• Aucun résultat trouvé

SURFACE MAGNETIC RELAXATION - RELATION TO 3He↑ EXPERIMENTS

N/A
N/A
Protected

Academic year: 2021

Partager "SURFACE MAGNETIC RELAXATION - RELATION TO 3He↑ EXPERIMENTS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00220180

https://hal.archives-ouvertes.fr/jpa-00220180

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SURFACE MAGNETIC RELAXATION - RELATION TO 3He EXPERIMENTS

H. Godfrin, G. Frossati, B. Hebral, D. Thoulouze

To cite this version:

H. Godfrin, G. Frossati, B. Hebral, D. Thoulouze. SURFACE MAGNETIC RELAXATION - RELA- TION TO 3He EXPERIMENTS. Journal de Physique Colloques, 1980, 41 (C7), pp.C7-275-C7-280.

�10.1051/jphyscol:1980742�. �jpa-00220180�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ6ment au n o 7, Tome 41, juiZZet 1980, page C 7 - 2 7 5

SURFACE MAGNETIC RELAXATION - RELATION T O

3 ~ e +

EXPERIMENTS

H. Godfrin, G. F r o s s a t i , B. Hebral and D . Thoulouze

Centre de Recherches sup Zes Trds Basses Tempdratures, C.N.R.S., B.P. 166 X 38042 GrenobZe Cedex, France. (Laboratoire associ6 a' Z'U.S.M.G.)

ABSTRACT p o l a r i z e d can b e ob

: Nuclear r e l a x a t i o n a t t h e w a l l s of e x p e r i m e n t a l c e l l s i s an i m p o r t a n t l i f e t i m e l i m i t a t i o n f o r l i q u i d 3 ~ e . However, maximum s p i n - l a t t i c e r e l a x a t i o n times TI ( i . e . t h e i n t r i n s i c v a l u e s TI bu1@

t a i n e d by d i f f u s i o n l i m i t e d r e l a x a t i o n o r boundary l i m i t e d r e l a x a t i o n . We p r e s e n t NMR measure- ments on l i q u i d 3 ~ e i n c o n f i n e d g e o m e t r i e s , where t h e l a t t e r p r o c e s s i s dominant. C o a t i n g of t h e w a l l s by 2.7 l a y e r s o f 4 ~ e enhances TI and t h e thermal boundary r e s i s t a n c e by a l m o s t two o r d e r s o f magnitude a t low t e m p e r a t u r e s .

RESUME : La durbe de v i e de 3 ~ e + p e u t s t r e l i m i t b e p a r l a r e l a x a t i o n magnbtique s u r l e s p a r o i s d e s c e l l u l e s e x p b r i m e n t a l e s . Les v a l e u r s maximales du temps de r e l a x a t i o n s p i n r g s e a u (TI i n t r i n s s q u e ) peuvent C t r e o b t e n u e s e n l i m i t a n t e n s u r f a c e ou p a r d i f f u s i o n l a r e l a x a t i o n magngtique. Nous p r b s e n t o n s des mesures de RMN s u r 3 ~ e l i q u i d e e n gbombtrie c o n f i n g e , 02 l a r e l a x a t i o n e s t l i m i t b e e n s u r f a c e . Lorsque l e s s u r f a c e s s o n t r e c o u v e r t e s p a r 2.7 couches de 4He, l e temps de r e l a x a t i o n T I e t l a r g s i s t a n c e de K a p i t z a s o n t augmen- t b e s d ' e n v i r o n deux o r d r e s de grandeur 5 t r S s b a s s e s t e m p b r a t u r e s .

