Tomoharu,K.Eiichi,T.Nobuyuki,N.Tadashi,Y.Hiroshi,O.Tomohiro, Met-alorganicchemicalvapordepositionofaluminum-copperalloyfilms,Japanese JournalofAppliedPhysics32(1993)L1078.

[8]K.Eiichi,K.Yumiko,T.Nobuyuki,O.Tomohiro,Interconnectionformation by doping chemical-vapor-deposition aluminum with copper simulta-neously: Al-CuCVD, Journal of TheElectrochemical Society 141 (1994) 3494–3499.

[9]L. Aloui, T. Duguet, F. Haidara, M.-C. Record, D. Samélor, F. Senocq, D. Mangelinck,C.Vahlas,Al–Cuintermetalliccoatingsprocessedby sequen-tialmetalorganicchemicalvapourdepositionandpost-depositionannealing, AppliedSurfaceScience258(2012)6425–6430.

[10]F.Senocq,A.Turgambaeva,N.Prud’homme,U.Patil,V.V.Krisyuk,D.Samélor, A. Gleizes, C. Vahlas, Thermal behaviour of CpCuPEt3 in gas phaseand

Cu thin films processing, Surface and Coatings Technology 201 (2007) 9131–9134.

[11]A.E.Turgambaeva,N.Prud’homme,V.V.Krisyuk,C.Vahlas,Mass Spectro-metricmonitoringofthegasphaseduringtheCVDofcopperfromcopper cyclopentadienyl triethylphosphine,ChemicalVapor Deposition18(2012) 209–214.

[12]A.Ludviksson,D.W.Robinson,J.W.RogersJr.,Theinteractionof dimethylethy-laminealaneandammoniaoncleanandoxidizedAl(111):atomiclayergrowth ofaluminumnitride,ThinSolidFilms289(1996)6–13.

[13]J.-H.Yun,M.-Y.Park,S.-W.Rhee,Fouriertransforminfrareddiagnosticsofgas phasereactionsinthemetalorganicchemicalvapordepositionofaluminum fromdimethylethylaminealane,JournalofVacuumScience&TechnologyA: Vacuum,Surfaces,andFilms16(1998)419–423.

[14]T.C.Xenidou,N.Prud’homme,C.Vahlas,N.C.Markatos,A.G.Boudouvis, Reac-tionandtransportinterplayinAlMOCVDinvestigatedthroughexperiments andcomputationalfluiddynamicanalysis,JournalofTheElectrochemical Soci-ety157(2010)D633–D641.

[15]T.W.Jang, W.Moon,J.T. Baek, B.T. Ahn,Effectof temperature and sub-strate on the growth behaviors of chemical vapor deposited Al films with dimethylethylamine alane source, Thin Solid Films 333 (1998) 137–141.

[16]T.C. Xenidou, A.G. Boudouvis, N.C. Markatos, D. Samélor, F. Senocq, N. Prud’Homme,C.Vahlas,Anexperimentalandcomputationalanalysisofa MOCVDprocessforthegrowthofAlfilmsusingDMEAA,SurfaceandCoatings Technology201(2007)8868–8872.

[17]T.C.Xenidou,N.Prud’Homme,L.Aloui,C.Vahlas,N.C.Markatos,A.G.Boudouvis, Shapeoptimizationofashowerheadsystemforthecontrolofgrowth uni-formityinaMOCVDreactorusingCFD-basedevolutionaryalgorithms,ECS Transactions25(2009)1053–1060.

[18]S.D.Hersee,J.M.Ballingall,Theoperationofmetalorganicbubblersatreduced pressure,JournalofVacuumScience&TechnologyA:Vacuum,Surfaces,and Films8(1990)800–804.

[19]C.Vahlas,B.Caussat,F.Senocq,W.L.Gladfelter,L.Aloui,T.Moersch,Adelivery systemforprecursorvaporsbasedonsublimationinafluidizedbed,Chemical VaporDeposition13(2007)123–129.

[20]J.M.Vandenberg,R.A.Hamm,AninsituX-raystudyofphaseformationinCu-Al thinfilmcouples,ThinSolidFilms97(1982)313.

[21]H.G.Jiang,J.Y.Dai,H.Y.Tong,B.Z.Ding,Q.H.Song,Z.Q.Hu,Interfacialreactions onannealingCu/Almultilayerthinfilms,JournalofAppliedPhysics74(1993) 6165.

[22]F.Haidara,M.-C.Record,B.Duployer,D.Mangelinck,Investigationofreactive phaseformationintheAl–Cuthinfilmsystems,SurfaceandCoatings Technol-ogy206(2012)3851–3856.

[23]J.M.Dubois,Amodelofwettingonquasicrystalsinambientair,Journalof Non-CrystallineSolids334–335(2004)481–485.

[24]R.N.Wenzel,Resistanceofsolidsurfacestowettingbywater,Industrial& EngineeringChemistry28(1936)988–994.

Références

Documents relatifs

In a simple test of the hypothesis that permanent and transitory components have the same MPC, quarterly data on money income and con- sumption from the first quarter of 1946

bandicoot is an open-source Python toolbox to extract more than 1442 features from stan- dard mobile phone metadata.. bandicoot makes it easy for machine learning researchers

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

pombe cells were able to degrade malic acid efficienly without sugar consumption ( 20 g/1 malate consumed during 150 heurs after sugar exhaustion ). pombe is neither

C’est à partir de ce pays que nous étudions la manière dont des savoirs locaux se construisent en tension avec des dynamiques plus globales puisque, comme tout registre de la

It can be seen from this review that various types of innovative process equipment, such as cavitational reactors, oscillatory baf- fled reactors, microwave reactors,

Finally, I address the distribution of optional and/or restricted CFNMs in Africa, with a particular focus on the spread of CFNMs among Bantu languages to the south of

Removal of the underlying SiO 2 template from the BrIBAM-HSA coated particles after each coating step (n = 2!5) yielded homogeneous and well-dispersed BrIBAM- protein hollow