• Aucun résultat trouvé

RECENT PROGRESS IN LOW-VOLTAGE FIELD-EMISSION CATHODE DEVELOPMENT

N/A
N/A
Protected

Academic year: 2021

Partager "RECENT PROGRESS IN LOW-VOLTAGE FIELD-EMISSION CATHODE DEVELOPMENT"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00224427

https://hal.archives-ouvertes.fr/jpa-00224427

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RECENT PROGRESS IN LOW-VOLTAGE FIELD-EMISSION CATHODE DEVELOPMENT

C. Spindt, C. Holland, R. Stowell

To cite this version:

C. Spindt, C. Holland, R. Stowell. RECENT PROGRESS IN LOW-VOLTAGE FIELD-EMISSION CATHODE DEVELOPMENT. Journal de Physique Colloques, 1984, 45 (C9), pp.C9-269-C6-278.

�10.1051/jphyscol:1984946�. �jpa-00224427�

(2)

JOURNAL DE PHYSIQUE

Colloque C9, supplément au n°12, Tome 45, décembre 1984 page C9-269

RECENT PROGRESS IN LOW-VOLTAGE FIELD-EMISSION CATHODE DEVELOPMENT *

C.A. S p i n d t , C.E. H o l l a n d and R.D. S t o w e l l

SRI International, Menlo Park, California 94085

Résumé -Nos récents progrès dans le développement de réseaux de cathodes à émission de champ ont permis d'atteindre des densités de courant supé- rieures à 100 A/cm .

Abstract—Recent progress in field emission cathode array development has yielded current densities greater than 100 A/cm2.

Introduction

This paper describes the further development of a low-voltage, high-current-density field-emission cathode array [1]. We reported earlier that emitter arrays having tip densities of up to 1.2 x 10^ tips/cm2 could be fabricated using microfabrication techniques developed for this purpose. Emission currents averaging 50 /uA/tip

(60 A/cm2) were achieved with small arrays, and large arrays of 10,000 tips have been fabricated.

Efforts are continuing to develop techniques for increasing the tip packing density and, in turn, the current density that can be achieved with the field emitter array.

These efforts have produced emission current densities greater than 100 A/cm2 from small arrays whose tip packing density was 1.2 x 106 tips/cm2. Advanced fabrication technology has shown that packing densities greater than 10? tips/cm2 are achievable, and a corresponding increase in current density may be possible.

The Structure

The cathode structure, shown in Figure 1, consists of a silicon substrate that has been oxidized to a thickness of about 1-1/2 jam of silicon dioxide. .The silicon diox- ide is coated with a 1/2-/urn thick film of molybdenum in which an array of holes is micromachined using electron beam lithography. Holes are then etched through the silicon dioxide to the silicon substrate, using the molybdenum as an etch mask.

Finally, molybdenum cones are formed in the cavities, with their bases on the silicon substrate and their tips in the plane of the molybdenum film, as shown in Figure 1.

Emission Tests

For testing, the cathodes are usually mounted on standard T0-5 headers used in the semiconductor industry. Figure 2 is a cut-away sketch showing the mounting structure and typical electrode geometry.

Tests are usually done in groups of six cathodes in a setup shown in Figure 3. Each cathode has a separate stainless-steel collector for monitoring the emission current.

The cathode is usually driven with a pulsed voltage to keep the average power low, so that heating of the collector is minimized. Each collector is a 4.5-mm-diameter stainless-steel tube, positioned so that the emission current enters one end of the tube. The tubes are bent so that there is no straight line of sigt :hrough the tube, and all the emitted electrons are collected along the inner walls of the tube, thus distributing the impact over a large area.

^Research supported by NASA Lewis Research Center and the Naval Research Laboratories.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984946

(3)

C9-270 JOURNAL DE PHYSIQUE

M E T A L GATE

la) SCHEMATIC OF A THIN-FILM FIELD-EMISSION CATHODE ITFFEC) A R R A Y

4"- -

t- 20prn+

(b) SEM MICROGRAPH OF TFFEC A R R A Y

Ic) S E M MICROGRAPH O F TFFEC CATHODE

Figure 1. Thin-film field-emission cathode.

I n t y p i c a l o p e r a t i o n , t h e e x t r a c t o r o r g a t e e l e c t r o d e i s o p e r a t e d a t ground, t h e b a s e o r t i p s a r e d r i v e n n e g a t i v e l y , and t h e c o l l e c t o r t u b e i s b i a s e d t o a b o u t +I200 V t o h e l p i n overcoming s p a c e c h a r g e e f f e c t s n e a r t h e cathode. Emission i s monitored w i t h a d u a l t r a c e o s c i l l o s c o p e . The h o r i z o n t a l sweep o f t h e o s c i l l o s c o p e i s d r i v e n by t h e v o l t a g e a p p l i e d t o t h e e m i t t e r t i p s , and t h e v e r t i c a l d r i v e o f one c h a n n e l i s used t o

(4)

/ ARRAY OF TIPS SPOT WELD GATE CONTACT

- GATE F l LM

GLASS INSULATION SILICON CHIP

TO-5 HEADER

u

2.5 mm

Figure 2. Cutaway view of TO-5 cathode mount.

d i s p l a y t h e e m i s s i o n c u r r e n t a s a f u n c t i o n o f d r i v i n g v o l t a g e , w h i l e t h e second chan- n e l i s used t o d i s p l a y any c u r r e n t f l o w t o t h e g a t e s t r u c t u r e . F i g u r e 4 i s a t y p i c a l p r e s e n t a t i o n s e e n on t h e o s c i l l o s c o p e . I n t h i s c a s e , t h e peak e m i s s i o n c u r r e n t i s a b o u t 1 2 mA, and t h e peak g a t e c u r r e n t i s e s s e n t i a l l y z e r o . The d r i v i n g v o l t a g e i s 125 V peak, halfwave 60 Hz. T h i s i s t h e maximum e m i s s i o n l e v e l a c h i e v a b l e w i t h t h e 60-Hz d r i v i n g v o l t a g e w i t h o u t o v e r h e a t i n g t h e s t a i n l e s s - s t e e l c o l l e c t o r t u b e s . Higher l e v e l s of e m i s s i o n a r e e x p l o r e d u s i n g a reduced d u t y c y c l e o r water-cooled c o l l e c t o r system. The maximum c o n t i n u o u s wave (CW) e m i s s i o n l e v e l t h a t i s s a f e w i t h t h i s system i s 2 mA.

F i g u r e 5 i s an o s c i l l o g r a p h o f e m i s s i o n c u r r e n t from a 5000-tip cathode o p e r a t i n g a t 2 mA CW. The e m i s s i o n l e v e l i s d i s p l a y e d a s a f u n c t i o n of t i m e f o r a 5 s/cm sweep and a 5 ms/cm sweep, showing t h e n o i s e l e v e l over two f r e q u e n c y r a n g e s . The s m a l l p e r i o d i c i n c r e a s e s i n c u r r e n t i n t h e 5-ms/cm sweep a r e due t o half-wave 60-Hz i n t e r f e r e n c e from a nearby power s o u r c e . The f l i c k e r n o i s e i n b o t h i s a b o u t 1 p e r c e n t .

Exploring h i g h e r e m i s s i o n l e v e l s would r e q u i r e new c o l l e c t o r systems t o h a n d l e i n c r e a s e d power. A s i m p l e r approach t o i n v e s t i g a t i n g h i g h c a t h o d e l o a d i n g i s t o make s m a l l a r r a y s of cathode t i p s s o t h a t h i g h c u r r e n t d e n s i t i e s can be t e s t e d w i t h o u t having t o d e a l w i t h h i g h t o t a l power.

Small a r r a y s having t e n s of t i p s r a t h e r t h a n thousands were f a b r i c a t e d f o r t h i s pur- pose. F i g u r e 6 i s a n o s c i l l o g r a p h showing t h e a p p l i e d v o l t a g e p u l s e a s a f u n c t i o n of t i m e f o r a small-area c a t h o d e having 1 0 t i p s on 9-pm c e n t e r s (- 1.2 x lo6 t i p s / c m 2 ) and t h e r e s u l t i n g e m i s s i o n c u r r e n t . The peak e m i s s i o n i s a p p r o x i m a t e l y 2.1 mA, o r a b o u t 250 ~ / c m ~ . The same l o a d i n g on a 10,000-tip a r r a y would be 2 A , which i s c l e a r l y w e l l beyond what c o u l d be managed by t h e s t a i n l e s s - s t e e l t u b e c o l l e c t o r system.

(5)

C9-272 JOURNAL DE PHYSIQUE

Figure 3 . Apparatus for testing six cathodes using radiation-cooled 304 stainless-steel collectors.

Figure 4. Typical voltage-current characteristic for emission current and gate current for 5000-tip array.

Top: emission current, 2 mAldivision; Bottom: gate current, 0.02 mAldivision; Horizontal: 5 0 Vldivision Cathode: 20C-157-3N.

(6)

VERTICAL 0.5 mAIdiv HORIZONTAL 5 msldiv

VERTICAL 0.5 mAldiv HORIZONTAL 5sldiv

Figure 5. CW operation of cathode 20C-170-40 i n test setup with 3116-inch diameter 304 stainless-steel tube collector at 1000 V.

S e v e r a l t e s t s have been made a t h i g h t i p l o a d i n g s . F i u r e 7 shows pul'se and CW o p e r a t i o n o f two c a t h o d e s , w i t h one p r o d u c i n g 320 A/cm 4 peak e m i s s i o n and t h e o t h e r 5 0 ~ / c m ~ peak p u l s e e m i s s i o n i n b o t h p u l s e and CW modes. F i g u r e 8 i s a s c a n n i n g e l e c t r o n m i c r o g r a p h o f t h e c a t h o d e t h a t produced t h e 320 ~ / c m ~ p u l s e d e m i s s i o n , t a k e n a f t e r t h e test. The peak e m i s s i o n l e v e l was 6 mA, o r a n a v e r a g e o f 0.5 mA/tip. T h i s i s t h e h i g h e s t a v e r a g e e m i s s i o n l e v e l we h a v e measured t o d a t e , a n d , a s c a n be s e e n , t h e r e i s n o damage t o a n y o f t h e t i p s .

Advanced F a b r i c a t i o n P r o c e s s e s

The a r r a y shown i n F i g u r e 8 h a s 12.7 p m betweeri t i p c e n t e r s . C l e a r l y t h e r e i s room f o r many more t i p s i n t h e same s p a c e i f t h e e t c h u n d e r c u t c a n be minimized and l i t h o g r a p h y t e c h n i q u e s c a n be improved t o produce a h i g h e r p a c k i n g d e n s i t y of h o l e p a t t e r n s . Both a r e p o s s i b l e by means o f s t e p and r e p e a t e x p o s u r e s w i t h o u r s c r e e n

(7)

JOURNAL DE PHYSIQUE

Figure 6. High peak current density in the pulsed emission mode. Peak current density is 250 AIcm2 (cathode 29A-128-41-1. 10 tips on 9-/m centers).

l e n s e l e c t r o n beam e x p o s u r e s y s t e m , and r e a c t i v e i o n e t c h i n g (RIE) t o machine t h e h o l e s i n t o t h e molybdenum and s i l i c o n . RIE c a n be made t o e t c h a n i s o t r o p i c a l l y , t h u s e l i m i n a t i n g u n d e r c u t t i n g o f t h e g a t e s t r u c t u r e d u r i n g e t c h i n g o f t h e s i l i c o n d i o x i d e l a y e r .