P o l a r i z e d l i q u i d 3 ~ e ( 3 He+) h a s been s t u d i e d The Pomeranchuk method r e q u i r e s p r e c o o l i n g of

t h e o r e t i c a l l y by C. L h u i l l i e r and F. ~ a l o ~ ( ' ) and l i q u i d 3 ~ e ; t h e p o l a r i z a t i o n of t h e s o l i d 3 He C a s t a i n g and N o z i ~ r e s ' ~ ) . Experimental o b s e r v a t i o n o b t a i n e d by compression s h o u l d o n l y depend on t h e of 3 ~ e + was s u b s e q u e n t l y r e p o r t e d by two groups, a t i n i t i a l t e m p e r a t u r e of t h e l i q u i d and on t h e rnagne-

ren noble'^)

and ~ o p e n h a ~ e n ( ~ ) , u s i n g t h e "thermody- t i c f i e l d . However, we have found t h a t h i g h f i e l d narnical t e c h n i q u e t t , (2) w i t h maximum p o l a r i z a t i o n s Pomeranchuk compressions can b e h i g h l y i r r e v e r s i b l e , i n t h e range 10 t o 20 %. F u r t h e r s t u d i e s of 3 ~ e + t h e e f f e c t i v e c o o l i n g power b e i n g v e r y s m a l l ( 5 ) . 1t r e q u i r e h i g h e r p o l a r i z a t i o n s , and hence h i g h l y i s t h e r e f o r e c o n v e n i e n t t o p r e c o o l t h e l i q u i d t o p o l a r i z e d s o l i d 3 ~ e , t h a t c a n b e produced by two t e m p e r a t u r e s below 5 mK ( i n f i e l d s above 3 T) ; methods : d i r e c t c o o l i n g i n a r i g i d o r a g a i n , t h i s r e q u i r e s a l a r g e exchange a r e a which

Pomeranchuck c o o l i n g (4)

.

may s h o r t e n T i .

The f i r s t method i s l i m i t e d by t h e time cons-

-

t a n t f o r c o o l i n g : t h e h e a t c a p a c i t y of s o l i d 3 ~ e

-

i n a magnetic f i e l d i s l a r g e a n d roughly propor-

-

t i o n a l t o (HIT) 2 ( t h e exchange h e a t c a p a c i t y ( J / T ) 2

-

i s s m a l l e r f o r f i e l d s > 2T) and t h e thermal r e s i s -

t a n c e i s l a r g e f o r t h e s m a l l e x c h a n s a r e a s used.

-

Minimum t e m p e r a t u r e s o f 20 mK a t 7 T have b e e n o b t a i n e d ( 3 ) ; t o improve t h e c o o l i n g , a l a r g e r h e a t exchange s u r f a c e would b e needed, b u t t h i s should

-

3

-2

reduce t h e l i f e t i m e o f He+, t h e s p i n - l a t t i c e

2 I ( . .05.1 .2 .5 1 T [Kl-

-

1 1 I I I ,

r e l a x a t i o n time T

1 ' FIGURE 1 : Spin d i f f u s i o n c o e f f i c i e n t of l i q u i d

3 ~ e vs t e m p e r a t u r e ( s e e t e x t ) .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980742

(3)

JOURNAL DE PHYSIQUE

We examine h e r e t h e r e l a x a t i o n processes i n 3He, s e p a r a t i n g t h e bulk and s u r f a c e c o n t r i b u t i o n s , and t h e i n f l u e n c e of t h e l a t t e r on t h e h e a t t r a n s f e r .

I n bulk l i q u i d 3 ~ e , s p i n - l a t t i c e r e l a x a t i o n i s due t o t h e modulation of t h e d i p o l a r i n t e r a c t i o n by t h e d i f f u s i v e motion of t h e atoms. T I i s thus c l o s e l y r e l a t e d t o t h e s e l f - d i f f u s i o n c o e f f i c i e n t Ds. The s p i n d i f f u s i o n c o e f f i c i e n t D i s e s s e n t i a l l y e q u a l t o Ds : G a m i n and ~ e i c h ' ~ ) have shown t h a t s p i n - s p i n i n t e r a c t i o n s only c o n t r i b u t e

'L 3 x 1 0 - l ~ cm / s t o t h e t o t a l s p i n d i f f u s i o n coef- 2

'L 2

f i c i e n t , Ds > 6 x cm / s .

