• Aucun résultat trouvé

AgeneralizedRuellePerron-Frobeniustheoremandsomeapplications P W

N/A
N/A
Protected

Academic year: 2023

Partager "AgeneralizedRuellePerron-Frobeniustheoremandsomeapplications P W"

Copied!
11
0
0

Texte intégral

(1)

Astérisque

P ETER W ALTERS

A generalized Ruelle Perron-Frobenius theorem and some applications

Astérisque, tome 40 (1976), p. 183-192

<

http://www.numdam.org/item?id=AST_1976__40__183_0

>

© Société mathématique de France, 1976, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (

http://smf4.emath.fr/

Publications/Asterisque/

) implique l’accord avec les conditions générales d’uti-

lisation (

http://www.numdam.org/conditions

). Toute utilisation commerciale ou

impression systématique est constitutive d’une infraction pénale. Toute copie

ou impression de ce fichier doit contenir la présente mention de copyright.

(2)

Société Mathématique de France Astérisque 40 (1976) p.183-192

A G E N E R A L I Z E D RUELLE P E R R O N - F R O B E N I U S T H E O R E M A N D SOME A P P L I C A T I O N S

Peter W a l t e r s

W e show how some p r o b l e m s on u n i q u e n e s s of e q u i l i b r i u m states and e x i s t e n c e of invariant m e a s u r e s can be deduced from a t h e o r e m about P e r r o n - F r o b e n i u s o p e r a t o r s .

Let (X,d) be a compact m e t r i c space. Let T : X — x be a c o n - tinuous surjection. W e shall assume T satisfies the following c o n d i t i o n s a ) , b ) , and c ) .

a) T is p o s i t i v e l y e x p a n s i v e , ie. 3 6>o such that

d ( T n x , T n y ) _< 6 ^Vn>o implies x = y. An e q u i v a l e n t d e f i n i t i o n is to r e q u i r e the e x i s t e n c e of an open cover {A^,...^^.} of X for w h i c h

00

f\ T nA. is either empty or a one point set for all c h o i c e s of the n=0 1n

sequence {in} 1 £ in £ k • C l e a x l y for each xeX the set T "^x contains at m o s t k p o i n t s .

b) T is a local h o m e o m o r p h i s m (ie. V x ^ X ^ an open n e i g h b o u r h o o d U of x so that TU is open and T : U — * T ( U ) is a h o m e o m o r p h i s m . )

c) For sufficiently small 6 , d(x,t) = 6 = > d(Tx,Ty) >_ 6 .

Let eQ be chosen so that

i) e0 is an e x p a n s i v e constant for T ,

(3)

ii) VxeX the ball B (x) of radius c and centre x is so that eo °

TB£ (x) is open and T:Be (x)—^TBe (x) is a homeomorphism and o eo o

iii) Condition c) holds whenever 6 _< eQ .

Examples of transformations satisfying a ) , b ) , c ) . 1. Subshifts of finite-type.

r i oo r ,00. 1 Here one can take the metric d({x^J- , iy^j-J55 V X T

n o n o Js. i J.

if k is the least for which x^ ^ y^ . 2. Expanding maps. (Shub [ 9-]).

Here X is a compact manifold equipped with a Riemannian metric and T is differentiable and satisfies the property :

^ X>1 for which

||DTv|| > X ||vf vveUT.x xexA

Let C(X) be the Banach space of all real valued continuous functions on X , with the supremum norm. We can define for each (j)€C(X) a Perron-Frobenius operator X^ : C ( X ) — > C ( X ) by

<jL f(x) = E ^ f (y) . £ is linear and positive. The members of

^ yeT~" x ^

a subclass of these are particularly useful.

Let G(T) = (geC(X) | g>o and E ^ g C y ) = 1 V x e x } . y€T x

If (j) = log g then <£, f (x) = Z g(y) f (y) and we have .Log g _,

y€T x

^log g UT = id' where UTf = f °T •

Let M(X) denote the collection of all Borel probability measures on X and let M(T) consist of the T-invariant ones. In the weak*-topology the convex set M(X) is compact and M(T) is a

(4)

A RUELLE PERRON-FROBENIUS THEOREM

compact c o n v e x subset of M(X) . 3 w i l l denote the a- a l g e b r a of B o r e l subsets of X . A n interesting subset of M(T) is o b t a i n e d from the following

Lemma 1. (Ledrappier [ 5 ] )

Let g € G ( T ) and w e w r i t e f> instead of i . If m e M ( : log g

the following are e q u i v a l e n t : i) <£*m = m .

ii) m e M (T) and E (f . _ ) (x) = I g(z) f(z) a.e.m. V f e L ' d p zeT ^Tx

iii) m € M(T) and hm(T) + m ( l o g g) _> h^ (T) + y(log g) V y e M ( T ) (ie. m is an e q u i l i b r i u m state for log g )

A m e a s u r e satisfying these p r o p e r t i e s is called a g - m e a s u r e . If m is a g - m e a s u r e w e have

0 = hm(T) + m ( l o g g) .

