• Aucun résultat trouvé

Simulation of shot peening: From process parameters to residual stress fields in a structure

N/A
N/A
Protected

Academic year: 2021

Partager "Simulation of shot peening: From process parameters to residual stress fields in a structure"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: hal-01326264

https://hal.archives-ouvertes.fr/hal-01326264

Submitted on 3 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Simulation of shot peening: From process parameters to residual stress fields in a structure

Donato Gallitelli, Vincent Boyer, Maxime Gelineau, Yann Colaitis, Emmanuelle Rouhaud, Delphine Retraint, Régis Kubler, Marc Desvignes,

Laurent Barralier

To cite this version:

Donato Gallitelli, Vincent Boyer, Maxime Gelineau, Yann Colaitis, Emmanuelle Rouhaud, et al.. Sim-

ulation of shot peening: From process parameters to residual stress fields in a structure. Comptes Ren-

dus Mécanique, Elsevier, 2016, 344 (4-5), pp.355-374. �10.1016/j.crme.2016.02.006�. �hal-01326264�

(2)

Computational simulation of manufacturing processes

Simulation of shot peening: From process parameters to residual stress fields in a structure

Donato Gallitellia, Vincent Boyerb, Maxime Gelineaub,Yann Colaitisa,

Emmanuelle Rouhauda,, Delphine Retrainta, Régis Kublerc, Marc Desvignesc, Laurent Barrallierc

aUniversitédetechnologiedeTroyes,ICDLASMIS,Troyes,France bIRTM2P,Metz,France

cENSAMParisTech,MSMP,Aix-en-Provence,France

a b s t r a c t

Keywords:

Shotpeening Model Residualstress Shotdynamics

Manufacturing industries perform mechanical surface treatments like shot peening at the endofthe manufacturing chaintoprotect important workingparts. Thistreatment modifiesthenearsurfaceofthetreatedpartwiththeintroductionofcompressiveresidual stressesduetotherepeatedimpactsoftheshot.Then,thetreatedpartexhibits,notonly alongerlife,butalsoabetterfrettingbehavior,animprovedresistancetocorrosion. . . The objectiveofthepresentpaperisfirsttostudytherelationbetweentheprocessparameters and the materialstate(residualstress and plastic variables. . . ) foracomplex geometry.

Next, anumerical tool is proposed,able to predict thismaterialstate ina timeframe thatisconsistentwithindustrialconstraints.Theoriginalityoftheproposedapproachthus consists in the chaining of the different steps. The first step is to choose the process parameters for the shot peening process considering conventional or ultrasonic shot peeningandmodeltheshotdynamicsforacomplexgeometry.Oncetheimpactvelocity fieldisknown,theobjectiveistocomputethelocalincompatibleplasticdeformationfield dueto the repeatedimpacts using analyticalmethods. Then, afinite elementmodel is used tocomputetheresidualand deformationfieldsinthe consideredmechanical part.

Thecompletemethodhasbeenperformedonthemodelofagear,amechanicalpartthat ismostoftenshotpeenedandexhibitsacomplexgeometry.

ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mostmanufacturingindustriesroutinelyperformmechanicalsurfacetreatments attheendofthemanufacturingchain to protectimportantworkingparts. Shotpeeningis probablythemostcommonoftheseprocesses.The pioneeringwork ofAlmen[1]hasindeeddemonstratedtheefficiencyofshotpeeningprocessestoincreasefatiguelife,andthis,foravery moderate cost. The treatedpart isin this casesubmitted to the impacts of many hard particles madeof glass, ceramic or metal, known as the shot. The motion of the shot is produced with the help of turbines or compressed air in the

* Correspondingauthor.

E-mailaddress:rouhaud@utt.fr(E. Rouhaud).

(3)

Fig. 1.Principleofthemethodwiththechainingofdifferentstepsfromtheprocessparameterstotheresidualstressfieldinacomplexgeometrytaking intoaccountaninitialstatecomingfrompreviousmanufacturingprocesses.

case ofconventional shotpeening orthe vibrationsof a sonotrodein thecase ofultrasonicshotpeening. Thisfamily of manufacturingprocessesmodifiesthenearsurfaceofthetreatedpartwiththeintroductionofcompressiveresidualstresses andthe modificationofthestructureofthe materialduetotherepeatedimpacts. Withanappropriate choice ofprocess parameters,thetreatedpartcanexhibit,notonlyalongerlife,butalsoabetterfrettingbehavior,animprovedresistanceto corrosion. . .

Many parts in the aeronautical and automobileindustries are shot peened. In most cases, the treatment is used to improve safetycoefficients, but isnot accountedforin design analyses. Forthe process to be takeninto account atthe design stage, the exact consequences of the parameters on the treatedpart have to be better mastered. This is further necessaryforaccreditationpurposesinmanyindustries.Thehopeisthentobeabletoreducetheweightofthemechanical parts,ofcrucialimportancenowadaysintransportindustries.Arenewedinterestforpre-stressingprocesseshasthusbeen observedrecently.Oneoftheobjectivesoftherelatedmodelingactivityistoproducemodelsthatare efficientenough to enter designtools.It isthusimportantto understandthedetails ofthe physicsatplay. Then, themodelsshould capture the essential phenomenaat handintheprocess anddirectlycorrelate processparameters withthe consequenceson the product.Furthermore,thetimethatisnecessarytoreachasolutionhastobeconsistentwithindustrialconstraints.Finally, indevelopingthemodels,one shouldkeepinmindthefactthattheresultsoftheshotpeeningmodelsaretobeusedas initialconditionsforresistanceorfatiguemodelsandhavetosupplytheappropriatedata.

Proposedshotpeeningmodelsarenumerousintheliteratureandreviewedin[2–5].Mostofthesemodelsconcentrate on thepredictionofresidual stressandplasticdeformation fieldsandusetheimpact velocityasan initialcondition and nottheprocessparametersthemselves.Moreover,thegeometryofthetreatedpartismostoftenreducedtoasemi-infinite massif ortosufficientlythickplates.Nevertheless,itisclearlythat thegeometryofthepartinfluencesthetreatmentdue to,forexample,variationsinthecoverageoftheimpactsortheinfluenceofboundariesonthemechanicalfields.

The objectiveofthepresentpaperistoproposemethodologiesabletoproducearelationbetweentheprocessparam- eters andthestateofthetreatedpart(stressfield,hardening. . . ) consideringacomplexgeometryandincludinganinitial state comingfrom previous manufacturing processes, this, in a time frame that is consistent withindustrial constraints.

Second-order phenomena will thus be neglected to simplify the model and analytical models preferredwhen possible.

The existingmethodologiesproposed intheliterature andsuitedtothisspecific objectivearereviewedinthiswork. The originality ofthe proposed approach isthus to chaindifferentsteps, asdetailedin Fig. 1,to relate the final state ofthe mechanicalpartaftershotpeening totheprocessparameters andthisfora partwithcomplexgeometry.Thefirststepis tochoosetheparametersconsideringconventionalorultrasonicshotpeeningandmodeltheshotdynamicsforacomplex geometry.Oncethevelocityfieldoftheimpactsisknownonthepart,theobjectiveistocomputetheincompatibleplastic deformation field dueto therepeated impacts usingnumerical oranalytical methods. Incompatibledeformationsdue to other previousmanufacturingprocessesmayalsobetakenintoaccount.Then,afiniteelementmodelisusedtointroduce the residualstress anddeformation fieldsin amodelof themechanicalpart.The complete methodisapplied tothe ul- trasonic shotpeeningof agear,a mechanicalpartthat exhibitsacomplex geometry.Realistic(in other wordsindustrial) conditionshavebeenchosenfortheprocessparameterstocreateademonstratorforthismethodology.