Accurate measurements of D have been made i n d i f f e r e n t l a b o r a t o r i e s using NMR

technique^'^'^).

For temperatures T <TF(T 'L < 50 mK i n p r a c t i c e ) , where TF i s the Fermi temperature of l i q u i d 3 ~ e ,

t h e Landau theory of Fermi l i q u i d s p r e d i c t s a T -2

temperature dependence, and D i s not e x a c t l y e q u a l t o D s , b u t i s of t h e same o r d e r of m a g n i t ~ d e ' ~ ) . A t h i g h e r temperatures, D i s understood i n terms of t u n n e x n g of 3 ~ e atoms w i t h high z e r o p o i n t energy:

( 6 ) t h e d i f f u s i o n process i s not t h e r m a l l y a c t i v a t e d

.

D p r e s e n t s a minimum a t T 'L . 7 R, and d e c r e a s e s w i t h i n c r e a s i n g p r e s s u r e s ; Fig. 1 shows a r e d u c t i o n of t h e d a t a of r e f . 6 and 7 t o t h e p r e s s u r e s 10 kPa and 2.2. MPa t h a t w i l l be used t o a n a l y s e T I r e s u l t s .

Bloembergen, P u r c e l l and ~ound(')(BPP) t h e o r y , modified by

orr re^'^),

provides t h e following e x p r e s s i o n f o r t h e s p i n l a t t i c e r e l a x a t i o n time due t o themechanismalready d e s c r i b e d :

where n i s t h e number of s p i n s p e r u n i t volume, y t h e gyromagnetic r a t i o , d t h e d i s t a n c e of c l o s e s t approach (atomic diameter)

.

A 1 though t h e a p p l i c a b i - l i t y of t h i s formula i s n o t obvious below t h e degeneracy temperature, i t i s p o s s i b l e t o c o n s i d e r

FIGURE 2 : T i n l i q u i d 3 ~ e : BPP t h e o r y ( 8 ) . ~ e f . 1 4 ( d o t t e d l i n e ) .Dashed l i n e s ( 1 6 ) : raw d a t a (lower c u r v e ) , and c o r r e c t e d d a t a (upper c u r v e ) . Grenoble d a t a ( 3 ) a t 3,5T:

0 SVP + 2.2 MPa.

t h e q u a s i - p a r t i c l e s system a s a c l a s s i c a l monoatomic g a s , t h e e f f e c t s of s t a t i s t i c s being included i n a c o r r e l a t i o n time T >> d/vF (vF = t h e Fermi v e l o c i - t y ) , which can b e o b t a i n e d f r o m t r a n s p o r t measure- ments :

I 4 2

For a monoatomic gas,

-

'L ((10)

T~ v 2 d 4 T

3 -12 -2 2

With v % vF 2. 5 x 10 cm 5-1 and -cc 'l10 T s K (11).

This simple model i s i n agreement w i t h t h e v a l u e s p r e d i c t e d by BPP. Of c o u r s e , a t h i g h e r tempe-

2,

r a t u r e s (T > 1 K), t h e c o r r e l a t i o n time becomes

-

12

r a t h e r c o n s t a n t 'l10 s a s t h e mean f r e e p a t h d e c r e a s e s t o t h e value d.

It has been shown e x p e r i m e n t a l l y t h a t t h e w a l l s of t h e 3 ~ e c e l l can provide an e x t r a - r e l a x a t i o n me-

chanism. The longer measured TI v a l u e s a r e those

o f Romer (13)

( I 2 )

,

Gaines, Luszczynski and Worberg

,

and Horvitz(14! T h e i r smoothed d a t a a t s a t u r a t e d vapour p r e s s u r e (SVP) a r e r e p r e s e n t e d i n f i g u r e 2 , a s w e l l a s Grenoble d a t a a t SVP and 2,2 MPa which extend t h e temperature range t o T << TF. The agreement w i t h BPP theory i s s u r p r i s i n g l y good.