(This says that the p r e s s u r e of log g is 0) .

S u p p o s e from n o w on that T also satisfies the following mix:

c o n d i t i o n :

d) V E > O 3 N > ° such that VxeX T~Nx is e-dense in X .

For < | ) € C ( X ) , e>o and n € Z+ let

var U , e ) = sup | | $ (x) - 4 (y) | d ( T 1 x , T 1 y ) < e) .

1 o<i<n-l J

W e then h a v e the following result.

T h e o r e m 2. (Keane [ 3 ] W a l t e r s [ll] )

(5)

CO

Suppose g £ G (T) and £ var (log g, e_) < oo for some e,<e n=l n l 1 - o T/zerc ^niog gf ^ p( f ) Vf 6 C( X ) . ( : ± denotes convergence in the supremum norm ) . y t/ze unique q-measure for T .

Theorem 3. (Bowen [ 2 ] , Ratner [ 7 ] , Walters [ll])

Let g Z?e as in theorem 2. The measure-preserving trans for­

mation (T,y) has a Bernoulli natural extension.

One can relate ^ to some ^\Qq g by a theorem first proved by Ruelle for the full 2-shift.

Theorem 4. (Ruelle [ 8 ] , Bowen [2] for the case of subshifts of finite type, Walters [ll])

00

Suppose <|> € C (X) and I var ((f),e) < » ^02? sowe e7^e

n=i n I 0 Then 3 X>o , v€ M( X ) , h e C ( X ) suc/z tfcat h>o , v (h) =1 ,

£ h = X h , X * v= X v and X, nf z> h. v (f) V f e C( X ) . f i r

00

Also h satisfies h (x) _< exp ( E var (<j),e )) h(y) k+1 n

whenever d(T1x,T1y) _< e1 o<i<k-l .

Remarks.

1 . X>o and v G M ( X ) are uniquely determined by the condition

«£*v = Xv »

2. One can define the pressure of T to be a function :C(X)—>R.

One has the variational principle

P U ) = sup I h ( T ) + y(<|>)

1 y£ M ( T ) L y J

(Walters [ 1 0 ] ) . We say m is an equilibrium state for (J) if

(6)

A RUELLE PERRON-FROBENIUS THEOREM

hm(T) m(4>) = PT(cf>)

C o r o l l a r y 5 .

Let cj) be as in theorem 4. T h e m e a s u r e y^ , d e f i n e d by

(f) = v(h.f) , is the unique e q u i l i b r i u m state for <p . y^ is the u n i q u e g-measure for g - e^h . T h e n a t u r a l e x t e n s i o n of (T,y .)' is

X.hoT * a B e r n o u l l i shift. u. is p o s i t i v e on non-empty open sets and

<P voT~n -> y^ in M(X) .

PT(c()) = log X = lim j log l n 1 . n->°° d)

oo r If ¥ € C ( X ) also has £ var °° then

n=l

y^=yy <=> <f)-y = foT - f + c for some f £ C (X) and c £ R .

A p p l i c a t i o n s .

1. A x i o m A d i f f e o m o r p h i s m s .

T h e s e r e s u l t s are described fully in B o w e n [ 2 ] . W e just state here two r e s u l t s w h i c h can be deduced using corollary 5 and the B o w e n - S i n a i theory of M a r k o v p a r t i t i o n s .

T h e o r e m 6.

Let fig be a basic set for an A x i o m A diffeomorphism T and let <f>€C(fl ) be Holder continuous (ie. | <|> (x)-<J> (y) | £ a d(x,y)

for some

a,8>o) . There is a unique equilibrium state y^ for (J) . If T|0 is topologically mixing then y. is Bernoulli.

s ^ T h e o r e m 7.

