• Aucun résultat trouvé

The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans Authors' names and affiliations

N/A
N/A
Protected

Academic year: 2021

Partager "The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in humans Authors' names and affiliations"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-01403839

https://hal.archives-ouvertes.fr/hal-01403839v2

Submitted on 4 Jan 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

The emerging role of ECM crosslinking in T cell

mobility as a hallmark of immunosenescence in humans

Authors’ names and affiliations

Jean-Francois Moreau, Thomas Pradeu, Andrea Grignolio, Christine Nardini,

Filippo Castiglione, Paolo Tieri, Miriam Capri, Stefano Salvioli, Jean-Luc

Taupin, Paolo Garagnani, et al.

To cite this version:

Jean-Francois Moreau, Thomas Pradeu, Andrea Grignolio, Christine Nardini, Filippo Castiglione, et

al.. The emerging role of ECM crosslinking in T cell mobility as a hallmark of immunosenescence in

humans Authors’ names and affiliations. Ageing Research Reviews - ARR, Elsevier Masson, 2017, 35,

pp.322-335. �10.1016/j.arr.2016.11.005�. �hal-01403839v2�

(2)

ContentslistsavailableatScienceDirect

Ageing

Research

Reviews

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a r r

Review

The

emerging

role

of

ECM

crosslinking

in

T

cell

mobility

as

a

hallmark

of

immunosenescence

in

humans

Jean-Francois

Moreau

a,g,∗

,

Thomas

Pradeu

a

,

Andrea

Grignolio

b

,

Christine

Nardini

c

,

Filippo

Castiglione

e

,

Paolo

Tieri

e

,

Miriam

Capri

d

,

Stefano

Salvioli

d

,

Jean-Luc

Taupin

f

,

Paolo

Garagnani

d

,

Claudio

Franceschi

d

aUniversityofBordeaux,CNRS-UMR5164,146rueLéoSaignat,33076Bordeaux,France bUniversityofRome“LaSapienza”,Rome,Italy

cPersonalgenomics,StradaleGrazie,Verona,Italy

dDepartmentofExperimental,DiagnosticandSpecialtyMedicine,InterdepartmentalCentre“L.Galvani”forBioinformatics,BiophysicsandBiocomplexity,

ViaSanGiacomo,12,UniversityofBologna,40126Bologna,Italy

eConsiglioNazionaledelleRicerche,IstitutoperleApplicazionidelCalcolo,Rome,Italy fUniversitéParis-Diderot,INSERMU1160,Paris,France

gCHUBordeaux,PlaceAmélieRaba-Léon,Bordeaux,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1June2016

Receivedinrevisedform26October2016 Accepted7November2016

Availableonline19November2016 Keywords: Aging Immunosenescence Extracellularmatrix Mobility Immunecells

a

b

s

t

r

a

c

t

Immunosenescenceisthoughttoresultfromcellularagingandtoreflectexposuretoenvironmental stressorsandantigens,includingcytomegalovirus(CMV).However,notallofthefeaturesof immunose-nescenceareconsistent withthisview,and thishasledtotheemergenceof thesistertheoryof “inflammaging”.TherecentlydiscovereddiffusetissuedistributionofresidentmemoryTcells(TRM)

whichdon’trecirculate,callsthesetheoriesintoquestion.ThesecellsaccountformostTcellsresidingin barrierepitheliawhichsitinandtravelthroughtheextracellularmatrix(ECM).Withalmostallstudiesto datecarriedoutonperipheralblood,theage-relatedchangesoftheECMandtheirconsequencesforTcell mobility,whichiscrucialforthefunctionofthesecells,havebeenlargelyignored.Weproposeanupdate ofthetheoreticalframeworkofimmunosenescence,basedonanovelhypothesis:theincreasingstiffness andcross-linkingofthesenescentECMleadtoaprogressiveimmunodeficiencyduetoanage-related decreaseinTcellmobilityandeventuallythedeathofthesecells.Akeyelementofthismechanismis themechanicalstresstowhichthecellcytoplasmandnucleusaresubjectedduringpassagethroughthe ECM.Thishypothesisisbasedonan“evo-devo”perspectivebringingtogethersomemajorcharacteristics ofaging,tocreateasingleinterpretiveframeworkforimmunosenescence.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction...323

2. Agingandimmunosenescence:currentknowledgeandthebiasesofpreviousstudiesbasedonblood...324

3. ThetightconnectionbetweenimmunecellsandtheECM...325

3.1. Mechanicalstressonthenucleus,thelargestandmostrigidcellcomponent...325

3.2. Lessonslearnedfromvarioushereditaryimmunedeficienciesinwhichcellmobilityisaltered...326

4. Immunosenescence,cellmobilityandage-relatedchangesintheECM:the“mesh”connection...327

4.1. ECMchangesovertime:how,whenandwhy?...327

4.2. ConsequencesofECMalterationswithage...327

4.3. ECMandtheC.elegansmodelofaging...328

∗ Correspondingauthor.Presentaddress:CNRS-UMR5164ImmunoConcept, Bor-deauxUniversity,146,rueLéoSaignat,33076BORDEAUXCedex,France.

E-mailaddress:jfmoreau@u-bordeaux.fr(J.-F.Moreau).

http://dx.doi.org/10.1016/j.arr.2016.11.005

(3)

4.4. ECMandthenakedmoleratmodelofaging...328

4.5. Hyaluronanscanalsobeinflammatory ... 328

4.6. ECM,mechanotransductionandthemobilityofimmunecells...328

5. ConsequencesofthelowermobilityofT-lymphocytesandtheirhigherdeathrate...330

5.1. Necrosis,apoptosis,pyroptosisandinflammasomeactivation...330

5.2. Tlymphocytedepletionanditslinktohomeostaticproliferationandautoimmunity...330

6. Conclusion...331

Conflictsofinterest ... 331

Acknowledgments...331

References...331

1. Introduction

Immunosenescence is defined asage-related changes in the immunesystem.Itisassociatedwithaprogressivedeterioration oftheabilitytomountimmuneresponsesandwithahigher mor-talityrateintheelderly.Immunosenescenceiscurrentlythoughtto dependonlifelongantigenload,leadingtothesenescenceofcellsin theimmunecompartment,withaprominentroleattributedtothe chronicanti-cytomegalovirus(anti-CMV)response.Thereseemsto beanincreasinguseofimmuneresourcesallocatedtotheanti-CMV responsewithaging,a processthat ultimatelyleadsto exhaus-tion.Thecauseremainsunclearandinhumansthefewstudies examiningthepresenceofviralreactivationintheblood,found itnegative.Moredataarethereforeneededinthefieldofhuman aginginordertoconcludeonthispoint(McVoyandAdler,1989; Stoweetal.,2007;PawelecandDerhovanessian,2011;Parryetal., 2016).TheroleofCMVinimmunosenescenceisclearlyimportant, but,ratherthanbeingdirectlycausal,canalsobeinterpretedas aconsequenceofmoregeneralage-relatedchangesinthe three-dimensionalmicroenvironmentinwhichmostimmunecellsare mobileandoperate,theECM.Immunologistshaveneglectedthe implications ofsuchchanges, partly becausemost of the stud-iescarriedoutonimmunosenescence,atleastuntilveryrecently, focusedonbloodbecauseitisthemostaccessiblesourceofcellsand biologicalfluidinhumans.Althoughofvalue,thesedata,leadtoan overestimatedqualitativeandquantitativeimportanceofthis com-partmentintheunderstandingoftheimmunesystemphysiology. TherecentdiscoveryofresidentmemoryTcells,orTRM,showed

immunesurveillancetobelargelylocaland,therefore,not read-ilyaccessiblethroughstudiesonblood[seeforreview(Carbone, 2015)].

Here, we argue that efforts to decipher immunosenescence mustconsiderboth bloodand theECM.TheTRM arelocatedin

theECM,and theknownbiochemicalandbiophysical modifica-tionstothismediumassociatedwithagingconsequentlyhampers localimmunesurveillancebythesecells.ECMproteinsand proteo-glycanshavewell-documentedrolesinscaffolding,buttheyalso haveaprofoundeffectoncellbehavior,throughinteractionswith secreted ligands or cell-transmembranereceptors, in particular integrins.We suggestthattheprogressiveand irreversible age-relatedchangesintheextracellularmatrixmayactuallyprovide aunifyingframeworkexplainingallthemolecularandcellular fea-turesofimmunosenescence.Thekeypointisthatfortheimmune cellstobefunctional,theymust befree torecirculate,navigate and restwithin theextracellular matrix, in tissues and organs. Thispoint is instrumental in tissue surveillance andprotection (Ariotti etal.,2012)evenin theabsenceofperipheral lympho-cytes(Steinbachetal.,2016).Wewillconsiderimmunosenescence withinthisframework,focusingontheadaptiveimmunesystem andTcellsinparticular,eventhoughthesecellsareneithertheonly onestobeaffectedduringagingnortheonlyonesconcernedwith mobility.

Wearguethatthemobilityofimmunecellsinnon-lymphoid tissuesis anecessary elementforeffective immunity.Alackof immune cell mobility, either intrinsic, as in hereditary defects affecting actin remodelingfor example as wewill seelater, or extrinsic,asinaging,resultsinanimpairmentofimmuneresponses. Nothree-dimensional(3D)modelofderegulatedcellmobilityhas everbeenproposedorexploredinthecontextof immunosenes-cence.Weshowherethatourhypothesisismoreconsistentwith theavailabledatathancurrentalternativetheories.Wehopethat thishypothesiswhichisbasedonreviewsoffieldsthathavenot hithertobeconnectedtogetherwillpromotefuturestudies,insilico andinvitro,tovalidatethistheoryexperimentally.The3Dmodel canreconcilemanyfeaturesofaging,suchasthealteredresponses tovaccination,whichisinessencebothamemoryandalocal pro-cess,anddysfunctionsofperipheraltolerance(autoimmunity).The chronicprocessofTcelldeathduetomechanicalstresswithinthe cross-linkedmeshoftheagedECMmayalsoaccountforactivation oftheinflammasome(IL1,IL18,NF␬B),leadingtoinflammaging, andtoastateofimmunedeficiencytypicalofagedsubjects.These twoelementstogetherunderliethephenomenonofviral reactiva-tion(atthebeginninglocalandultimatelysystemic)leadingtothe clonalamplificationofCD8+Tcellsandanincreaseinthe

propor-tionofmemoryTcellsfoundintheblood(Sylwesteretal.,2005; Nikolich-Zugich,2008;Fulopetal.,2013;Fulopetal.,2015).

AlargeamountofTcellsinthebodyaretissue-residentmemory Tcellsthatdon’trecirculate,asdemonstratedbythemostrecent studies(ThomeandFarber,2015;ParkandKupper,2015;Carbone, 2015;Steinertetal.,2015;FanandRudensky,2016).Physiological mobilityinECManditsimpactonTcellsurvivalanddifferentiation arethereforeoftheutmostimportance,includingforlocal anti-CMVdefense(ThomandOxenius,2016).Tcellsurvivalisimpaired in veryconstrained environments, astheforced passageof the cellsinsuchconstrainedconditionsleadstomultipledamageto theplasmamembraneandnucleus,potentiallyculminatingincell death(Denaisetal.,2016;Raabetal.,2016).Inflammasomesare activatedinresponsetoincrementalproductionofdangersignals comingeitherfrominsideoroutsidethecells(Ostanetal.,2015) andleadingtoproductionofIL1,IL18aswellastheactivationofthe NF␬Bpathwaytypicalofinflammaging(FranceschiandCampisi, 2014).Furthermore,limited mobility decreasesthe numbersof themostneededTcellslocallypresentintissues,leadingto:(i) viralreactivationnotnecessarilydetectedinblood,duetoalackof properlocalimmunosurveillanceasshowninhereditaryimmune deficienciesresultinginseverelyimpairedlymphocytemobility; (ii)clonalexpansionofa verylimitedrangeofTcellsfollowing antiviralresponses;(iii)repertoirereductionduetohomeostatic forcesintheabsenceofthethymus,ashomeostasisispurelyabout maintainingcellnumbers,nottheirdiversity.Allthesefactorsare additionalfeaturestypicalofaging,mutuallyenhancedinavicious circlethat,wesuggest,ismediatedbyage-relatedECMdegradation andadirectconsequenceofimpairedlymphocytemobility.

Wewilldevelopthisideaanditsconsequencesthroughaseries ofsteps.Wewillfirst(Section2)discussagingbyfocusing,in

(4)

par-ticular,ontheagingoftheimmunesystem(immunosenescence). Wewillrelatetheimportanceofimmunecellmobilitytothe mech-anismsunderlyingECMagingandcross-linking,whichincreasethe constraintsoncellmobility.

WewillhighlightthefunctionalconsequencesoflowerTcell mobilityandTcelldeath,throughwell-knownhereditaryimmune deficienciesresultinginimpairedTcellmobility,suchasDOCK8, Coronin-1,CDC42orPGM3deficiencies(Section3).

Wewillthen(Section4)associatetheimpairedmobilityofT cellswithECMaging.Finally(Section5),wewilldiscussthelikely specificconsequencesofthislackofmotilityandinducedcelldeath forestablishmentoftheimmunosenescencephenotype.

2. Agingandimmunosenescence:currentknowledgeand thebiasesofpreviousstudiesbasedonblood

Overthelast30years,considerableeffortshavebeenmadeto understandtherelationshipbetweenagingandthedeclineofthe immunesystemandthecontributionofimmunosenescencetothe phenotypesobservedinagingindividuals(Franceschietal.,2000; Franceschietal.,2000a;Salviolietal.,2006).Thesephenotypes includetheaccumulationofCD8+CD28cells,CMVseropositivity,

andaninversionoftheCD4/CD8ratio,partoftheimmune risk profile(IRP)thatseemstopredictmortalityinpeopleovertheage of65(Hadrupetal.,2006).

Onekeyquestionconcernstheextenttowhichthymicmature lymphocyteoutputcontributestoTcellhomeostasis,and there-fore,theextenttowhich age-relatedchanges inthis organcan beconsideredtodriveTcellaging.Maintenance ofthenaiveT cellpoolishighlydependentonthymicoutputinagingmice.In humansitseemstobebasedmainlyontheperipheraldivisionof pre-existingTcells,inaphenomenonknownashomeostatic prolif-eration,asdemonstratedincasesofneonatalthymectomy(Johnson etal.,2012;Sauceetal.,2012;denBraberetal.,2012;Thomeand Farber,2015;vandenBroeketal.,2016).Theglobalrepertoireof naiveCD4+Tcellsremainsdiverseuntilninthdecadeoflife,when

thereseemstobeanincreaseincellturnover,rapidlyfollowed byrepertoirecontraction.AlossofthymicTcelloutputcan, there-fore,bequantitativelycompensatedbyhomeostaticproliferationin ordinaryconditions,withoutfurtherconsequencesduetothewide diversityoftherepertoire.However,homeostaticproliferation can-notcompensateforalossofTcelldiversity.Inelderlyindividuals witha continual, progressive,stochastic loss of T lymphocytes duetoanexternalcause,andcharacterizedbyacumulativeeffect overtime,homeostaticproliferationoftheremainingcells accel-eratesthelossofTcelldiversity,bydilutingoutexistingminority clones(GoronzyandWeyand,2005).Regardlessoftheactualage ofthepatient,advancedHIVinfection,characterizedbyamassive andcontinuouslossofTcells,seemstoreproducesomefeatures ofaging,withunderlyingimmunosenescenceandinflammaging (NixonandLanday,2010;ZapataandShaw,2014).Therefore,both in aging subjectsand in patientswith advanced HIV infection, immunosenescenceoftheadaptiveimmunesystemisnota sim-pledeteriorationoftheimmunesystem.Instead,itresultsfrom adynamicdriftunderthepressureofcontinuousexposuretoan antigenicloadand an increasingly limited capacity togenerate newTCR-bearingcells,leadingtotheaccumulationofmemoryT cellsandanage-associated declineinTcellrepertoirediversity (Yageretal.,2008).Notably,decreaseinnaiveTcelllevels, lead-ingtorepertoireshrinkage,hasalsobeenreportedinagingapes (Cicin-Sainetal.,2007).

Thecausalmechanismsunderlyingtheseadaptationshaveyet tobeidentified,butarealmostcertainlydiverse.However, home-ostatic proliferation to correct imbalances in the number of T cellsinvolvestherecognitionofself–determinantsbynaiveTcells

(Richards et al.,2016), whichmayconstitute animportantlink betweenagingandautoimmunity(Khiongetal.,2007).

Theenvironmentalcontextinwhichthecellsarefoundmust alsobeconsidered,inadditiontothereportedcell-autonomous defectsandstem-cellaging[seeforreview(Montecino-Rodriguez etal.,2013).Theimportanceofcellenvironment ishighlighted bytworemarkableexamples.Firstly,mouseCD4+Tcells

gener-ated fromhematopoietic stem cells (HSC) from old donorsare functionalinyoungbutnotinoldrecipients(Eatonetal.,2008). Secondly,changesintheepithelialcomponentofthethymus,the lymphopoieticorgan,haveshowntobecrucialfortheearly pro-gressivedecreaseinthymicoutputwithage(Hamazakietal.,2016; Youmetal.,2016).

Immunosenescenceisalsoinfluenced bythegeneral mecha-nismsofagingoccurringinthebody,thoughthesemechanisms remain elusive (Grimm, 2015; Cohen, 2015). Severalhallmarks ofaginghavebeenidentified,allofwhichhaveprofounddirect or indirect effects on the immune system (Lopez-Otin et al., 2013;Kennedyetal.,2014).Thefirstmechanismofagingtobe identifiedwascellularsenescence,inwhichtelomereshortening limitsthenumberofreplicationcycles(Hayflickand Moorhead, 1961;Campisi,2013).SenescentcellsthathaveaccumulatedDNA damagehaveasenescence-associatedsecretoryphenotype (SASP), characterizedbytheproductionandsecretionoflargeamountsof proinflammatorycytokines,matrixmetalloproteinases(MMP)and othersolublemediators(vanDeursen,2014).Senescentcells accu-mulateinolderindividuals,andthisisthebasisof“inflammaging”, aconceptputforwardbyoneofus(CF)tostressthecloselinks betweenagingandchronicinflammation(Franceschietal.,2000b; Salviolietal.,2006;Franceschietal.,2007).Thestateofchronic inflammationthatisahallmarkofaginginhumansaccountsforthe comorbidities(Fig.1)andmortalityassociatedwithagingamong which atherosclerosis,osteoporosis,osteoarthritis, diabetes[see forreview(FranceschiandCampisi,2014;Kennedyetal.,2014)]. However,cellularsenescencealonecannotaccountfor immunose-nescence.

ThedecreaseinnaiveTcellsandtheincreaseinmemoryTcells canbothbeexplainedbyasustainedlossofcellsinacontextof chronicimmuneresponsesassociatedwithadecreaseinthymic output(Nikolich-Zugich,2008;Fulopetal.,2013).This immunod-eficiencywouldaccountforthestrongassociationbetweenCMV seropositivityandmortalityduetocardiovascularcausesobserved intheelderly(Savvaetal.,2013).ChronicCMVreplicationmaybe seenasanindirectconsequenceoftheslowdevelopmentofthis immunodeficiency,aslatentvirusesarereactivatedonceacertain thresholdofimmunodeficiencyisreachedasshownalsoinmouse models(Policetal.,2001).Fromthisstandpoint,CMVshouldnot beseenasthecausalagentofimmunosenescence,althoughwe acknowledgethisvirusandtheimmuneresponsetoit,contribute torepertoireshrinkageandinflammation(Fulopetal.,2013).

Crucially,thecurrentoverallviewofimmunosenescenceis par-tialbecausemost,ifnotall,studiesonaginginhumansarebasedon bloodsamples,forpracticalreasons.However,Tcellsintheblood aresubjectedtostrongselectionthroughtraffickingregulation[see forreview(ThomeandFarber,2015)].Thetissue-residentmemory Tcells(TRM)(Sathaliyawalaetal.,2013),whichhaveyettobe

stud-iedinagingresearch,areofparticularimportancehere(Gebhardt etal.,2011).Intissue,TRMaremorenumerousthanTcells

recircu-latingfromtheblood(Steinertetal.,2015),andtheymayremain withintissuesfortheentirelifetimeoftheindividual.Thistissue retentioniscontrolledbyCD69expressionandthedownregulation offactorspromotingtissueegress.Itisdevelopmentallyregulated throughexpressionofthespecifictranscriptionalregulatorsHobit andBlimp1(Mackayetal.,2016).Thelymphocytesresidentin tis-suesincludenotonlyTcells,butalsoNKT,orevenNKcellsinthe liver,reproducingthediversityofthesubpopulationsknowntobe

(5)

ECM

-cross-linking -glycation

-growth factor storage - MMP activation -LMW hyaluronans -granzyme B Diabetes Cancer Sarcopenia Viral reactiva -tions Frail

ty

CV diseases Neurode-generation

AGING

Altered cell communicat

ions instabGenomicility

Telomere shrinkage

Epignetic alterations Loss

proteostasis Deregulated nutrient sensing Mitochondrial dysfunction Stem cell exhaustion Cellular senescence

IMMUN

OSENES

CENC

E

-inflammaging

-inflammasome activation - decreased naive T-cells -inflation of memory T-cells (TEMRA) - decreased TCR diversity -CD4/CD8 ratio inversion

Fig.1.Relationshipsofimmunosenescencewithagingmechanismsandcomorbidities.AgingmechanismsfollowtheninehallmarksofagingestablishedbyLopez-Otin (Lopez-Otinetal.,2013).Externalcirclesdepicttheco-morbiditiesassociatedwithagingwhichalsocooperatetomodulateagingphenotype.TheECManditsalterations linkedtoagingwillconstraintimmunecellmobilitywhileinducingcelldeath.ECMalterationisahallmarkofagingandthereforeacrucialprocesstobetterunderstandthe phenomenonofaging.FundamentalmechanismsassociatedwithECMagingarerepresentedintheexpandedbox,inrelationwiththealteredcellularcommunications.ECM servesnotonlyforthecellstomigratewithin,butalsoforgrowthfactorsstorageandreceptoranchorageasitisthecaseforintegrinsandCD44.

presentinbloodandbarriertissues(Gasteigeretal.,2015;Fanand Rudensky,2016).Tissue-residentlymphocyteshavebeenfoundin thegastrointestinaltract,lungs,skinandreproductivetract(Farber etal.,2013)[seeforreview (SchenkelandMasopust,2014)and (Clark,2015)]butalsointhebrain(Steinbachetal.,2016).Inmouse, theyhavebeenshowntobeakeyelementinimmunedefenses againstall microbes,includingCMV (Smith etal., 2015) (Thom etal.,2015).Inbothmiceandhumanscytomegalovirusinduces TRMparticularlyinmucosaltissueswhichareimportantviral

sanc-tuariesandentrysites(ThomandOxenius,2016).Theyseemto functionasanorgan-autonomousfirstlineofdefenseeveninthe absenceofcirculatingCD8+memoryTcells(Steinbachetal.,2016) showingthatrecirculationofthesecellsbetweenthebloodand thesetissue-compartmentsaredispensableforefficientorgan pro-tection.KnowninmousemodelofCMVinfection,virallatencyof CMV,canpromotesthecontinuous,low-levelrecruitmentof cir-culatingCMV-specificTcellstotheTRMpopulationofthesalivary

glandmaintainingapoolofTRMatthesiteofviralreplication(Smith etal.,2014),apointwhichremainstobeformallyproveninhuman aging.

Given the crucial importance of TRM, any exploration of

immunosenescenceshouldtakeintoaccounttheECM,the envi-ronmentinwhichthesecellsarefound.Thisplacingofimmune systemphysiologyintocontextisofvitalimportance,butstillrarely (ifever),doneinstudiesonimmunosenescence.

3. ThetightconnectionbetweenimmunecellsandtheECM

3.1. Mechanicalstressonthenucleus,thelargestandmostrigid cellcomponent

Cellsmaybecarriedalonginamobilemedium,suchaslymph orblood,butherewewillexcludesuchpassivemobility,tofocus insteadontherequirementsfor theintrinsic motilityofTcells, particularlywithintheECM.The trans-endothelialmigration of lymphocytesisrelevantinthiscontext,becauseofthe

biochem-icalandbiophysicalnatureoftheECMinthevesselwall(Kohn etal.,2015).

We willdeal hereexclusivelywithT cells, butmany differ-ent cell types from both the adaptive and innate arms of the immunesystemaremotilewithintheECM.Neutrophils,for exam-ple,areprobablythemostmobileofallimmunecells,recirculating frequently and rapidly between the bone marrow, blood and then tissues. These cells display an age-related loss of migra-torycapacity,withpredictableconsequencesaging(Sapeyetal., 2014).Neutrophilsarehighlydeformableandcancrossporesonly microns in diameter (Rowat et al., 2013), due tothe flexibility oftheirnuclearmembrane,whichlackslamin-A,amoleculethat restrictsnucleardeformability,therebylimitingmigrationthrough constrictionsandtherateof3Dmigration(Haradaetal.,2014). Thereisadelicatebalancebetweenthemechanicalprotectionfrom ruptureaffordedbythepresenceoflamininthelamina,limitingcell motilityandnuclearplasticityallowingmovementsofcellsthrough mesh(GerlitzandBustin,2011).Unsurprisingly,laminopathies,an heterogeneousgroupofhereditarydiseasescausedbymutations ofthelamin-Agene,areoftencharacterizedbybothaccelerated agingandhighlevelsofinflammation(BurtnerandKennedy,2010). Tlymphocytesdisplaylamin-Aexpressionwhenactivated,butnot whenresting,possiblyreflectingdifferencesinmotilitybeforeand afteractivationdependingoncelllocationandfunction.Thefew studiesfocusingonthelymphocytecompartmentinlaminopathies have reportedmajor changesin T cellbehavior, due toaltered synapseformationandactivationprocesses,consistentwiththe hypothesisthatlamin-Aisrequiredforactivation(Rocha-Perugini andGonzález-Granado,2014).Lymphocytedevelopmental abnor-malitieshavealsobeenreportedinthelaminKOmodel(Haleetal., 2010),butarelationshipbetweenthequalityofimmuneresponses andthemobility ofimmunesystemcellshasyettobe demon-stratedinaffectedpatients.Matrixstiffness,lamin-Aproteinlevels inthenucleusandcellmobilityareknowntoberelated(Swiftetal., 2013),butthepotentialconsequencesoftheserelationshipsforthe immunesystemduringaginghavenotbeenexplored.

(6)

Ithasrecentlybeenshownthatmigratingmammaliancellsare susceptibletoruptureofthenuclearmembranewhensubjected tostrongmechanicalconstraints,suchaspassagethroughsmall pores(3␮mindiameter).Suchruptureswouldresultinamixing ofthenuclearandcytoplasmcontents.Majoreventsofthistype arefrequent(90%ofthecellsinvitro,accordingtoarecentstudy (Denaisetal.,2016)),butseemtoberapidlyrepaired(alongwith theDNAdouble-strandbreakstheycreate)byspecificmechanisms (Raabetal.,2016)(Denaisetal.,2016),andamongwhichautophagy orproteasomerolescouldbehypothesized.However,therepair mechanismsmaynotbealwayscompletelysuccessful,potentially leadingtocelldeath, or canceroustransformation (Hniszet al., 2016;Zhangetal.,2015).Thestresstowhichthenucleusis sub-jected,inadditiontocausingDNAstrandbreaks,alsoinducesmajor inflammatorypathways(IL6andNF␬B),potentiallyaccountingfor theinflammatorystatusassociatedwithagingandaddingto cur-rentknowledgeofcellsenescence(LeBerreetal.,2012;McGregor etal.,2016).Thenucleus appearstherefore astheplace where geneticinformationisstoredbutalsoasamechanicalsensor[see forreview(BustinandMisteli,2016).Asobservedforthenuclear envelope,thestressontheplasmamembraneanditsmaintenance probablyplayimportantrolesalsoinaging(Lauritzenetal.,2015). AsdiscussedinSection4below,themobilecellsoftheimmune systemhaveparticularlyhighlevelsofexposuretotheserisks. 3.2. Lessonslearnedfromvarioushereditaryimmunedeficiencies inwhichcellmobilityisaltered

DOCK8isaguaninenucleotideexchangefactor(GEF)that acti-vatessmallGTPases(Cotéand Vuori,2007),and alsoactsasan adaptorintheTLR9-MYD88signalingpathway(Jabaraetal.,2012). DOCK8controlscellcytoskeletalfunctions(secretion,cell interac-tions)andmigration,andisexpressedonlyincellsoftheimmune system.DOCK8mutationsresultinacombinedimmunodeficiency syndrome.DOCK8-deficientpatientshaverecurrentotitis,sinusitis, andpneumonia,recurrentS.aureusskininfections,H.simplexorH. zosterinfections,andpersistenthumanpapillomavirusinfections. Mostpatientshave severe atopy withanaphylaxis, and several developsquamous-cellcarcinomas.Biologically,somehavehigh serumIgElevelsorhypereosinophilia,otherspresentlowcounts ofTcells andB-cells,andlowserumIgM levelswhiletheirIgG antibodyresponsesarevariable(Zhangetal.,2009).Tcell acti-vation,survival,proliferation andprimingbydendriticcells are affected.Other cells, including dendritic and NK cells, are also crippled,resultinginpoorcellcytotoxicityandlowlevelsof antivi-ralcytokineproduction.Notably,DOCK8-deficientdendriticcells migratepoorlytothelymphnodes(Lambeetal.,2011;Randall et al., 2011). Microscopy observations of T cells from patients, migrating withinthe three dimensionsof the dermis microen-vironment in human skin biopsy samples, showed that these cells had abnormalelongated shapesand long migration times withinthemesh,phenotypesobservedinnormalcellsafterDOCK8 silencingwithsiRNA.Remarkably,DOCK8-deficientcellssenseand migratetowardaSDF-1chemokine(CXCL12)gradientnormallyin two-dimensionalandliquidenvironments.Moreover,in3D envi-ronments,butnotinliquidmedium,Tcellsfromnormalindividuals inwhichDOCK8issilencedinduceaspecificformofdeathknownas “cytothripsis”(Zhangetal.,2014a).Thistypeofcelldeathresults fromtheexertionofmechanicalforcesontheplasmacell mem-braneandthemorerigidnucleus,leadingtotearingoftheplasma membrane.The elongatedcellphenotypeleading todeathalso occurswhenTcellsmigratethroughpores,agarose,ICAM-coated orcollagen-coatedsurfacestowhichtheyadhere,demonstrating aclearrelationshipbetweenshapeandlocalconstraintson mobil-ity.Thus,theabnormalshapeanddeathofcellslackingDOCK8 areassociatedwithmovementconstraintsduetoaconfinedspace,

observedinthedermis,accountingforthephenotypeofpatients, withtheirhighfrequencyofskindiseases(Mouwetal.,2014).

DOCK8activatesCDC42,whichregulateslymphocyteshapeand cytoskeletalstructuresduringcellmovements,includingdendritic cellmigration(Haradaetal.,2012).CDC42thenactivatesseveral effectors,includingP21-activatedkinase(PAK)andthe Wiskott-Aldrich Syndrome Protein (WASP). Knockout of the small Rho GTPaseCDC42 reproduces someofthefeatures ofDOCK8 defi-ciency,whereasWASPlossfromTcellsdoesnot(Humblet-Baron etal.,2007).However,WASPdeficiencyisassociatedwith abnor-malimmuneresponses,reflectingthecomplexinterplaybetween theseproteinsintheorchestrationofcellmobility.

Similarly,Coronin-1(Coro1)deficiencyleadstoapronounced immunodeficiencyphenotyperesemblingthatofDOCK8-deficient patients(Fögeretal.,2006;Shiowetal.,2008;Hogquist,2008). Coro1 regulatesactin polymerization. Mutation of the CORO1A genecausesprofoundperipheralTcelllymphopenia,thoughtto beduetoaninabilityofTcellstomigrateoutofthethymusandto enterandleavelymphnodes.However,thesecellswerealsoshown tobegenerallylessmobileinthepresenceofthismutation.

TheimmunedefectinDOCK8-deficientindividualsprincipally concernsthemaintenanceoftheTRMcompartment,butinnormal

individuals,itcouldalsorelyonECMqualityandquantitywhichare specifictoeachtissue(Bonnansetal.,2014).AlterationstotheECM wouldmodifythemobilityofcellsthroughthismatrix,inasimilar mannertoDOCK8mutation.Inaddition,themobilityofimmune cellsisrequiredforcorrectactivationofTcellsandisapreliminary stepforcontactbetweenTcellsorTregcellsandDCsinsecondary lymphoidorgans(Sixt,2011;Kastenmülleretal.,2012;Hondaetal., 2014;Liuetal.,2015).ECMalterationsmayalsoaffectdiverse pro-cesses,includingtheformationofthethymicepithelium,which playsakeyroleinTcellproduction(Shenetal.,1994;Mouwetal., 2014).

Thevariousdegreesoflymphopeniaobservedatdifferentsites inthebody(spleen,skin,etc.)inDOCK8-deficientpatients prob-ablyresultfromacombinationoffactorsdifferinginmagnitude betweenpatients.Lymphopeniainbloodandtissuesisassociated withpoorer controloverlatentviruses,in turntriggeringacute antigen-drivenclonalamplificationandinflationoftheTEMRA

com-partment.In thelong term,lymphopeniamaybe compensated by homeostatic proliferation and/or thymic output, depending on the age of the patient, but with a change in their respec-tivefrequencies.Indeed,CD8+Tcells thatareCD57+(Brenchley et al., 2003), CD57+/CCR7/CD27(Papagno et al., 2004), or

CD45RA+/CCR7/CD27/CD28(Ruferetal.,2003;Romeroetal., 2007)display the greatest expansion in vivo, as demonstrated byTCR excision circle(TREC) quantification ortelomerelength measurement,but thesecells donot proliferate invitro follow-ingTCR-mediatedstimulation.DOCK8-deficientCD8+Tcellsubsets

havehigherproportionsofCD57+CD27CD28cellsinboththe

memoryandTEMRAcellsubsets,withnaivecellsdisplaying

unusu-allyhighlevelsofCD95expression(Randalletal.,2011).These features are similar to those observed in young HIV-infected patients(BoassoandShearer,2008;ZapataandShaw,2014)and intheelderly(Vescovinietal.,2014).

Actindynamicsandcelllongevityareknowntobelinkedin yeast,in aged miceand humans(Fögeret al.,2006; Brockand Chrest,1993).YeastswithslowactindynamicsaccumulateF-actin, releaseROSandhavehigherrateofcelldeath.Conversely, increas-ingactindynamicsinnormalcells canincreaselifespanby65% (Gourlayetal.,2004).Actindynamicsanditsregulationtherefore profoundlyaffectmanyaspectsoflymphocytelifeandsurvival,as notedsometimeagoforTlymphocytes(BrockandChrest,1993). Allthesestudiesconcentratedonintrinsicdefectsofcelldynamic butextrinsicfactorsshouldalsobeconsidered.

(7)

Inthisview,abnormalitiesofcertaintypesofglycosylationdue toautosomalrecessivephosphoglucomutase3(PGM3)mutations (Zhangetal.,2014b)havealsorecentlybeendescribed.Affected patientspresentasyndromeresemblingDOCK8deficiency,with atopy, immune deficiency, autoimmunity and neurocognitive impairment,suggestingapossibledecreaseincellmobilityinthese patientstoo,potentiallyduetochangesintheextracellularmatrix witheffectsoncellmigration.

4. Immunosenescence,cellmobilityandage-related changesintheECM:the“mesh”connection

TheECMisanacellular3Dstructurecomposedoftissue-specific combinationsofalargenumberoffibrillarproteinssuchas col-lagens,proteoglycans,andglycoproteins(Hynes,2009).Collagen fibersmaintaintheshapeofthetissues,astheyareinextensible, butflexibleandstrong.Collagensarethemostabundantproteins intheECM(Bella,2016)Thereare28differentformsofcollagen, belongingtoeightclassesthatdifferbiochemicallyinthenatureof theiraggregatedformsandspeciescomposition.

Fibroblast-matrix interactions have long been known to be importantinaging(Baileyetal.,1998;Varanietal.,2006).These interactionsarecurrentlythefocusofintenseresearchin devel-opmentandcancerbiology.Inaging,stiffeningofthejointsand ofthevasculartreeinthekidney,retinaandheartareobserved, togetherwithchangesinbasalmembranepropertiesdueto pro-foundalterationstocollagenstructureandmetabolism,through thecross-linkingoffibers,inparticular.Moreover,therateof col-lagensynthesis isalsoaffected.It graduallyslowsdownduring childhood,reachingaplateauinadultsandthendecreaseinmost tissuesintheelderly.

Incancer,cross-linkingandsubsequentstiffeningoftheECM around the tumor seems to be a prerequisite for transformed cellinvasivenessandimportantlyfortheprotectionofthesecells againstimmunesystemcontrol(Leventaletal.,2009).ECM alter-ationsprobablyalsopromotecelltransformation(Seoetal.,2015). Cellularintegrins,whichbindtotheECM,providecancercellswith thepositivesignalsrequiredfortumorprogression(Chenetal., 2015).Thissituationresemblesthatdescribedforstemcells,the fateofwhichisalsolargelydeterminedbyECMinteractions(Guilak etal.,2009).

4.1. ECMchangesovertime:how,whenandwhy?

Thecross-linking theoryofaging datesfromthelate 1950s. According tothis theory, proteins, in particular collagens, lose theirfunctionsfollowingexcessivecross-linkingduetoreaction withaldehydemetabolites[see(Baileyetal.,1998)].Two differ-entmechanismsdrivethechangesinthemechanicalproperties of collagen with age. The first involves the specific enzymatic cross-linking of lysine or hydroxylysine, and is fundamental todevelopment.With age,a second,non-specific, cross-linking mechanismoccurs.Thismechanisminvolvesthenon-enzymatic chemicalreactionofprotein,peptides,aminoacids,nucleicacids, andlipidswithglucose,fructose,ascorbicacidorpentose(Selland Monnier,1989),inaprocessknownasglycation(Maillard reac-tion),togenerateadvancedglycationendproducts(AGEs)(Sjöberg and Bulterijs,2009).Glucosepane isthemostabundanttype of protein cross-link identified to date in vivo. It is found in the extracellularmatrix,whereitparticipatesincollagencross-linking. By increasing collagenstiffness and limiting porosity size, glu-cosepanecross-linksmayhavesignificantimplicationsforseveral age-related diseases, including cardiovascular disease,diabetes, andosteoporosis(Monnieretal.,2014;Boger,2015;Draghicietal., 2015).ProteinturnoverisanimportantdeterminantofAGE

accu-mulationinproteinsand,therefore,oftheirdegreeofcross-linking (GaggarandWeathington,2016).Collagenshaveaverylong half-life(117years forcartilage,15yearsfor skin),resultinginhigh andcumulativeratesofglycatedproductaccumulationintheECM (Verzijletal.,2000).Thisaccumulationisacceleratedby hyper-glycemiaindiabeticpatients,andthisisthoughttobethemajor causeof higher morbidityand mortalityin thesepatients. Dia-betic patientshave impairedtissue repair mechanismsand are knowntobepronetoskininfections.Theprevalenceofdiabetes increaseswithage,potentiallyworseningagingoutcomesoverall. Glycationisthoughttooccurmostlyintheextracellular environ-ment,butproteinswithincellsmayalsobespecificallyglycated. Thisisthecaseforvimentin,whichseemstobeahighlysensitive targetforchemicalglycation,butwithahighturnover,likely lim-itingtherelevanceofthisfactorinourdiscussion(Kueperetal., 2007).Thisobservationis,however,ofinterestwhenconsidered togetherwiththoseforlamins,asbothmoleculesplaykeyrolesin nuclearenvelopebiology.Inaddition,glycatedcollagenscan oxi-dizelipids,generatingmoleculessuchasmalondialdehyde,which hasa longhalf-lifeand diffusesaway toreactwithproteinsor nucleicacids,therebymodifyingtheirbiologicalproperties. Rele-vanttocellmobility,invitrotreatmentwithmethylglyoxal,another oxidizingagent,hasbeenreportedtodecrease celladhesionto matricesby70–90%(Bailey,2001).

Proteoglycansareanotherabundantcomponentofthe connec-tivematrix involved inthe age-relatedchanges tothephysical propertiesoftissues.Throughtheirelectriccharge,these compo-nentsof theECMare alsoimportantfor thebindingof growth factors,suchasIGF1,totheirscaffolds(Parkeretal.,1998)andfor thereleaseofIL1alphafollowingECMmodificationbygranzymeB (McElhaneyetal.,2012).Decorin,themainproteoglycaninskin, regulates collagen matrix assembly. This protein is distributed along collagen fibrils and the decorin glycoaminoglycan (GAG) chain controlsthedistance betweenthesefibrils. Reducing the lengthofdecorinGAGchainsreducesthedistancebetween colla-genfibrils,decreasingmeshporosity,asobservedinaging(Bailey, 2001).

4.2. ConsequencesofECMalterationswithage

Changesto“mesh”porosityduetocross-linkingoralterationsin relativecollagenspeciescompositionwouldbeexpectedto mod-ifycellmobilityprofoundlyintheECM.Thischangeinmobility wouldparticularlyaffecttheimmunecells,althoughmodifications areexpectedtobebothlocation-dependentduetovariable com-positionsofECMindistincttissues(Groulxetal.,2011;Soretetal., 2015;Hallmannetal.,2015)andcell-dependent,dueto variabil-ityintheadaptationofnucleusstiffnesstotheenvironment(Wolf etal.,2013)(Swiftetal.,2013).

Inmice,lowlevelsofgrowthhormoneproductionduetoan embryonicpituitaryglanddefectresultintheproductionofmice onethirdthesizeofnormalmice,butwitha40%higherlifespan (Flurkeyetal.,2001).Interestingly,collagencross-linkinglevelsin thetailwerefoundtobeonlyonethirdofthoseinnormalmice, whichsuggeststhatacomplexinterplaybetweenpituitarygland andECMexists.Asshownbythenakedmoleratmodelofagingseen below,onelinkisembodiedbyCD44signaling(Tianetal.,2013). Inthisregard,ageddwarfmicehaveCD4+ andCD8+ memoryT

celllevels(CD44+)similartothoseseeninyoungcontrolanimals,

andmuchlowerthanthoseinagedcontrolmice(Flurkeyetal., 2001).Furthermore,verysignificantdifferencesareobservedinfive othertestsprobingtheimmunestatusoftheseanimals, support-ingtheconclusionthatinthesemice,thehigherlifeexpectancy andthebetterimmunestatusthanwild-typemice,arecorrelated withdifferencesintheECM.However,norelationshiphasyetbeen experimentallyconfirmedinthisfield.

(8)

InEcuador,agroupofhumanswithlifelongIGF-1deficiency causedbyaGHreceptor(GHR)mutation(Laronsyndrome)have beenshowntobemuchmoresensitivetoinsulinthanage-and BMI-matchedcontrolrelatives,despitehavingahighpercentage ofbodyfat.Noneoftheseindividualswerediabetic,whereas6%of theirunaffectedrelativeswerediabetic,andonlyoneofthe20 indi-vidualswithGHRdeficiencydiedfromcancer,whereas20%oftheir relativesdiedfromthisdisease(Guevara-AguirreandRosenbloom, 2015).Interestingly,theoffspringofonecentenarianwasfoundto havelowlevelsofcirculatingIGF1bioactivity,inverselycorrelated withinsulinresistance(Vitaleetal.,2012).

Takenaltogether,thesedataareconsistentwitharoleforthe IGF-1pathwayinaging,butthisrolemaybeatleastpartlyindirect, andshouldconsiderthepossibilityofECMalterations.

4.3. ECMandtheC.elegansmodelofaging

In nematodes, mutations preventing insulin/IGF1 signaling, suchasdaf-2mutations,doublelifespan.Removalofthegermline precursorcellsalsoextendswormlifespan60%,probablyby alter-ingendocrinesignaling.Thesetwoeffectsareadditive,resulting inaquadruplingoflifespan.Bymanipulatingtheexpressionofa fewgenesfromtheinsulin/IGF1axislifespancanbeincreasedby afactorofsix,withnoapparentlossofhealthoractivity( Arantes-Oliveira,2003).Aboutadozenpathwaysareknowntobeimportant inaging,butmatrixremodelinghasbeenidentifiedasanessential signatureoflongevityinallspeciestested,includingnematodes, leadingtotheconclusionthatthepromotionof ECM conserva-tionishighlybeneficial(Ewaldetal.,2014)andcouldserveasan additionaltargetinthecontrolofaging.

ThemolecularroleofECMinthepreventionofagingremains tobeunderstood,butdiversemechanismsappeartobeinvolved. Thesemechanismsmayberelatedtoresistancetooxidativestress ormayoperateattheinterfacebetweenseveralsignaling path-ways,includingthoseinvolvingCD44(Tianetal.,2013;Pontaetal., 2003),TGFbeta,boundIGF1,andintegrins.Theymayalsorelateto themechanicalrelationshipsbetweenthenucleusandtheECMas pointedoutbefore.TheabilityoftheECMtobindgrowthfactors isanotherkeyaspectthatcouldbemodifiedforresearchpurposes (Martinoetal.,2014).Inthisregards,parabiosisexperimentshave shownthatthetransferofbloodfroma youngmousetoanold mouseincreasesbraincellgrowth,promotesbrainplasticity, mem-oryformationandtherepairofdamagedspinalcord,andreverses theage-relatedthickeningoftheheartwalls.Theserejuvenation processesmayreflectareversalofthedegradationofECM func-tioninagedindividuals,includingthequenchingofROSandAGE, decreasesinECMcross-linking,andthereplenishmentoftheECM withgrowthfactors,suchasIGF1(Conboyetal.,2005;Loffredo etal.,2013;Villedaetal.,2014;Elabdetal.,2014;Scudellari,2015). Theeffectsprobablydifferbetweentissues,reflectingdifferencesin ECMcompositionandinterestinglyalsolinkedtothedistinctrates ofagingnotedfordifferentorgans(Ceveninietal.,2008).

Suchtreatmentwouldalsoreversethedeclineinimmunestatus associatedwithaging,leadingtoadecreaseininflammaging,the replenishmentofnaivematureTcellsandhematopoieticstemcells, andanabolitionoflatentvirusreactivation,buttheseeffectshave yettobedemonstratedexperimentally(ConboyandRando,2012). 4.4. ECMandthenakedmoleratmodelofaging

Thenakedmolerathasanexceptionallylonglifespan,atover30 years,muchlongerthanthefouryearsforrelatedmousespeciesof similarsize.Furthermore,nocaseofcancerhaseverbeenreported inthisspecies,despitemanyyearsofobservationofnakedmole ratcolonies.Thisremarkableresistancetocancerseemstobedue tothesecretionbyfibroblastsoflargeamountsofanECM

com-ponent,thehigh-molecularmassmoleculehyaluronan(HMMH), duetohighlevelsofsynthesisandlowlevelsofcatabolism.The hyaluronansynthaseofthemoleratdiffersfromthoseof13other speciestestedbytwoaminoacidsinthecatalyticdomain(N178S andN301S).Oneofthesedifferencesconcernsanasparagine(N) residuetotallyconservedinallotherspeciestested.Thesefindings shouldledtoasearchforpolymorphismsofthehyaluronan syn-thasegeneinhumansthatmightbeassociatedwithcentenarians (Tianetal.,2013).Theskin,heart,brainandkidneyofnakedmole ratsarehighlyenrichedinHMMH.Thedisruptionofsignaling path-ways,inducingthemalignanttransformationofmousefibroblasts (H-RASandSV40),doesnotleadtothetransformationofnaked moleratfibroblasts.However,theeliminationofhyaluronan over-production,byknockingdownexpressionofagenerequiredforits synthesisoroverexpressinggenerequiredforitscatabolism, ren-derstheresistantcellssusceptibletomalignanttransformations andleadstotumorformationinmice.Thisremarkablephenotype seemstoinvolvesignalingthroughthehyaluronanreceptorCD44. TheintracytoplasmicpartofCD44interactswithNF2,which par-ticipatesinapathwaymediatingcontactinhibition.Inaddition,the affinityofCD44tohyaluronaninnakedmoleratcellsistwicethatin mouseorhumancells.TRMdoexpressCD44,whichisahallmarkof

memoryTlymphocytes,raisingthepossibilitythatthehyaluronan effectmayalsobemediatedpartlybyimmunecells.

However,tothebestofourknowledge,nostudieshaveyetbeen carriedoutonthenakedmolerateimmunesystem,with investi-gatorsinsteadfocusingincell-intrinsiccluestocancerresistance ratherthan onextrinsicfactors,suchas theimmunesystemin relationtoECM.

4.5. Hyaluronanscanalsobeinflammatory

Hyaluronandegradationproductsatinjurysitescanstimulate theexpression ofinflammatory genes byvarious immune cells (Jiangetal.,2007).CD44seemstoberequiredfortheclearance ofhyaluronandegradationproductsinlunginjuryand transplan-tation,in which hyaluronan clearance maybeimpaired bythe absenceofdraininglymphvesselsinthegraft,resultingin persis-tentinflammationandrejection(JiangandNicolls,2014;Maltzman etal.,2015).Intype1diabetes,autoimmuneinsulitisisassociated withtheislet-specificdepositionofhyaluronan,whereasthe inhi-bitionofhyaluronansynthesispreventsthediseaseinmice(Nagy etal.,2015).HyaluronanfragmentsusebothToll-likereceptor(TLR) 2 and TLR4 tostimulate theexpression of inflammatory genes in macrophages(Scheibneret al.,2006).Low-molecularweight hyaluronanfragmentsandingeneraldegradationsproductsofECM (matrikines)arethereforecandidatesforadirectrolein inflammag-ing,mediateddirectlyorindirectlyasDAMPsthroughtheimmune system(Evankoetal.,2012;GaggarandWeathington,2016).

ECMalterations mayhaveindirectpro-inflammatory effects, bydisrupting theinteractionwithcellintegrins responsiblefor connectingthecellsurfacetotheactinnetwork.Interestingly,in dendriticcells,theabsenceofbeta2-integrin-mediated cytoskele-talorganizationleadstomembranecompartmentalizationandan absenceofassociationoftheGM-CSFreceptorwithactin, result-inginhigherlevelsofsignalingviathis receptorandconferring amigratorymaturationphenotypeondendriticcells, leadingto theTh1primingofnaiveTcellsandanhigherneutrophilsurvival (Morrisonetal.,2014).

4.6. ECM,mechanotransductionandthemobilityofimmunecells Besidesthemechanicalstressofthenucleusmentionedbefore, cells can be sensitive toECM ageing through others pathways importantforcellmigration(Friedletal.,2011).Themechanism by which cells sense ECM stiffness is called

(9)

mechanotransduc-Loss of T-cells/ Lymphopenia

Inflammasome activation

-Hereditary defects of cell mobility -HIV infections

- Immunosupressive regimens -Chemotherapeutics -Ageing Homeostatic proliferation of T-cells TCM Decreased mobility in tissue

Viral reactivations CMV, EBV, etc.

Autoimmunity

-inflammaging

- decrease of naive T-cell compartment -inflation of memory T-cells TEMRA - decreased TCR diversity -increase of T-cells TCM

-CD4/CD8 ration inversion linked to antiviral responsesTCM

Immunosenesce

nce in blood

ECM al

terat

ions

Fig.2. Roleofextracellularmatrixalterationsinimmunosenescence.TheincreaseinECMcross-linkingwithagingplacesconstraintsonthemobilityofimmunecells, accountingforthephenotypeassociatedwithaging.Othersituationsoftenencounteredinclinicalpracticemayalsoleadtothisphenotype(hereditarydefectsofcell mobility,andTcelldepletionasinHIVinfection,immunosuppressivetreatmentsorchemotherapy).

tion(Iskratschetal.,2014).Mechanotransductionplaysakeyrole inadjustingECMmechanicstocellbehaviororfunction,mostly through integrins (Humphrey et al., 2014).For this reason, 2D invitroexperimentalsettingsarenotentirelyrepresentativeof3D situationsinvivo,asreportedinpreviousstudies(Harunagaand Yamada,2011;Hortonetal.,2016).Mechanotransductionisalsoa potenttriggerofepithelialmesenchymaltransition(EMT)(Nelson andBissell,2006;BissellandHines,2011;ArendtandKuperwasser, 2015).Italsoplaysawidelyacceptedandstudiedrolein develop-ment(EMTtype1)(Dupontetal.,2011;Halderetal.,2012),(Piccolo, 2012;HeisenbergandBellaiche,2013;Porazinskietal.,2015).It hasbeencloselylinkedtotheprogressionofcancerstometastasis (EMTtype3)andimplicatedincancerinitiation(Seoetal.,2015; ArendtandKuperwasser,2015;BissellandHines,2011),butrarely associatedwithwoundhealing(EMTtype2),andimmunology.

Immunecellshaveanumberofspecificfeaturesofimportance in this context, and theirintrinsic mobility is closely linkedto

surveillance,asillustratedbythedescriptionsof immunodeficien-ciesprovidedabove.LifeonEarthbeganwithsinglecells,some of which much later,grouped togetherand evolvedinto meta-zoans(DaviesandLineweaver,2011).Inmulticellularity,thereis aneedforcellstoanchorthemselvestogethertoachieve mechan-icalcoherence.Wecanstillseeevidenceofthestepsleadingto thedevelopmentofcomplexmulticellularindividuals from sin-glecells, in intermediateforms, fromChlamydomonas toVolvox (Kirk,2005)(SheltonandMichod,2014).Fromthismodel, exper-imentaldatashowthatECMplaysastrikingroleinthisprocess (HallmannandKirk,2000).Noinformationabouttheroleofthe ECMinimmunesystembiologyisavailable,withtheexception ofsecondarylymphoidorganphysiology,whichisnotconsidered here(Kastenmülleretal.,2012).Mobilecellsmightthereforebe expected to have evolved specific mechanismsmodulating the consequencesofanchoragewithintheECM.Anunderstandingof thesemechanisms would greatlyimprove theway we seeand

(10)

understandimmunityandthepathophysiologyofmanydiseases, includingautoimmune(Sofatetal.,2015)andinfectiousdiseases andofcourseaging.

Insummary,themechanismsofECMcross-linkinginagingare wellestablished,buttheireffectsonimmunecellmobilityinthe bodyremainlargelyunknown.Givenrecentfindingsformemory residentTcells andthefunctionalimportanceofcelltrafficking betweenlymphnodes,bloodand,aboveall,withintissues,we sug-gestthatalinkbetweenthesetwoaspectscouldaccountforthe featuresassociatedwithimmunosenescence.

5. ConsequencesofthelowermobilityofT-lymphocytes andtheirhigherdeathrate

5.1. Necrosis,apoptosis,pyroptosisandinflammasomeactivation The preservation or loss of membrane integrity in dying cells determines whether cell death is inflammatory (Wallach etal.,2016).Someofcellcomponentsleakingoutofcells have beenidentifiedasdamage-associatedmolecularpatterns(DAMPs). These components,together withpathogen-associated molecu-larpatterns(PAMPs),constitutethegeneric“dangersignals”that, accordingtothedangertheory(Matzinger,2002),aresensedby dendriticcells, leadingtoanupregulationoftheirexpressionof costimulatorymolecules on theantigen-presenting cell surface (PradeuandCooper,2012;Konoetal.,2014)necessaryfornaive Tcellactivation.Conversely,membraneintegrityismaintainedfor awhileduringearlyapoptosis,beforecaspase-mediated fragmen-tation.Thisallowsthemacrophagestoengulfandclearthedanger signals,thus preventinginadequateactivation of Tcells (Green etal.,2009).However,iftoomanyapoptoticcellsareproduced, overwhelmingtheclearancecapacityofthemacrophages,orifthis capacityisdecreasedforsomereason,thenapoptoticcellsmight notbeclearedrapidlyenough,resultingintheleakingofapoptotic bodies.ThesebodieswouldreleaseDAMPs,resultinginahighly inflammatoryenvironment.Fromourhypothesis,wecanpredict thatthesetwosituationswouldoccurinsynergyoverlong peri-odsduringaging,asECMremodelingwouldseverelyimpairthe mobilityoflymphocytesandmacrophages,ultimatelyleadingto thedeathofthesecellsinsituinresponsetomechanicalstress. Othertriggersmayalsobeimportant.Inparticular,HighMobility GroupBox1(HMGB1)isanuclearproteinreleasedbynecroticcells thatpromotescytokinereleasebyinteractinginflammatorycell recruitmentviaTLR4andCXCL12cellmigration(Schiraldietal., 2012).Thisandotherexamples(Limetal.,2015;Vacchellietal., 2015)demonstratethatinflammationmaybecloselyconnected toimpairedmobility,potentiallyleadingtotheestablishmentofa viciouscircleinthecontextsofagingandECMmodifications.