Much s h o r t e r r e l a x a t i o n times were found by

d i f f e r e n t groups ; Low and analysed

(4)

t h e measured T I - ' a s t h e sum of a bulk r e l a x a t i o n

-1 Clf'

frequency T , b =

D

and a w a l l r e l a x a t i o n

-

1

T I W = C2D : - I C l P

y1 =

- +

C 2 ~ [ I] i f i s theSHe d e n s i t y ) D

I n t h i s p i c t u r e , r e l a x a t i o n c e n t e r s ( f o r example paramagnetic i m p u r i t i e s ) a r e supposed t o be l o c a t e d a t t h e w a l l s ; t h e s p i n s must d i f f u s e t o t h e w a l l s , where they a r e immediately r e l a x e d . For a s p h e r e of r a d i u s R, t h e d i f f u s i o n time has been c a l c u l a t e d t o

2

( I 5 ) t h e r e f o r e C 2 =

% .

For R e 1 cm

be T~ =

-

2

R

and D 5 r l g 4 c l s - 1 , -rD 5 IOs, which would dominate t h e measured T I . However, t h e e f f i c i e n c y of t h e w a l l f o r s p i n r e l a x a t i o n i s not one, and can depend on p r e s s u r e , temperature, and 4 ~ e c o o l i n g , a s w i l l be e x p l a i n e d l a t e r .

Figure 2 a l s o shows t h e r e s u l t s of r e f . 16 and t h e T l b v a l u e s o b t a i n e d a f t e r c o r r e c t i o n of w a l l e f f e c t s . The agreement w i t h d i r e c t measurements of T i s good. S i m i l a r p l o t s can be o b t a i n e d a t h i g h e r

1

p r e s s u r e s ( P % 2.2 MPa) ; t h e agreement i s even b e t t e r (owing t o a s m a l l e r w a l l c o n t r i b u t i o n ) .

The c o r r e c t i o n s a r e u s u a l l y made p l o t t i n g ( D T ~ ) - ' vs.DT2 : ( D T ~ ) - ' = C ~ D D - '

-

C 2 ; t h e analy- s i s of Grenoble d a t a p r o v i d e s ( f i g u r e 3 ) :

-6 5 -2 -1

C , = ( 2 , 3 i 0 , l ) 10 cm S g and C 2 = (O,5f ~ ) c m - ~ -6 5 -2 -1

a t SVP, and C I = ( 2 , l

'

0 , I ) x l O cm s g

,

- 2

C2 = ( 0

+

2)cm a t 2.2 MPa. Wall r e l a x a t i o n i s t h u s n e g l i g i b l e , although T D ?. 2s f o r a c e l l w i t h charac- t e r i s t i c d i s t a n c e s % .06 cm, a t temperatures

5 100 mK. Other experiments(17) have shown a l a r g e i n f l u e n c e of s u r f a c e s f o r t h e same c h a r a c t e r i s t i c d i s t a n c e s ; t h e r e l a x a t i o n i s thus not l i m i t e d by t h e d i f f u s i o n time ; i . e . weak s u r f a c e r e l a x a t i o n i s the b o t t l e n e c k f o r T I , and T >> TD.

NMR measurements on 3 ~ e i n confined geometries, dominated by w a l l r e l a x a t i o n , have been performed i n s e v e r a l l a b o r a t o r i e s , on v a r i o u s s u b s t r a t e s :

(19) z e o l i t e ( 1 8 ) , carbon

particle^(^^'^^),

aluminium

,

a l u m i n a ( 2 1 ) , v i c o r p i a t i n u m ( 2 1 ' 2 3 ) ,

FIGURE 3 : T I i n bulk l i q u i d 3 ~ e a t 2.2 MPa, 3.5 T and v a r i o u s temperatures, a n a l y s e d w i t h formula [ 11 ( s e e t e x t ) .

mylar f o i l s ( 2 4 ) and g r a f ~ i l ( ~ ~ ' ~ ~ ) . Typical s i z e s a r e i n t h e range 50

A -

10 ; measured T l V s a r e i n t h e range - Is ; t h e d i f f u s i o n time T i s <<T

D 1'

T i s approximately l i n e a r w i t h temperature (19,20, 1

21) f o r T 5 < 300 mK, and reaches a maximum a t T 5 .7 K. The temperature dependence i s s i m i l a r t o t h a t of D-I f o r T 'L > 100 mK, i . e . , s i m i l a r t o t h a t of d i f f u s i o n l i m i t e d r e l a x a t i o n ; t h i s e x p l a i n s t h e s u c c e s s of formula [ I ] f o r e l i m i n a t i n g w a l l c o n t r i - b u t i o n s t o T 1 i n experiments a t T 5 1 K.

F i g u r e 4 shows o u r measurements of T of 3 ~ e 1

confined i n 400

A

alumina powder, 8

u

platinum powder and g r a f o i l , a s w e l l a s t h e r e s u l t s of Kelly and ~ i c h a r d s o n ( ' ~ ) i n 90

A

c a r b o l a c p a r t i c l e s .

A d d i t i o n of 4 ~ e i n c r e a s e s T by almost two 1

o r d e r s of magnitude a t low t e m p e r a t u r e s ( 1 9 * 2 1 ) , but t h e e f f e c t i s small above 1 K. It i s known t h a t 4 ~ e w i l l r e p l a c e 3 ~ e a t t h e s u r f a c e s ( 2 6 y 2 7 ) , owing t o

i t s s m a l l e r zero p o i n t motion. K e l l y and Richardson used ?. 7 l a y e r s 4he c o a t i n g ; w i t h 2.7 l a y e r s we o b t a i n e d the same T I enhancementfhat we r e l a t e d t o t h e s u p p r e s s i o n of a s o l i d 3 ~ e l a y e r on t h e w a l l s . Although t h e r e e x i s t some d i s c r e p a n c i e s on t h e number and c h a r a c t e r i s t i c s of t h e adsorbed s o l i d

(5)

JOURNAL DE P H Y S I Q U E

FIGURE 3

4 : Boundary l i m i t e d T1 of He confined i n

-

8 1 ~ - platinum powder ( P ) , alurnina(A) and G r a f o i l (G) w i t h pure t 3 ~ e (Pt3,A3,G3) and w i t h 2.7 l a y e r s of 4 ~ e (Pt3+4,A3+4, G3+4).

C a d C3+4 : Kelly and Richardson d a t a 3

9

f o r He I n c a r b o l a c w i t h pure 3 ~ e and w i t h % 7 l a y e r s of 4 ~ e .

l a y e r s ( 2 0 y 2 1 ' 2 5 ) , i t i s now c l e a r t h a t r e l a x a t i o n occurs a t a few i n t e r a t o m i c d i s t a n c e s from t h e surface.The lower e f f i c i e n c y of 4 ~ e c o a t i n g f o r r e l a x a t i o n a t temperatures 1 K s u g g e s t s t h a t t h e 2d and 3 l a y e r s s h o u l d b e involved. This i s found from t h e d i f f e r e n c e i n b i n d i n g e n e r g i e s f o r 3 ~ e

(27)

and 4 ~ e measured by Thompson. The r e l a x a t i o n , i n t h i s p i c t u r e , depends on t h e p r o b a b i l i t y o f a d s o r p t i o n p e r c o l l i s i o n w i t h t h e w a l l s . Gamin and ~ e i c h ( ~ ) d e f i n e a p r o b a b i l i t y o f r e l a x a t i o n i n a s i n g l e c o l l i s i o n w i t h t h e w a l l s E ; f o r t h e

"boundary limited". r e l a x a t i o n we a r e c o n s i d e r i n g , they e s t i m a t e TI %

2 ,

where Y i s t h e 3 ~ e volune, S t h e s u r f a c e a r e a of t h e w a l l s , v t h e average

v e l o c i t y of t h e p a r t i c l e s ( v % vF below 1 K ) . That i s , TI %

a ,

w i t h a = t h e c h a r a c t e r i c t i c dimen-

EV

s i o n o f t h e 3 ~ e c e l l . T v a l u e s of f i g u r e 4 show 1 t h a t EUT-', E % f o r alumina and g r a f o i l ,

'L 1 0 - ~ f o r P t , and i s f u r t h e r reduced by % 10 2 w i t h t h e 4 ~ e c o a t i n g . I n t h e experimental c e l l of

r e f . 3, a 'l. 5 x cm, and t h e w a l l s a r e covered by 4 ~ e . Assuming t h a t E i we o b t a i n

TI 'L

-$

> lo3 S : t h e w a l l c o n t r i b u t i o n t o t h e r e l a x a t i o n i s s m a l l , although t h e d i f f u s i o n time T~

i s much s h o r t e r t h a n T I . The microscopicmechanisms o f r e l a x a t i o n n e a r t h e w a l l s a r e s t i l l t h e s u b j e c t of experimental and t h e o r e t i c a l s t u d i e s ( s e e 28 and r e f e r e n c e s t h e r e i n ) . The l i q u i d - s o l i d exchange

( i . e . t h e p r o b a b i l i t y of a d s o r p t i o n ) o r t h e s p i n l a t t i c e r e l a x a t i o n time of t h e adsorbed l a y e r s can be r e s p o n s i b l e f o r t h e observed T I .

From t h e experimental p o i n t of view, w i t h t h e s u r f a c e a r e a s >> 1 cmL n e c e s s a r y f o r c o o l i n g down t h e experimental c e l l s , i t is t h e n p o s s i b l e t o use e i t h e r " d i f f u s i o n time l i m i t e d r e l a x a t i o n " o r

"boundary l i m i t e d r e l a x a t i o n " . The f i r s t method has been used i n a Pomeranchuk s e p a r a t i n g t h e

h e a t exchanger from t h e main 3 ~ e volume by a chan- n e l % 1 mm diameter and few mm i n l e n g t h ; t h e c e l l ' s s i z e was 'L 1 cm : d i f f u s i o n times t o t h e s u r f a c e s a r e c a l c u l a t e d t o b e l a r g e r t h a n lo3 se- conds.

We have shown t h a t t h i s c o n d i t i o n i s too

r e s t r i c t i v e , and t h a t "boundary l i m i t e d r e l a x a t i o n "

a l l o w s u s i n g t y p i c a l dimensions of t h e o r d e r o

.

, cm f o r E < which c a n b e achieved w i t h 4 ~ e c o a t i n g of t h e ~ ~ a l l s .

We w i l l not s t u d y h e r e an a d d i t i o n a l r e l a x a t i o n mechanism, p r e s e n t i n l i q u i d 3 ~ e f experiments, which

r e q u i r e s s o l i d - l i q u i d c o e x i s t e n c e movement of t h e s o l i d - l i q u i d i n t e r f a c e (3,4,29)

For l i q u i d 3 ~ e f w i t h l a r g e p o l a r i z a t i o n s , t h e d i f f u s i o n c o e f f i c i e n t w i l l b e i n c r e a s e d by t h e e f f e c t i v e r e d u c t i o n of t h e i n t e r a c t i o n s ( ' ) . Bulk TI w i l l be correspondingly i n c r e a s e d , " d i f f u s i o n l i m i t e d " T e f f i c i e n c y reduced, and "boundary 1 l i m i t e d r e l a x a t i o n " probably remains unchanged.

(6)

The thermal boundary (Ka~itza)(~O) resistance

RK

and the spin-lattice relaxation time TI at ultralow temperatures are closely related, and have been stu- died theoretically by Be'al-Monod and ~ills(~~). We report measurements of

RK

between sintered silver powders and liquid 3 ~ e in this temperature range.

Figure 5 shows the results of Ahonen et al. (31) for 700 silver powders in contact with pure 3 ~ e :

%

I 1100 T-' K~~~W-'. We have measured the Kapitza resistance between 400 A silver powder and dilute 3 ~ e (x3 6%). Above 3 mK, RK 2.35 T - ~ K~ rn2 W-l.

Between 1.6 and 2.5 mK we have found that

%

= 1.4 x lo4 T - ~ K~ m2w-'. These are the lowest temperatures reported for dilute mixtures. The T-I dependence of RK is similar to that obtained for pure 3 ~ e , suggesting that the same mechanism of heat transfer is involved, the coupling constant being weaker in mixtures due to 4 ~ e coating of the walls. This temperature dependence has recently been observed for 3 ~ e in Pd, with small coverages of 4~e(32). The precooling of Pomeranchuk cells for He+ experiments will then be affected if 4 ~ e 3 coating is used to reduce magnetic relaxation. A compromise must be made to achieve long spin-lattice relaxation times (2. T1 bulk) and a Kapitza resis- tance leading to short cooling times and low ini- tial temperatures in spite of heat leaks.

In high fields, we have found that the solid at melting pressures produced in a Pomeranchuk cell has an ordering temperature 2. 3 The polari- zation is 2. 70 % for fields 2. 7 T ; the entropy is

< - 2 R 1112. This suggests the possibility of de-

compressing ordered solid ; the final temperature would be lower, increasing the bulk relaxation time.

Finally, it should be pointed out that the microscopic surface properties of 3He, i .e.,

exchange and magnetic relaxation, are being studied in thin layers, for the coverages (

9

2 layers) of interest for the problem of bulk liquid 3 ~ e relaxa- tion at surfaces. (See (33) and references therein).

FIGURE 5 : Kapitza resistance between silver powders and 3 ~ e .

Lower curve : Ahonen et a1. (30), pure 3 ~ e , Ag 700 &

This work

,

Ag 400 :

+

: pure 3 ~ e . Up er curve : this work, dilute 3 ~ e :

P

T- behaviour below 2.5 mK.

REFERENCES :

1. C. Lhuillier and F. Laloz,.J. Phys. (Paris) 40, 239 (1979).

-

2. B. Castaing and P. Nozisres, J. Phys. (Paris) 40, 257 (1979).

-

3. G. Schumacher, D. Thoulouze,B. Castaing, Y. Chabre, P. Segransan and J. Joffrin, J. Phys Lettr. (Paris)

40,

L143 (1977).

(7)

JOURNAL DE PHYSIQUE

4. M. Chapellier, G. Frossati and F. B. Rasmussen, Phys. Rev. Lett.

41,

904 (1979).

5. H. Godfrin, G. Frossati, A. S. Greenberg, B. Hgbral and D. Thoulouze, to be published.

6. R. L. Garwin and H. A. Reich, Phys Rev.

115,

1478 (1959).

7.

A.

C. Anderson, W. Reese and

J.

C. Wheatley, Phys. Rev.

127,

671 (1962), and references therein.

8. N. Bloembegen, E. M. Purcell and R. V. Pound, Phys. Rev.

73,

679 (1948).

9. H. C. Torrey, Nuovo Cimento, Suppl. Vol.

X,

nO1; 95 (1958).

10. A. Abragam, Principles of nuclear magnetism, Clarendon Press, Oxford (1961).

11. J. C. Wheatley, in The Helium Liquids ( p 241) Ed. J. G. M. Armitage and I. E. Farquhar, Academic Press, London (1975).

12. R. H. Romer, Phys. Rev.

117,

1183 (1960).

13. J. R. Gaines, K. Luszczynski and R.E. Norberg, Proc. 8th Int

.

Conf. Low Temp. Phys; ed. Davies, ( Butterworth, 1963).

14. E. P. Horvitz, Phys. Rev.A 1 , 1708 (1970).

15. F. J. Low and H. E. Rorschach, Phys. Rev.

120, 1111 (1960).

-

16. B. T. Beal and 3 . Hatton, Phys. Rev.A 139,1751 (1965).

17. G. Careri, I. Modena and M. Santini, Nuovo Cim.

13, 207 (1959).

-

18. P. Monod and J. A. Cowen, SPRSM, CEN- Saclay, Technical report (1967).

H.T. Wheaver, J. Phys. Chem. Solids 2 , 4 2 1 (73) 19. J. F. Kelly, Thesis (1973) Cornell University.

20. A. I. Ahonen, J. Kokko, 0. V. Lounasmaa, M. A. Paalanen, R. C. Richardson, W. Schoepe and Y. Takano, in Quantum Fluids and Solids, ed. S. B. Trickey

,

E. D. Adams and J.W. Dufty,

Plenum Press, N. Y. (1977).

A. I. Ahonen, T. A. Alvesalo, T. Haavasoja, and M. C. Veuro, Phys. Rev. Lett. fi,494(1978) H. Godfrin, G. Frossati, D. Thoulouze, M. Cha- pellier and W. G. Clark,

J.

Phys. (Paris) 39, Suppl. 8, C-6 287 (1978).

-

D.

J.

Creswell, D. F. Brewer and A.L.Thompson, Phys.Rev. Lett.

9,

1114 (1972).

D. F. Brewer, D. J. Creswell, Y. Goto, M. G.

Richards, J. Rolt and A. L. Thompson, in Monolayer and Submonolayer Helium Films, ed. J. G. Daunt and E. Lerner (Plenum Press, N. Y. ,1973).

E. Varoquaux, private communication.

A. I. Ahonen, T. Kodama, M. Krusius, M. A.

Paalanen, R. C. Richardson, W. Schoepe and Y. Takano, J. Phys. C

2,

1665 (1976).

H. M. Bozler, T. Bartolac, K. Luey and A. L.

Thompson, Phys. Rev. Lett.

5,

490 (1978) and J. Phys. (Paris)

2,

Suppl. 8, C 6-283 (1978).

0. Evenson, D.F. Brewer and A.L. Thompson, llth Int. Conf. Low Temp. Phys.1,125 (1968).

K. Thompson, Journ. Low Temp. Phys.

2,

361 (1978).

M. T. B6al-Monod and D. L. Mills, Journ. Low Temp. Phys.

30,

289 (1978) and D. L. Mills and M. T . B6al-Monod, Phys. Rev.A

10,

343 (74).

D. Thoulouze et al., this conference.

O.V. Lounasmaa, Experimental Principles and Methods below lK, Academic Press (1974).

A. I. Ahonen, 0. V. Lounasmaa and M.C. Veuro, J.Phys.(Paris), Suppl. 8,

39,

C 6- 265 (1978).

K. A. Muething, Thesis (1979) Ohio State University, and D.O. Edwards, private com.

V. J. ~ u l l i n and A, Landesman, Journ. Low Temp.

Phys.

38,

571 (1980).

Références

Documents relatifs

The pulsed magnetic field technique has often been used to study the Zeeman effects in strong magnetic fields [I].. With this technique, in some cases, we may

light is totally reflected from the interface between the liquid crystal and heavy glass The essential details of the technique are the angle of light incidence is considerably

These oscillations can be related to standing plasma waves and esta- blish a very accurate method for the investigation of the bulk plasraon dispersion at long wavelengths, small

1 : Temperature dependences of the spin latti- ce relaxation times for a sample of molar volume of 19.39 cm3/mole.with x = 4.2 x?. In region I (exchange plateau region),

The sample was allowed to precess through two complete cycles (the magnetic field was selected so that the Larmor frequency was 0.25 Hz during precession) after which time

b) Comparison of the interfacial moduli (p) and the bulk moduli (G) is only possible at the same frequency and deformation. Therefore, interpolation between several bulk data

This Fe - Cu interaction near the inter- face also results in the observed large line broa- dening (which indicates a distribution of hyperfine fields) and in a slight

This model can be used to study ferromagnetic relaxation, because the probability of finding theeffective ma- gnetic field &#34;up&#34; does not have to equal that of finding