F i g u r e 9 shows a n improved m u l t i p l e e l e c t r o n beam e x p o s u r e s y s t e m t h a t c a n produce p a t t e r n s o f submicron h o l e s w i t h g r e a t l y i n c r e a s e d p a c k i n g d e n s i t i e s . T h i s system c o n s i s t s o f a t u n g s t e n h a i r p i n f i l a m e n t c a t h o d e , E i n z e l l e n s , beam b l a n k e r , o b j e c t a p e r t u r e , d u a l d e f l e c t o r s , t h e s c r e e n l e n s , and t a r g e t o r c a t h o d e wafer. The o p t i c s o f t h e s y s t e m a r e s u c h t h a t t h e o b j e c t a p e r t u r e i s d e m a g n i f i e d i n t h e image by a f a c t o r o f 2(Zo/Z1), o r 1 0 0 t i m e s 121. Thus a 50-pm-diameter o b j e c t a p e r t u r e

w i l l produce a 0.5-pm d i a m e t e r image on t h e t a r g e t . F u r t h e r m o r e , i f t h e s c r e e n l e n s h a s a s c r e e n opening o r l e n s l e t s p a c i n g o f 12.7 p m between o p e n i n g s , t h e p a t t e r n exposed on a t a r g e t c o a t e d w i t h a n e l e c t r o n - s e n s i t i v e polymer w i l l c o n s i s t o f a n a r r a y of 0.5-pm d i a m e t e r s p o t s on 12.7-pm c e n t e r s (6.4 x 1 0 ~ / c m ~ ) , and a l l w i l l b e p r i n t e d s i m u l t a n e o u s l y .

P a t t e r n s h a v i n g h i g h e r p a c k i n g d e n s i t i e s c a n be formed i n t h e polymer by a s t e p and r e p e a t p r o c e s s , making a n e x p o s u r e and t h e n d e f l e c t i n g t h e beam w i t h t h e d u a l d e f l e c - t o r system and r e p e a t i n g t h e e x p o s u r e . The r e q u i r e d e x p o s u r e d o s e i s a b o u t

coul/cm2, which c a n b e accomplished i n a b o u t 1 second--so s e v e r a l s e q u e n t i a l expo- s u r e s c a n b e done v e r y c o n v e n i e n t l y .

As a d e m o n s t r a t i o n o f t h e s t e p and r e p e a t p r o c e s s , a p a t t e r n o f 16 e x p o s u r e s i n a 4 x 4 s q u a r e a r r a y was made t h r o u g h e a c h l e n s l e t w i t h 2.5-pm d e f l e c t i o n s between e x p o s u r e s . The e l e c t r o n - s e n s i t i v e polymer was t h e n d e v e l o p e d t o form h o l e s wherever t h e polymer had been exposed t o t h e e l e c t r o n beam, and a molybdenum f i l m u n d e r t h e polymer was e t c h e d where i t was n o t p r o t e c t e d by t h e polymer. The r e s u l t i n g a r r a y o f h o l e s i s shown i n F i g u r e 10. The h o l e s i n e a c h 4 x 4 s q u a r e a r e s p a c e d 2.5-pm a p a r t , and t h e 16-hole s q u a r e a r r a y s a r e s p a c e d on 12.7-/*m c e n t e r s . T h i s i s 16 t i m e s t h e p a c k i n g d e n s i t y shown i n F i g u r e 8 ( o r 10'/cm2), and i n p r i n c i p l e c o u l d produce 1 6 t i m e s t h e c u r r e n t d e n s i t y t h a t was a c h i e v e d w i t h t h e a r r a y shown i n F i g u r e 8. I n o r d e r t o r e a l i z e t h i s p o t e n t i a l improvement, we must e t c h t h e s i l i c o n d i o x i d e l a y e r u n d e r t h e molybdenum a n i s o t r o p i c a l l y , s o t h a t t h e o x i d e s u p p o r t u n d e r t h e molybdenum between t h e h o l e s w i l l n o t be removed. T h i s r e q u i r e s t h e a p p l i c a t i o n o f a n a p p r o p r i - a t e d r y e t c h i n g p r o c e s s , s u c h a s t h e r e a c t i v e i o n e t c h mentioned e a r l i e r [ 3 , 4 ] .

(8)

25A-121-5-C

25A-121-5-0 (PULSE [60 Hz1 )

250 200 150 140 130 120 110 100

APPLIED VOLTAGE - l / V scale

Figure 7. 1 as a function of v - l f o r two cathodes operated at high current density in the pulse mode (25A-121-1501 and the pulse and CW mode (25A-121-5C).

RIE p r o c e s s e s have been h i g h l y developed by t h e semiconductor i n d u s t r y f o r a p p l i c a - t i o n t o i n t e g r a t e d c i r c u i t f a b r i c a t i o n . To t e s t t h e a p p l i c a t i o n o f t h i s t e c h n o l o g y t o o u r p r o c e s s e s , samples were p r e p a r e d h a v i n g 1 t o 1 / 2 p m o f s i l i c o n d i o x i d e i n a s i l i c o n s u b s t r a t e and a b o u t 1 / 2 p m o f molybdenum o v e r t h e o x i d e . Hole p a t t e r n s were formed i n t h e molybdenum by t h e e l e c t r o n l i t h o g r a p h y p r o c e s s d e s c r i b e d above. The o x i d e was t h e n e t c h e d i n a n RIE system u s e d f o r i n t e g r a t e d c i r c u i t p r o c e s s i n g t o machine v e r t i c a l w a l l s i n t h e s i l i c o n d i o x i d e , w i t h t h e molybdenum g a t e f i l m s e r v i n g a s t h e e t c h mask.

Cones were t h e n formed i n t h e h o l e s by t h e u s u a l p r o c e s s . A c a t h o d e f a b r i c a t e d i n t h i s way was broken and examined i n a s c a n n i n g e l e c t r o n microscope t o s e e i f t h e r e s u l t conformed t o e x p e c t a t i o n s . F i g u r e 11 shows t h e RIE-etched s t r u c t u r e , a l o n g w i t h a f r a c t u r e d wet-etched sample f o r comparison. Note t h a t t h e molybdenum g a t e f i l m on t h e RIE-etched sample, h a s v i r t u a l l y no u n d e r c u t a s compared t o a n u n d e r c u t o f a b o u t two h o l e - d i a m e t e r s w i t h t h e wet-etched p r o c e s s .

The c h e m i s t r y o f t h e RIE e t c h p r o c e s s i s complex, and h a s a t e n d e n c y t o produce poly- mers on t h e s u r f a c e s o f t h e r e a c t i o n chamber, i n c l u d i n g t h e s u r f a c e s of t h e sample.

These polymers t e n d t o b e v e r y r o b u s t and a r e d i f f i c u l t t o remove w i t h o u t damaging t h e s u b s t r a t e s u r f a c e . A s a r e s u l t , o n l y one o f s e v e r a l c a t h o d e g r o u p s t h a t h a s been

(9)

C9-276 J O U R N A L DE PHYSIQUE

Figure 8. Scanning electron micrograph of a 12-tip cathode after operating at 6 m A peak with a 60-Hz driving voltage (320 Alcmz peak).

CATHODE

ANODE

FIRST DEFLECTOR

V 2 Vl Z O z l m

SECOND DEFLECTOR

BEAM-LIMITING APERTURE, RADIUS r,

SCREEN LENS

LENS APERTURE, RADIUS R IMAGE PLANE

WAFER

LASER-CONTROLLED STAGE MOTIONS ( X . Y, 0)

Figure 9. Diagram of the multiple-electron-beam exposure system.

(10)

Figure 10. Array of holes etched in a molybdanum film with a packing density of 107 holesfcm2; 2.5 p m center-to-center spacing between holes and 12.7 p m center-to-center spacing between each square array of 16 holes.

fabricated using RIE has produced satisfactory results in emission tests. This group was very encouraging, however, because of 15 cathodes tested, all produced 20 mA or more peak pulse emission--and one produced 110 mA peak emission. These cathodes were our standard array patterns consisting of 5000 tips on 12.7-pm centers. This result showed only that it is possible to use RIE etching without causing excessive residual contamination on the sample surface; more work is needed to use RIE routinely. Addi- tional testing will be also needed to demonstrate performance at high packing

densities.

Summary

Current densities greater than 100 A/cm using a 60-Hz driving voltage have been pro- duced many times with small arrays of emitter tips (approximately 30 tips) spaced on 9 - p centers. These large current densities have not yet been achieved with large- area arrays (of the order of 10,000 tips on 9 - p centers), because of power-handling problems with collector systems and the structure's intolerance to electrical break- down in the test chamber when excessive heating and outgassing occurs.

Improved fabrication technology has shown that it is possible to fabricate arrays with packing densities about 10 times higher than have been achieved with the origi- nal technology, and it is possible that this may eventually produce cathode arrays with a tenfold increase in current density over the reported values.

(11)

JOURNAL DE PHYSIQUE

(al CATHODE FABRICATED USING WET CHEMISTRY TO ETCH THE Su02 LAYER

(bl CATHODE FABRICATED USING REACTIVE 10n BEAM ETCHING O N THE Si02 LAYER.

Figure 11. Comparison of wet and dry etct.,ng of the SiOz layer in field emission cathode arrays.

R e f e r e n c e s

1 C.A. S p i n d t , I. B r o d i e , L. Humphrey, a n d E.R. W e s t e r b e r g , 1976: " P h y s i c a l Prop- e r t i e s o f T h i n F i l m F i e l d E m i s s i o n C a t h o d e s , " J. Appl. Phys., Vol. 47, No. 12, p. 5248 (December).

2 I. B r o d i e , E.R. W e s t e r b e r g , D.R. Cone, J.J. Muray, N. W i l l i a m s , a n d L. G a s i o r e k , 1981: " A M u l t i p l e - E l e c t r o n - B e a m E x p o s u r e System f o r High-Throughput, D i r e c t - W r i t i n g Submicrometer L i t h o g r a p h y , " IEEE T r a n s . E l e c t r o n D e v i c e s , Vol. ED-28, No. 11, p. 1422 (November).

3 J.W. Coburn, 1982: P l a s m a E t c h i n g a n d R e a c t i v e I o n E t c h i n g , AVS Monograph S e r i e s , N. Rey W h e t t e n , ed. (Amer. I n s t . o f P h y s i c s , I n c . , New York).

4 D.L. Flamm a n d V.M. D o n n e l l y , 1981: " D e s i g n o f Plasma E t c h a n t s , " P l a s m a Chemis- t r y a n d P l a s m a P r o c e s s i n g , Vol. 1, No. 4 (December).

---

Références

Documents relatifs

- In interferometers with division of wave- front, the two coherent sources may be generated by a simple mirror used at grazing incidence, the first one being the

We have seen that computer simulation of multiexponential decay curves which model the ex- citation and detection conditions is a convenient means of studying the

L’usage du tabac, la consommation d’alcool ou de médicaments en vente libre ainsi que les antécédents de violence physique ou sexuelle étaient plus fréquents chez ces femmes

The second is that at some reference point d distant from the apex, at a position where liquid speed v is effectively zero, the electric field Fd be given by the stress

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

One gets more realistic results from a numerical spin wave analysis 1211 based on the ground state spin configuration.. Since reasonable mean field methods should be- come

Upper part illustra- tes the change in the gap parameter A which may be considered as a certain measure of the degree in nuclear superfluidity as function of the square of

Progress in the development of soft X-ray lasers has been recently reported by several 1aboratories.l At Princeton, an approach hased on a magnetically confined recombining