Furthermore,thereleaseofIL1betainducesahighly inflamma-toryformofcelldeathknownaspyroptosis,whichhasrecently beenshowntoaccountforthemassiveTcelllossand inflamma-torystatusofHIVpatients(Doitshetal.,2014).Theinnatemolecular partoftheimmunesystemsensestheseotherwisehiddencell com-ponents(Davisetal.,2011;LamkanfiandDixit,2012), whereas cells,suchasmacrophages,drivea viciouscirclebyresponding toIL1andfurtherdegradingtheECMleadingto“macroph-aging” (Franceschietal.,2000b).IL1betaandIL18areprototypical inflam-matorycytokinessecretedfollowingcytoplasmiccleavageofthe correspondingproproteinsbycaspase-1activatedfollowing poly-merisationofinflammasome. Thetranscriptionalactivation and expressionoftheseproproteinsandofinflammasomecomponents followssignalingthroughTLRandcytokinesindiversecells[for detailssee(Martinonetal.,2009)].IL1isthensecreted,activating signalingviaitsreceptor,throughtheNF-␬Bpathway,and trig-geringtheinflammatoryprogramintargetcells(Mathewsetal.,

2008).Sixtypesofinflammasomeshavebeendescribedinhumans, eachessentiallyspecificforanarrayofPAMPsorDAMPs,mostof whichareabundantmoleculeswithimportantfunctions,enabling theinflammasometosensecellularinjuries.Forexample,ATP,RNA, DNA,cholesteroldepositionandcrystalsareknowntoactivatethe NLRP3inflammasome,whichplaysamajorrolein atherosclero-sis(Zhengetal.,2014).Interestingly,theinflammasomehasalso beenreportedtosenseactindynamics,whichisessentialforthe detectionofintracellularpathogens(Kimetal.,2015).Asdescribed above,thelow-molecularweightproductsofhyaluronan break-down,aresultofECMinjury,bindtoTLR2,inducingproductionof pro-IL1andpro-IL18(Scheibneretal.,2006).Inflammasomeshave alsobeenshowntoacceleratethedeclineofthymicfunction(Youm etal.,2012).Insummary,thisarrayofobservationsshowsthetight intricacywhichexistsbetweenECMandinflammation,pledging foritsconsiderationinimmunosenescenceandaging.

Withinthisinflammatoryframework,thehighlevelsofIL6 con-sistentlyobservedinthebloodoftheelderlymaydirectlyreflect thenuclearstressresultingfromtheECMremodeling.Indeed,the magnitudeofnucleardeformationisrelatedtoexpressionlevelsfor aspecificarrayofgenes,themosttranscribedofwhicharehistones H4(A-D)andH3F,butalsoIL6(LeBerreetal.,2012).Nuclear enve-loperupturehasbeenshowntocauseDNAbreakageandrepairthat mightcontributetotheDNAdamageresponse(Zhangetal.,2015; Raabetal.,2016),butexchangesofmaterialbetweenthecytoplasm andnucleusmightalsoprovideasourceofinternalDAMPsdirectly sensedalongthesevariouspathways.

Overall,theubiquitousECMmodificationsassociatedwith col-lagenglycationandcross-linkingareprobablydirectlyorindirectly followedbyaseriesofeventsleadingtothechronicproductionof highlypotentinflammatorycytokines,underlyingthe inflammag-inganditsconsequencesseenintheelderly.

5.2. Tlymphocytedepletionanditslinktohomeostatic proliferationandautoimmunity

ChronicTcelllossinducesthreehighlyregulatedprocessesof Tcellreplenishmentinmammalswhichare:1)thematureTcell egressfromthethymus,2)theclonalamplificationofcellsengaged inanimmuneresponse,and3)thehomeostaticproliferationofT cells.

Intheelderly,asthymicfunctionisabsent,Tcellcompartment replenishmentisdependentexclusivelyonhomeostatic prolifer-ation.Inthisprocess,existingTcellsproliferateintheabsenceof exogenousantigen,duetotheirintrinsicself-recognition proper-tiesresultingfromtheirpreviouspositiveandnegativeselection in thethymus(Vrisekoopet al.,2008; den Braber etal., 2012; Johnson etal., 2012).Homeostatic proliferation may,therefore, alsobelinkedtothedevelopmentofauto-immunity(Goronzyand Weyand,2012)astheTcellrepertoireisbuiltonaprincipleof basicbutlimitedrecognitionofself(Mason,1998),knownas auto-reaction[see(Pradeu,2012)].

Innormaladults,thisbasalautoreactivestatedoesnotleadto auto-immunediseasesbecauseofseveralmechanisms,collectively called“peripheraltolerance”, butmostly involvingregulatoryT cells,whichinhibiteffectorTcellfunctionandwhichhavebeen showntoaccumulatewithage(Sharmaetal.,2007).

Most of our insight into T cell dynamics replenishment originatesfromanalysesofTcellreconstitutionintheblood fol-lowingperipherallymphopenia,asobservedduringHIVinfection, chemotherapy totreat cancer, transplantation and aging. Lym-phopenia is known to break tolerance (Jones et al., 2013), as highlightedbyreportsforhematopoieticstemcelltransplantation (Matsuokaetal.,2010).Intheseconditions,theTcellswiththe highestaffinityforMHCplusself-peptidesproliferatefasterthan

(11)

thosewithaloweraffinityleadingtodysregulatedimmunesystem activation.

Inmousemodels,homeostaticproliferationafterlymphopenia alsoinducesthespontaneousproliferationofnaiveandmemory Tcells butwithlittleauto-immunity(LeCampionet al.,2009), becauseoftheconcomitantexpansionofTregulatorycells(Tregs) tocontrolthis phenomenon(Piccaetal.,2006).However,ifthe expansionsofthesetwopopulationsweretobedissociated,then transientauto-immunedisordersarise.Thisiswhatisobservedin theimmunereconstitutioninflammatorysyndrome(IRIS),found inHIV-infectedpatientswithlowCD4+Tcellcountsgivenhighly activeantiretroviraltherapy(Shelburneetal.,2005)orinNODmice (LeCampionetal.,2009).

Tregsinteractwithdendriticcellsinthelymphnodes,inwhich theysuppresseffectorTcellpriming,subsequentlymigratingto non-lymphoidtissues,inwhichtheysuppresseffectorTcell func-tionslocally.ThesuppressionexertedbyTregsisnotspecifictothe antigen;itis,instead,highlydependentoncolocalizationwiththe effectorTcellstobesuppressed(Antunesetal.,2008).Tregsmigrate rapidlyfromthebloodtositesofinflammation,highlightingtheir strongdependenceonanormalmigratorycapabilitytomediate theirsuppressivefunction.Changesin theirmigration capacity, duetotheECMalterationsknowntooccurinaging,crippletheir regulatoryfunctions,leadingtohigherlevelsof auto-immunity. Tregsuppressivefunctionis,thus,highlydependentoneffective migrationmechanisms,whichmaybedisruptedbyECMalteration, therebyexacerbatinginflammatoryprocessesandpartly account-ingforage-relatedauto-immunity.

6. Conclusion

Tcellsarehighlymobilecellswithfunctionsinimmunitythat arehighlydependentontheirabilitytomigrateparticularlyfor thoseresidingintissues.WeargueherethatchangestoTcell migra-tioncapacityduetowell-characterizedECMchangesduringaging mayplayakeyroleintheagingprocess,bycripplinginteractions betweenimmune cells and preventingtheirtrafficking (Fig.2). Studiesofhereditaryimmunodeficienciesinvolvingalackof effi-cientactinremodelinghaveshownthatTcelllossresultsfromthe deathofmigratorycells.InadditiontotheconsequencesofTcell deathforinflammation,theprogressivedepletionofTcellsleads toviralreactivation(herpesvirus)andtriggersmechanismsofT cellreplenishmentthatmayleadtosomedegreeofautoimmunity. Thesemechanismsprovideinformation abouttheconsequences ofECMremodelinginfundamentalimmunologyaswellassome explanationfor immunosenescence,but theymayalsoserve as appropriatetreatmenttargets.Earlyin2015,twostudies convinc-inglyshowedthatprovidingthehostwithTcellsagainsttumorsin thecontextofascaffoldmatrixcreatedafavorableenvironmentfor thegenerationofeffectivehumoralandcellularimmuneresponses totumorantigens(Stephanetal.,2015;WeberandMulé,2015). Thisobservationreflectsalsotheexistenceoftertiaryectopic lym-phoidorgans,insynovialtissuefromrheumatoidarthritispatients forexample(Weyandetal.,2003),demonstratinghereagain,the three-dimensionalnatureofimmunity.

Conflictsofinterest

Noneoftheauthorshaveanyconflictofinteresttodeclare.

Acknowledgments

We would like to thank Maria Mamani-Matsuda, Myriam Capone, JenniferHoward, LynnChiu and Maureen O’Malleyfor helpfuldiscussionsandrevisionofthemanuscript.

ThomasPradeureceivedfundingfromtheEuropeanResearch Council(ERC)undertheEuropeanUnion’sHorizon2020research andinnovationprogram−grantagreementno.637647-IDEM.

References

Antunes,I.,Tolaini,M.,Kissenpfennig,A.,Iwashiro,M.,Kuribayashi,K.,Malissen,B., Hasenkrug,K.,Kassiotis,G.,2008.Retrovirus-Specificityofregulatorytcellsis neitherpresentnorrequiredinpreventingretrovirus-inducedbonemarrow immunepathology.Immunity29,782–794,http://dx.doi.org/10.1016/j. immuni.2008.09.016.

Arantes-Oliveira,N.,2003.Healthyanimalswithextremelongevity.Science302,

http://dx.doi.org/10.1126/science.1089169,611–611.

Arendt,L.M.,Kuperwasser,C.,2015.Workingstiff:howobesityboostscancerrisk. Sci.Transl.Med.7,http://dx.doi.org/10.1126/scitranslmed.aac9446, 301fs34–301fs34.

Ariotti,S.,Beltman,J.B.,Chodaczek,G.,Hoekstra,M.E.,vanBeek,A.E.,

Gomez-Eerland,R.,Ritsma,L.,vanRheenen,J.,Marée,A.F.M.,Zal,T.,deBoer, R.J.,Haanen,J.B.A.G.,Schumacher,T.N.,2012.Tissue-residentmemoryCD8+T cellscontinuouslypatrolskinepitheliatoquicklyrecognizelocalantigen.Proc. Natl.Acad.Sci.109,19739–19744,http://dx.doi.org/10.1073/pnas.

1208927109.

Bailey,A.J.,Paul,R.G.,Knott,L.,1998.Mechanismsofmaturationandageingof collagen.Mech.AgeingDev.106,1–56, http://dx.doi.org/10.1016/S0047-6374(98)00119-5.

Bailey,A.J.,2001.Molecularmechanismsofageinginconnectivetissues.Mech. AgeingDev.122,735–755,http://dx.doi.org/10.1016/S0047-6374(01)00225-1. Bella,J.,2016.Collagenstructure:newtricksfromaveryolddog.Biochem.J.473,

1001–1025,http://dx.doi.org/10.1042/BJ20151169.

Bissell,M.J.,Hines,W.C.,2011.Whydon’twegetmorecancer?Aproposedroleof themicroenvironmentinrestrainingcancerprogression.Nat.Med.17, 320–329,http://dx.doi.org/10.1038/nm.2328.

Boasso,A.,Shearer,G.M.,2008.Chronicinnateimmuneactivationasacauseof HIV-1immunopathogenesis.Clin.Immunol.126,235–242,http://dx.doi.org/ 10.1016/j.clim.2007.08.015.

Boger,D.L.,2015.Whensugarisnotsosweet.Science350,275–276,http://dx.doi. org/10.1126/science.aad3298.

Bonnans,C.,Chou,J.,Werb,Z.,2014.Remodellingtheextracellularmatrixin developmentanddisease.Nat.Rev.Mol.CellBiol.15,786–801,http://dx.doi. org/10.1038/nrm3904.

Brenchley,J.M.,Karandikar,N.J.,Betts,M.R.,Ambrozak,D.R.,Hill,B.J.,Crotty,L.E., Casazza,J.P.,Kuruppu,J.,Migueles,S.A.,Connors,M.,Roederer,M.,Douek,D.C., Koup,R.A.,2003.ExpressionofCD57definesreplicativesenescenceand antigen-inducedapoptoticdeathofCD8+Tcells.Blood101,2711–2720,http:// dx.doi.org/10.1182/blood-2002-07-2103.

Brock,M.A.,Chrest,F.,1993.Differentialregulationofactinpolymerization followingactivationofrestingTlymphocytesfromyoungandagedmice.J. Cell.Physiol.157,367–378,http://dx.doi.org/10.1002/jcp.1041570221. Burtner,C.R.,Kennedy,B.K.,2010.Progeriasyndromesandageing:whatisthe

connection?Nat.Rev.Mol.CellBiol.11,567–578,http://dx.doi.org/10.1038/ nrm2944.

Bustin,M.,Misteli,T.,2016.Nongeneticfunctionsofthegenome.Science352, 671–678,http://dx.doi.org/10.1126/science.aad6933.

Campisi,J.,2013.Aging,cellularsenescence,andcancer.Annu.Rev.Physiol.75, 685–705,http://dx.doi.org/10.1146/annurev-physiol-030212-183653. Carbone,F.R.,2015.Tissue-residentmemorytcellsandfixedimmunesurveillance

innonlymphoidorgans.J.Immunol.195,17–22,http://dx.doi.org/10.4049/ jimmunol.1500515.

Cevenini,E.,Invidia,L.,Lescai,F.,Salvioli,S.,Tieri,P.,Castellani,G.,Franceschi,C., 2008.Humanmodelsofagingandlongevity.ExpertOpin.Biol.Ther.8, 1393–1405,http://dx.doi.org/10.1517/14712598.8.9.1393.

Chen,Y.,Terajima,M.,Yang,Y.,Sun,L.,Ahn,Y.-H.,Pankova,D.,Puperi,D.S., Watanabe,T.,Kim,M.P.,Blackmon,S.H.,Rodriguez,J.,Liu,H.,Behrens,C., Wistuba,I.I.,Minelli,R.,Scott,K.L.,Sanchez-Adams,J.,Guilak,F.,Pati,D., Thilaganathan,N.,Burns,A.R.,Creighton,C.J.,Martinez,E.D.,Zal,T.,

Grande-Allen,K.J.,Yamauchi,M.,Kurie,J.M.,2015.Lysylhydroxylase2induces acollagencross-linkswitchintumorstroma.J.Clin.Invest.125,1147–1162,

http://dx.doi.org/10.1172/JCI74725.

Cicin-Sain,L.,Messaoudi,I.,Park,B.,Currier,N.,Planer,S.,Fischer,M.,Tackitt,S., Nikolich-ˇZugich,D.,Legasse,A.,Axthelm,M.K.,Picker,L.J.,Mori,M.,

Nikolich-ˇZugich,J.,2007.DramaticincreaseinnaïveTcellturnoverislinkedto lossofnaïveTcellsfromoldprimates.Proc.Natl.Acad.Sci.104,19960–19965,

http://dx.doi.org/10.1073/pnas.0705905104.

Clark,R.A.,2015.ResidentmemoryTcellsinhumanhealthanddisease.Sci.Transl. Med.7,http://dx.doi.org/10.1126/scitranslmed.3010641,269rv1–269rv1. Cohen,J.,2015.Death-defyingexperiments.Science350,1186–1187,http://dx.doi.

org/10.1126/science.350.6265.1186.

Conboy,I.M.,Rando,T.A.,2012.Heterochronicparabiosisforthestudyofthe effectsofagingonstemcellsandtheirniches.CellCycle11,2260–2267,http:// dx.doi.org/10.4161/cc.20437.

Conboy,I.M.,Conboy,M.J.,Wagers,A.J.,Girma,E.R.,Weissman,I.L.,Rando,T.A., 2005.Rejuvenationofagedprogenitorcellsbyexposuretoayoungsystemic environment.Nature433,760–764,http://dx.doi.org/10.1038/nature03260.

(12)

Coté,J.-F.,Vuori,K.,2007.GEFwhat?Dock180andrelatedproteinshelpRacto polarizecellsinnewways.TrendsCellBiol.17,383–393,http://dx.doi.org/10. 1016/j.tcb.2007.05.001.

Davies,P.C.W.,Lineweaver,C.H.,2011.CancertumorsasMetazoa1.0:tapping genesofancientancestors.Phys.Biol.8,15001,http://dx.doi.org/10.1088/ 1478-3975/8/1/015001.

Davis,B.K.,Wen,H.,Ting,J.P.-Y.,2011.TheinflammasomeNLRsinimmunity, inflammation,andassociateddiseases.Annu.Rev.Immunol.29,707–735,

http://dx.doi.org/10.1146/annurev-immunol-031210-101405.

Denais,C.M.,Gilbert,R.M.,Isermann,P.,McGregor,A.L.,teLindert,M.,Weigelin,B., Davidson,P.M.,Friedl,P.,Wolf,K.,Lammerding,J.,2016.Nuclearenvelope ruptureandrepairduringcancercellmigration.Science352,353–358,http:// dx.doi.org/10.1126/science.aad7297.

denBraber,I.,Mugwagwa,T.,Vrisekoop,N.,Westera,L.,Mögling,R.,Bregjede Boer,A.,Willems,N.,Schrijver,E.H.R.,Spierenburg,G.,Gaiser,K.,Mul,E.,Otto, S.A.,Ruiter,A.F.C.,Ackermans,M.T.,Miedema,F.,Borghans,J.A.M.,deBoer,R.J., Tesselaar,K.,2012.MaintenanceofperipheralnaiveTcellsissustainedby thymusoutputinmicebutnothumans.Immunity36,288–297,http://dx.doi. org/10.1016/j.immuni.2012.02.006.

Doitsh,G.,Galloway,N.L.K.,Geng,X.,Yang,Z.,Monroe,K.M.,Zepeda,O.,Hunt,P.W., Hatano,H.,Sowinski,S.,Mu ˜noz-Arias,I.,Greene,W.C.,2014.Celldeathby pyroptosisdrivesCD4T-celldepletioninHIV-1infection.Nature505, 509–514,http://dx.doi.org/10.1038/nature12940.

Draghici,C.,Wang,T.,Spiegel,D.A.,2015.Concisetotalsynthesisofglucosepane. Science350,294–298,http://dx.doi.org/10.1126/science.aac9655.

Dupont,S.,Morsut,L.,Aragona,M.,Enzo,E.,Giulitti,S.,Cordenonsi,M.,Zanconato, F.,Digabel,J.L.,Forcato,M.,Bicciato,S.,Elvassore,N.,Piccolo,S.,2011.Roleof YAP/TAZinmechanotransduction.Nature474,179–183,http://dx.doi.org/10. 1038/nature10137.

Eaton,S.M.,Maue,A.C.,Swain,S.L.,Haynes,L.,2008.Bonemarrowprecursorcells fromagedmicegenerateCD4tcellsthatfunctionwellinprimaryandmemory responses.J.Immunol.181,4825–4831,http://dx.doi.org/10.4049/jimmunol. 181.7.4825.

Elabd,C.,Cousin,W.,Upadhyayula,P.,Chen,R.Y.,Chooljian,M.S.,Li,J.,Kung,S., Jiang,K.P.,Conboy,I.M.,2014.Oxytocinisanage-specificcirculatinghormone thatisnecessaryformusclemaintenanceandregeneration.Nat.Commun.5, 4082,http://dx.doi.org/10.1038/ncomms5082.

Evanko,S.P.,Potter-Perigo,S.,Bollyky,P.L.,Nepom,G.T.,Wight,T.N.,2012. HyaluronanandversicaninthecontrolofhumanT-lymphocyteadhesionand migration.MatrixBiol.31,90–100,http://dx.doi.org/10.1016/j.matbio.2011.10. 004.

Ewald,C.Y.,Landis,J.N.,Abate,J.P.,Murphy,C.T.,Blackwell,T.K.,2014.

Dauer-independentinsulin/IGF-1-signallingimplicatescollagenremodelling inlongevity.Nature519,97–101,http://dx.doi.org/10.1038/nature14021. Föger,N.,Rangell,L.,Danilenko,D.M.,Chan,A.C.,2006.Requirementforcoronin1

intlymphocytetraffickingandcellularhomeostasis.Science313,839–842,

http://dx.doi.org/10.1126/science.1130563.

Fan,X.,Rudensky,A.Y.,2016.Hallmarksoftissue-residentlymphocytes.Cell164, 1198–1211,http://dx.doi.org/10.1016/j.cell.2016.02.048.

Farber,D.L.,Yudanin,N.A.,Restifo,N.P.,2013.HumanmemoryTcells:generation, compartmentalizationandhomeostasis.Nat.Rev.Immunol.14,24–35,http:// dx.doi.org/10.1038/nri3567.

Flurkey,K.,Papaconstantinou,J.,Miller,R.A.,Harrison,D.E.,2001.Lifespan extensionanddelayedimmuneandcollagenaginginmutantmicewith defectsingrowthhormoneproduction.Proc.Natl.Acad.Sci.98,6736–6741,

http://dx.doi.org/10.1073/pnas.111158898.

Franceschi,C.,Campisi,J.,2014.Chronicinflammation(Inflammaging)andits potentialcontributiontoage-associateddiseases.J.Gerontol.A.Biol.Sci.Med. Sci.69,S4–S9,http://dx.doi.org/10.1093/gerona/glu057.

Franceschi,C.,Valensin,S.,Bonafè,M.,Paolisso,G.,Yashin,A.,Monti,D.,De Benedictis,G.,2000.Thenetworkandtheremodelingtheoriesofaging: historicalbackgroundandnewperspectives.Biol.Aging35,879–896,http:// dx.doi.org/10.1016/S0531-5565(00)00172-8.

Franceschi,C.,Bonafè,M.,Valensin,S.,2000a.Humanimmunosenescence:the prevailingofinnateimmunity,thefailingofclonotypicimmunity,andthe fillingofimmunologicalspace.Vaccine18,1717–1720,http://dx.doi.org/10. 1016/S0264-410X(99)00513-7.

Franceschi,C.,Bonafè,M.,Valensin,M.,Olivieri,S.,DeLuca,F.,Ottaviani,M.,De Benedictis,E.,2000b.Inflamm-aging:anevolutionaryperspectiveon immunosenescence.Ann.N.Y.Acad.Sci.908,244–254,http://dx.doi.org/10. 1111/j.1749-6632.2000.tb06651.x.

Franceschi,C.,Bezrukov,V.,Blanché,H.,Bolund,L.,Christensen,K.,Benedictis,G.D., Deiana,L.,Gonos,E.,Hervonen,A.,Yang,H.,Jeune,B.,Kirkwood,T.B.L., Kristensen,P.,Leon,A.,Pelicci,P.G.,Peltonen,L.,Poulain,M.,Rea,I.M.,Remacle, J.,Robine,J.M.,Schreiber,S.,Sikora,E.,Slagboom,P.E.,Spazzafumo,P.E.,Stazi, M.A.,Toussaint,O.,Vaupel,J.W.,2007.Geneticsofhealthyagingineurope. Ann.N.Y.Acad.Sci.1100,21–45,http://dx.doi.org/10.1196/annals.1395.003. Friedl,P.,Wolf,K.,Lammerding,J.,2011.Nuclearmechanicsduringcellmigration.

CellStruct.Dyn.23,55–64,http://dx.doi.org/10.1016/j.ceb.2010.10.015. Fulop,T.,Larbi,A.,Pawelec,G.,2013.Humantcellagingandtheimpactof

persistentviralinfections.Front.Immunol.4,1–9,http://dx.doi.org/10.3389/ fimmu.2013.00271.

Fulop,T.,Dupuis,G.,Baehl,S.,LePage,A.,Bourgade,K.,Frost,E.,Witkowski,J.M., Pawelec,G.,Larbi,A.,Cunnane,S.,2015.Frominflamm-agingto

immune-paralysis:aslipperyslopeduringagingforimmune-adaptation. Biogerontology,http://dx.doi.org/10.1007/s10522-015-9615-7.

Gaggar,A.,Weathington,N.,2016.Bioactiveextracellularmatrixfragmentsinlung healthanddisease.J.Clin.Invest.126,3176–3184,http://dx.doi.org/10.1172/ JCI83147.

Gasteiger,G.,Fan,X.,Dikiy,S.,Lee,S.Y.,Rudensky,A.Y.,2015.Tissueresidencyof innatelymphoidcellsinlymphoidandnonlymphoidorgans.Science350, 981–985,http://dx.doi.org/10.1126/science.aac9593.

Gebhardt,T.,Whitney,P.G.,Zaid,A.,Mackay,L.K.,Brooks,A.G.,Heath,W.R., Carbone,F.R.,Mueller,S.N.,2011.Differentpatternsofperipheralmigrationby memoryCD4+andCD8+Tcells.Nature477,216–219,http://dx.doi.org/10. 1038/nature10339.

Gerlitz,G.,Bustin,M.,2011.Theroleofchromatinstructureincellmigration. TrendsCellBiol.21,6–11,http://dx.doi.org/10.1016/j.tcb.2010.09.002. Goronzy,J.J.,Weyand,C.M.,2005.Tcelldevelopmentandreceptordiversityduring

aging.Curr.Opin.Immunol.17,468–475,http://dx.doi.org/10.1016/j.coi.2005. 07.020.

Goronzy,J.J.,Weyand,C.M.,2012.Immuneagingandautoimmunity.Cell.Mol.Life Sci.69,1615–1623,http://dx.doi.org/10.1007/s00018-012-0970-0.

Gourlay,C.W.,Carpp,L.N.,Timpson,P.,Winder,S.J.,Ayscough,K.R.,2004.Arolefor theactincytoskeletonincelldeathandaginginyeast.J.CellBiol.164, 803–809,http://dx.doi.org/10.1083/jcb.200310148.

Green,D.R.,Ferguson,T.,Zitvogel,L.,Kroemer,G.,2009.Immunogenicand tolerogeniccelldeath.Nat.Rev.Immunol.9,353–363,http://dx.doi.org/10. 1038/nri2545.

Grimm,D.,2015.Whyweoutliveourpets.Science350,1182–1185,http://dx.doi. org/10.1126/science.350.6265.1182.

Groulx,J.-F.,Gagné,D.,Benoit,Y.D.,Martel,D.,Basora,N.,Beaulieu,J.-F.,2011. CollagenVIisabasementmembranecomponentthatregulatesepithelial cell-fibronectininteractions.MatrixBiol.30,195–206,http://dx.doi.org/10. 1016/j.matbio.2011.03.002.

Guevara-Aguirre,J.,Rosenbloom,A.L.,2015.Obesity,diabetesandcancer:insight intotherelationshipfromacohortwithgrowthhormonereceptordeficiency. Diabetologia58,37–42,http://dx.doi.org/10.1007/s00125-014-3397-3. Guilak,F.,Cohen,D.M.,Estes,B.T.,Gimble,J.M.,Liedtke,W.,Chen,C.S.,2009.

Controlofstemcellfatebyphysicalinteractionswiththeextracellularmatrix. CellStemCell5,17–26,http://dx.doi.org/10.1016/j.stem.2009.06.016. Hadrup,S.R.,Strindhall,J.,Køllgaard,T.,Seremet,T.,Johansson,B.,Pawelec,G.,thor

Straten,P.,Wikby,A.,2006.LongitudinalstudiesofclonallyexpandedCD8T cellsrevealarepertoireshrinkagepredictingmortalityandanincreased numberofdysfunctionalcytomegalovirus-specificTcellsintheveryelderly.J. Immunol.176,2645–2653.

Halder,G.,Dupont,S.,Piccolo,S.,2012.Transductionofmechanicaland cytoskeletalcuesbyYAPandTAZ.Nat.Rev.Mol.CellBiol.13,591–600,http:// dx.doi.org/10.1038/nrm3416.

Hale,J.S.,Frock,R.L.,Mamman,S.A.,Fink,P.J.,Kennedy,B.K.,2010.Cell-extrinsic defectivelymphocytedevelopmentinlmna-/-mice.PLoSOne5,e10127,

http://dx.doi.org/10.1371/journal.pone.0010127.

Hallmann,A.,Kirk,D.L.,2000.ThedevelopmentallyregulatedECMglycoprotein ISGplaysanessentialroleinorganizingtheECMandorientingthecellsof Volvox.J.CellSci.113,4605–4617.

Hallmann,R.,Zhang,X.,DiRusso,J.,Li,L.,Song,J.,Hannocks,M.-J.,Sorokin,L.,2015. Theregulationofimmunecelltraffickingbytheextracellularmatrix.Cell Adhes.Migr.36,54–61,http://dx.doi.org/10.1016/j.ceb.2015.06.006. Hamazaki,Y.,Sekai,M.,Minato,N.,2016.Medullarythymicepithelialstemcells:

roleinthymicepithelialcellmaintenanceandthymicinvolution.Immunol. Rev.271,38–55,http://dx.doi.org/10.1111/imr.12412.

Harada,Y.,Tanaka,Y.,Terasawa,M.,Pieczyk,M.,Habiro,K.,Katakai,T.,

Hanawa-Suetsugu,K.,Kukimoto-Niino,M.,Nishizaki,T.,Shirouzu,M.,Duan,X., Uruno,T.,Nishikimi,A.,Sanematsu,F.,Yokoyama,S.,Stein,J.V.,Kinashi,T., Fukui,Y.,2012.DOCK8isaCdc42activatorcriticalforinterstitialdendriticcell migrationduringimmuneresponses.Blood119,4451–4461,http://dx.doi.org/ 10.1182/blood-2012-01-407098.

Harada,T.,Swift,J.,Irianto,J.,Shin,J.-W.,Spinler,K.R.,Athirasala,A.,Diegmiller,R., Dingal,P.C.D.P.,Ivanovska,I.L.,Discher,D.E.,2014.Nuclearlaminstiffnessisa barrierto3Dmigration,butsoftnesscanlimitsurvival.J.CellBiol.204, 669–682,http://dx.doi.org/10.1083/jcb.201308029.

Harunaga,J.S.,Yamada,K.M.,2011.Cell-matrixadhesionsin3D.MatrixBiol.30, 363–368,http://dx.doi.org/10.1016/j.matbio.2011.06.001.

Hayflick,L.,Moorhead,P.,1961.Theserialcultivationofhumandiploidcellstrains. Exp.CellRes.25,585–621.

Heisenberg,C.-P.,Bellaiche,Y.,2013.Forcesintissuemorphogenesisand patterning.Cell153,948–962,http://dx.doi.org/10.1016/j.cell.2013.05.008. Hnisz,D.,Weintraub,A.S.,Day,D.S.,Valton,A.-L.,Bak,R.O.,Li,C.H.,Goldmann,J.,

Lajoie,B.R.,Fan,Z.P.,Sigova,A.A.,Reddy,J.,Borges-Rivera,D.,Lee,T.I.,Jaenisch, R.,Porteus,M.H.,Dekker,J.,Young,R.A.,2016.Activationofproto-oncogenes bydisruptionofchromosomeneighborhoods.Science351,1454–1458,http:// dx.doi.org/10.1126/science.aad9024.

Hogquist,K.A.,2008.Immunodeficiency:whenTcellsarestuckathome.Nat. Immunol.9,1207–1208,http://dx.doi.org/10.1038/ni1108-1207.

Honda,T.,Egen,J.G.,Lämmermann,T.,Kastenmüller,W.,Torabi-Parizi,P.,Germain, R.N.,2014.Tuningofantigensensitivitybytcellreceptor-dependentnegative feedbackcontrolstcelleffectorfunctionininflamedtissues.Immunity40, 235–247,http://dx.doi.org/10.1016/j.immuni.2013.11.017.

Horton,E.R.,Astudillo,P.,Humphries,M.J.,Humphries,J.D.,2016.

Mechanosensitivityofintegrinadhesioncomplexes:roleoftheconsensus adhesome.Exp.CellRes.343,7–13,http://dx.doi.org/10.1016/j.yexcr.2015.10. 025.

Figure

Fig. 1. Relationships of immunosenescence with aging mechanisms and comorbidities. Aging mechanisms follow the nine hallmarks of aging established by Lopez-Otin (Lopez-Otin et al., 2013)
Fig. 2. Role of extracellular matrix alterations in immunosenescence. The increase in ECM cross-linking with aging places constraints on the mobility of immune cells, accounting for the phenotype associated with aging

Références

Documents relatifs

To investigate the role of PRR signaling in the protective effects of probiotic, Lr32-pulsed BMDCs derived from MyD88, TLR2 and NOD2 deficient mice were transferred to TNBS-

The asymptotic stability of the low disease steady state corresponds to a state where the immune system is able to keep the leukemic cell population at a low level, even

To investigate the molecular basis of the function of BP7 in immature B cells, we further analysed enriched GO terms with p values within TOP30 in WEHI-231 cells after BP7

Même s’ils sont des vecteurs techniques indispensables pour relier les métropoles entre elles et les connecter au reste du monde, les aéroports doivent donc de plus en plus

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

**les recommandations EASD-ADA 2020 privilégient le schéma « basal plus » après échec d’une insuline basale ; le schéma « prémélangé » , dans le diabète de type 2, est

"Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells." Blood

For the six most intensively studied groups we tested whether precipitation as a crude proxy for food availability or group size had an influence on range size, assessed the degree