(4)

2. Mechanicalstateaftershotpeening

Wewish firstto concentrateonthe mechanicalstateafter shotpeeningwitha reviewofthe physicalconstraintsand thetechnologicaldataavailableintheliterature.Thisanalysisenablestoselectthepreponderantphenomenatobeselected andmodeledinthenextstage.Inthissection,wethusproposetoreviewseveralhypothesesthatcanbemadeinthecase ofshotpeeningtreatmentstakingthehistoryofthepartintoaccount.

2.1. Mechanicalproblem

Aresidualstressfieldisastressfieldthatexistsinsideapartwhennoexternalloadisappliedtothesystem.Theelastic strainsarethesourcesofresidualstressesinthepart.Itisheresupposed thatthematerialisisotropicandhomogeneous andthereisnoplasticityinducedbyphasetransformationsatconstanttemperature.Theresidualstresstensor σ inashot peenedpartofvolume V andsurface S ofnormalnverifies:

⎧⎪

⎪⎩

div(σ)=0 onV σn=0 onS σ=E

εεp

(1)

assuming thatthe elasticbehaviorofthe materialisrepresentedby thetensormodulus E representingHooke’slaw;the total strain ε hasbeenadditively decomposedbetweenan incompatible strain εp andan elasticstrain εe (ε=εe+εp) within a small strain framework. Residual stresses are dueto strain heterogeneities introduced at anyscale (macro- or microscopicscale).Themainoriginofresidualstressesduring mechanicaltreatments (shotpeening,rolling)istheincom- patibilityof plasticstrains[6].Inthe caseof nitriding,residualstresses aredueto volumestrainsincompatibility caused bythe diffusion/precipitationphenomena:insertion ofnitrogenandcarbonintheferritic matrixaswell astheformation ofnitridesandcarbides[7–9].Inthecaseofcarburizingorcarbonitriding,thediffusionandplasticstrainsincompatibility duetothedifferentialexpansionandthenon-simultaneousnessofphasetransformationsduringthemartensiticquenching activelycontributetothegenerationofresidualstresses[10].

Thepossibleevolutionofresidualstressesaftermechanicalloadingisduetoare-plasticizationofthematerial.Aslongas thestructureremainsintheelasticdomain,neithertheincompatiblestrainsnortheexistingresidualstressstatearemod- ified. Asa whole,residualstressesare duetoincompatibilitiesinthe deformationfield. Theseincompatibledeformations arealsoreferredtoas“stress-freestrains”or“eigenstrains”followingtheworkofKorsunsky[11].

2.2. Typicalresidualstressfieldaftershotpeening

Itispossibletoevaluateresidualstressesaftershotpeeningusingdifferentexperimentalmethodssuchasincremental holedrillingmethodsorX-raydiffraction[12].Whenthetreatmenthasbeenhomogeneousonaregular surfaceforwhich thelocalradiusofcurvatureislargecomparedtotheradiusoftheshot,thestresstensorcanbeapproximatedtotakethe followinggeneralform[3,13]:

σ

σ(z) 0 0 0 σ(z) 0

0 0 0

(2)

This tensor is expressed in the local coordinate system definedwith the normal to the surface as presented in Fig. 2.

A typicalresidual stressprofile σ(z)asit canbe measured inshotpeened parts ispresented inFig. 2. Thevalue ofthe maximalcompressivestress σCOMP isusuallyobservedtobebelowtheyieldstress σyofthematerial,butcanreachhigher valuesinthecaseofintensiveshotpeeningtreatments;inmostcases,onehas0.8σyCOMP<1.2σy.Thedepthaffected bythetreatment, zAFF,correspondingtothedepthforwhichcompressivestressesare observed,isusually oftheorderof 100 μmandismostoftenbelow1 mm.

2.3. Relationbetweenresidualstressesandstressfreestrainsforsemi-infinitebodies

Fora semi-infinite body,itis possibleto establishan analytical relationship betweenresidual stressesandstress-free strainskeepingthesamehypothesesasinSection3.2.Inthiscase,thetotalstraintensortakesthegeneralform:

ε

0 00 0 00 0 0 εzz(z)

ThisisestablishedwiththehypothesesmadefortheresidualstressesinSection3.2,addedtothefactthat,inasemi-infinite body,thereisnopossiblein-planedisplacements.Thestress-freestraintensorthentakestheform:

(5)

Fig. 2.Typical residual stress profile induced by shot peening.

εp

εp(z) 0 0 0 εp(z) 0 0 0 −2εp(z)

assumingherethattheplasticdeformations,andthusthestress-freestrainsareisochoric.Theelasticstrainsarethesources ofresidualstressesinthepart.UsingHooke’slaw(EisYoung’smodulusand νPoisson’sratio),andthefactthat εe+εp=0, itcomes:

εp(z)=v−1

E σ(z) (3)

Theanalysisaboveisuseful, becausethehypothesesofasemi-infinitebodycanbemadeformostshotpeened partsona localbasis. Indeed,inmostcases,thetreatmentishomogeneous,thetreatedsurface isregularandthedepthaffectedby the treatmentissmallcomparedtothedimensionsofthepart.Thiscanbe verifiedbyan experimentalevaluationofthe residualstressfield.Eq.(3),firstproposedbyZarka[14],isthenusefulinordertoestimatethestress-freestrainwhenthe residualstressprofilesareexperimentallydetermined.

3. Fromprocessparameterstoimpactvelocityfield 3.1. Descriptionofthemodel

Oncetheshotpeeningparameters aresetusingdesignandtechnological constraints,thefirststepistodeterminethe coverage and velocity of the impacts. It becomes important to predict the coverage in the caseof complex geometries because the coverage may vary andthis mayeventually affect fatigue life [15].The simulation of the shotdynamics as a function of theprocess parameters offers an answerto thisproblem. Three main methods havebeen proposed inthe literature toreach thisgoal: theuseofdiscreteelements software[16–20],theuseoffluidsimulation software[21],and the constructionof adedicatedsoftware [22–25].Inthecaseofshotdynamics,usingan existing pieceofsoftware saves a lotofdevelopment time, butenablesto reach,indeed,realistic solutions,withvery longcomputation time. Thisisnot compatiblewithindustrialneeds.Further,itisthusnotpossibletoconsidertheshotdynamicsaroundcomplexgeometries, whichisouroriginalpurpose.Therefore,weproposetoconsideradedicatedsoftware.

Thesoftwareproposedtomodelshotdynamicsisabletoconsiderindustrialcomplex3Dgeometrieswiththepossibility touseaCADsoftwaretoconstructthegeometryofthepartandprocessenvironment[23–25].Themotionofthepartand avisualizationoftheshotmotionaroundthepartispossible(seeFig. 3).Themodelisbasedonmodelsthathavebeenini- tiallycreatedforgranulargases[22].Themodelpredictsthecompletetrajectoryofeachindividualsphereandinparticular thedatarelatedtotheimpactsonthetreatedpart.Allcollisionsaredetected,includingthecollisionsbetweenspheresand withthesurroundingenvironment.Normalandtangentialrestitutioncoefficients,specifictoeachpairofcollidingmaterials, enable ustotake the behaviorof thematerials into account.It hasbeendeveloped forultrasonicandconventional shot peening.Forconventionalshotpeening,Fig. 3presentstheshotflowanditslocalimpactsonthepart(locatedonthetop ofthefigure,butnotrepresented).Afictionalboxhasbeencreatedaroundtheimpacted surface;outsideofthisbox,the shotisrecycled.Forultrasonicshotpeening,Fig. 3presentstheshotaroundagear.Thesonotrodeisrepresentedingreen atthebottomofthestructure.Theoutsidemeshrepresentstheexternalwalloftheultrasonicchamber.

Forbothcases,itisthen possibletopredictandtovalidatethe coverageandthelocationandimpactvelocityofeach collision isknown. Statistical studies may be performedto optimize the design ofthe process. The results are obtained in a reasonable time frame: forsimple geometries, thecomputation isfaster than the actual process itself.For complex geometries andalargeamountofshot,whentheactualprocesscorresponds toseveralminutes,thecomputationcanlast forafewhoursonatypicallaptopcomputerandforverycomplexgeometrieslikeanentireturbine.

(6)

Fig. 3.Typical visuals obtained with the models for shot dynamics of conventional shot peening (left) and ultrasonic shot peening (right).

Fig. 4.Maximum impact speeds on a spur gear estimated by the shot dynamics model.

3.2. Casestudyandresults

Tovalidate theapproach,wepropose acasestudyandconsidertheultrasonicshotpeeningofan aluminum(Al7075 T7051)spurgearpresentedinFig. 3andapply thedifferentmodelstoobtaintheresidualstressfieldinthegearfromthe processparameters.

Thefollowingprocessparametershavebeenchosen:

rotationofthegearwithaspeedof10 rpm,

shot:100Cr6steelbeads(numberofshots:73;radiusR=1.5mm,density ρshot=7800kg/m3).

Sonotrode:titanium(amplitude:50 μm;frequency:20 kHz).

Durationofthetreatment:150 s.

The parameterofthe materialofthe gearare: Youngmodulus E=70,000MPa, densityρmat=2700kg/m3, yieldstress

σy=260MPa,andPoissoncoefficient ν=0.3.

Thecomputationoftheshotdynamicstakesafewminutesonapersonallaptopcomputer.Formthesaveddatafile,the localmaximalnormalimpactspeedhasbeenextractedandispresentedinFig. 4.Asafirstapproximation,itisconsidered that the maximal normal impact speed is mostinfluent in terms ofresidual stress because these typesof impacts lead tothemostimportantlocalhardeningandplasticdeformation.Ontheexternalsurfaces,theimpactvelocity fieldisquite homogeneousandcanbe consideredconstantwithavalue loseto V=10m/s.Onthesidesofthegear,forthesurfaces that are always perpendicular tothe sonotrode, themaximal normalimpact speed issmaller andis consideredequal to zerointhepresentstudy.

4. Simulationofshotpeeningforsimplegeometries

Modelsofshotpeeningarenumerousintheliterature.Theyareofthreetypes:numerical,semi-analytical,andanalytical.

As far asnumerical models ofshot peening are concerned, thepower of computersnow enables usto reach a realistic solution in an acceptable amount of CPU time (several hours to a few days). Numerical models use finite elements to predictthestateofasemi-infinitebodyaftershotpeening.Manymodelshavebeenrecentlyproposedconsideringarealistic numberof impacts[26–29].Variousphenomena have beenstudied,like, forexample,the microstructureof thematerial

Références

Documents relatifs

This structure of breeding programmes is made possible by the high rate of reproduction in broiler chickens and enables breeders to spread the huge costs of

For each confining pressure tested, the rupture velocity seems to increase with the decrease in the ratio between the average fluid pressure and the average normal stress (λ = P f /σ n

In this simulation the residual stress has been taken into account and modeled in order to match the shape of the measured stress on the sample F (pre-oxidized and

• Fast exact linear algebra routines (triangular solver, LSP factorization)... Finite field computations via

Moreover we make a couple of small changes to their arguments at, we think, clarify the ideas involved (and even improve the bounds little).. If we partition the unit interval for

As a conclusion, we reveal that the network is robust towards low frequency perturbations, shows adaptation at moderate stress frequencies, but transitions to

It was confirmed that, the external uniaxial stress superposes with the internal residual stresses and in elastic range of macroscopic deformation the process

Shot-peening is an industrial surface treatment used to improve fatigue life of mechani-cal components. This process generates a compressive residual stress field on the part’s