If <)>,¥ : fig — * R are both Holder continuous then Vicf) = y^ <=> (j)-^ = u o T - u + c

for some Holder

u:ft — > R a n d some constant c . s

(7)

2. I n v a r i a n t m e a s u r e s for e x p a n d i n g m a p s .

H e r e X is a compact m a n i f o l d w i t h a R i e m a n n i a n m e t r i c and T: X — ^ X is d i f f e r e n t i a b l e and satisfies || DTv || _> X|v|| for all t a n ­ gent v e c t o r s v . H e r e X is a constant larger than 1 . T h e m e t r i c

d on X w i l l be the one obtained from J || . T s a t i s f i e s a) . b) . c ) . d ) . (Shub [9]) .

Let m be the n o r m a l i z e d R i e m a n n i a n m e a s u r e on X d e f i n e d by

|| || . W e are seeking an invariant m e a s u r e e q u i v a l e n t to m .

D T : T X —KTrp X is linear and w e can take its d e t e r m i n a n t using the X X IX

R i e m a n n i a n m e t r i c and so d e f i n e T'(x) = det(DxT) . D e f i n e (j> € C(X) by $ (x) = log 1^

|T' (x) |

* 1S C k-1 if T is Ck . W e w i l l assume T is C2 .

Lemma 8.

Let h e L ' f m ) and m(h) = 1 . Then

h . m € M ( T ) <=> o&h = h a.e. m .

(By h.m w e m e a n the m e a s u r e y defined by y( f ) = m ( h . f ) ) . Since ( j> £ C' ( X ) , and since for small e1

d ( x , y) < e < e 1 => d ( T x , T y ) _> Xd(x,y) , oo

w e get E var„ (•,£) < 00 . n=l

H e n c e w e can apply t h e o r e m 4 and C o r o l l a r y 5. N o t e that o6^m=m so that b y r e m a r k 1 v=m and X=l . So t h e o r e m 4 a s s e r t s the e x i s ­ tence of h € C( X ) w i t h m ( h ) = lf h>o °^n=n and «^^f => h.m(f)

¥ f e C ( X ) . By c o r o l l a r y 5 or lemma 8 w e know y = h.m 6 M ( T ) . So y is an i n v a r i a n t m e a s u r e e q u i v a l e n t to m . W e list o t h e r p r o p e r t i e s of y .

1. m T ~ n ->y in M( X ) (Corollary 5 ) .

(8)

A RUELLE PERRON-FROBENIUS THEOREM

2. (T,y) has a B e r n o u l l i n a t u r a l extension. (Corollary 5)

3. h (T) = J log | T' (x)| dy(x)

lim n-*oo

+ y(4))+ y(4))

T h i s is b e c a u s e PT((j>) = log X = o so 0 = h (T) + y(4)) so that h^ (T) = -y(cf>)

M d o g |T 1 I ) 4. m e M ( T ) <=> £ 1 = 1. V X 6 X .

y € T - i x |t' (y) |

5. S u p p o s e m C M ( T ) . T h e n m is the m e a s u r e w i t h m a x i m a l entropy

< = > |T' (x) | € Z+ V x 6 X .

M o s t of these results have been obtained by K r z y z e n s k i [ 4 ] .

3. M a p p i n g s of [0;l] .

Let T:[0,l] + [0,l] be a m a p satisfying

i) there is a p a r t i t i o n o=a <a.. <. . . <a =1 such that t| .

o l p ^ai'ai+i>

is C2 and can be extended to a C 2 function on tai ^ ai+il for each i .

ii) T m a p s each [ a . , a . , J 1 - 1 onto [0,l] .

1 p-1 iii) J X>1 such that | T ' ( x ) | >_ X V x € U (ai'*ai+1) •

J i=o E x a m p l e s are

aQ ax a2 a3 a0 al a2 a3

E a c h example defines a continuous m a p of S1 w h i c h is not smooth at a finite number of p o i n t s . In our first example w e could work as

(9)

for e x p a n d i n g m a p s but in the second example c o n d i t i o n s a ) , b) and c) are not satisfied. So w e proceed in the u s u a l w a y to u s e a shift system.

Let £ d e n o t e the p a r t i t i o n into the sets [ o , a 1 ) , [ a 1 , a 2 ) / . . . , [ a p _ 1 , l ] .

it ii ii

\ A2 A p

L e m m a 9.

£ is a g e n e r a t o r in the sense that each set of the form CO

fl T A . c o n t a i n s at most o n e p o i n t .

Let ft = { l , 2 , . . . , p } . D e f i n e j :[0,l] ft by j (x) = (x0,xlfx2, ) if T n x e A x j is 1-1 . j T = a j w h e r e a is the shift on ft .

00

Let Y = [0,1] \ U T~n{a ,a ,...,a } . T _ 1 Y = Y , a"1j(Y)=j(Y) . n=o p

Lemma 1 0 .

j is a h o m e o m o r p h i s m of Y w i t h j(Y^ .

j 1 e x t e n d s to a c o n t i n u o u s m a p ir:ft —*[0,l] it a = Ttt . Let m d e n o t e L e b e s g u e m e a s u r e on [ 0 , l ] . D e f i n e

V:Y — > R by Y(y) = log 1

| T F (y) |

L i f t Y to * = yon on j (Y) and this can b e e x t e n d e d to <j>ec(ft) .-1

w i t h E var (<b) < 00 . m is c o n c e n t r a t e d on Y so m°j d e f i n e s n=l

a m e a s u r e on j(Y) w h i c h d e f i n e s a m e a s u r e v on ft By d e f i n i t i o n of $ *t*v=v • By theorem 4 w e get

h > o h G C ( f t ) w i t h v(h)=l and o f £ f= > h v( f ) V f £ C ( f t ) . A l s o h . v 6 M ( a ) .

y= (h.v)OTr""1 G M ( T )

(h.v)oTT-1 = h o j . m on Y so y = £ . m € M ( T )

(10)

A RUELLE PERRON-FROBENIUS THEOREM

w h e r e £ is c o n t i n u o u s on Y and £>o . Hence T has an invariant m e a s u r e e q u i v a l e n t to m .

Of c o u r s e ( T, y ) is m e a s u r e - t h e o r e t i c a l l y i s o m o r p h i c to (a, h v ) and so has a B e r n o u l l i n a t u r a l e x t e n s i o n . The p r o p e r t i e s listed for e x p a n d i n g m a p s also hold in this c a s e . See Adler [l] for one of the sources of such r e s u l t s . T h e o r e m 4 can be extended so that one can handle the case w h e n ç is a c o u n t a b l e partition into i n t e r v a l s .

R E F E R E N C E S

[l] R.L. A d l e r , F - e x p a n s i o n s r e v i s i t e d . Recent A d v a n c e s in T o p o - logical D y n a m i c s . S p r i n g e r lecture n o t e s . V o l . 3 1 8 .

[2] R. B o w e n , E q u i l i b r i u m states and the E r g o d i c T h e o r y of A n o s o v D i f f e o m o r p h i s m s . S p r i n g e r l e c t u r e notes V o l . 4 7 0 .

[ 3 ] M. K e a n e , S t r o n g l y m i x i n g g - m e a s u r e s . Invent. M a t h . 16 (1972) 309 - 3 2 4 .

[4] K. K r z y z e w s k i , On e x p a n d i n g m a p p i n g s . B u l l , de l'académie P o l o n a i s e des sciences V o l . XIX N o . 1 1971.

[5] F. L e d r a p p i e r , P r i n c i p e v a r i a t i o n n e l et systèmes d y n a m i q u e s s y m b o l i q u e s . C o m m e n . M a t h s . P h y s . 33 (1973) pp 119 - 1 2 8 . [6] F. L e d r a p p i e r , M é c h a n i q u e statistique de l'équilibre pour un

r e v ê t e m e n t . P r e p r i n t .

[7] M. R a t n e r , A n o s o v flows w i t h G i b b s m e a s u r e s are also B e r n o u l l i a n . Israel J. M a t h . T o a p p e a r .

[8] D Ruelle, Statistical mechanics of a one-dimensional lattice gas. Comm. Math. Phys. 9 (1968) 267 - 278.

[ 9 ] M. Shub, E n d o m o r p h i s m s of compact d i f f e r e n t i a b l e m a n i f o l d s . A . J . M . XC1 Jan. 1969.

[lO] P. W a l t e r s , A v a r i a t i o n a l p r i n c i p l e for the p r e s s u r e of a con- tinuous t r a n s f o r m a t i o n . T o appear in A . J . M .

(11)

[ll] P. W a l t e r s , R u e l l e ' s o p e r a t o r theorem and g - m e a s u r e s . T o appear in T r a n s . A . M . S .

M a t h e m a t i c s I n s t i t u t e U n i v e r s i t y of W a r w i c k C o v e n t r y , W a r w i c k s h i r e CV4 7AL GB

Références

Documents relatifs

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention