• Aucun résultat trouvé

Wave-based resonant microsensors for environmental applications.

N/A
N/A
Protected

Academic year: 2021

Partager "Wave-based resonant microsensors for environmental applications."

Copied!
90
0
0

Texte intégral

(1)

HAL Id: hal-02519377

https://hal.archives-ouvertes.fr/hal-02519377

Submitted on 31 Mar 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Wave-based resonant microsensors for environmental applications.

Corinne Dejous

To cite this version:

Corinne Dejous. Wave-based resonant microsensors for environmental applications.. École thématique. Sustainable Development in Metropolitan Bordeaux, Bordeaux, France. 2018. �hal-02519377�

(2)

Wave-based resonant MICROSENSORS for environmental applica<ons

C. Dejous, Team ONDES (WAVES) / MDA, corinne.dejous@ims-bordeaux.fr

C. Dejous,

Presentation based on the team’s research work – L. Bechou*, H. Hallil, S. Hemour, S. Joly, J.L. Lachaud, L. Oyhenart, D. Rebière, O. Tamarin**

* Delegation at LN2 – Univ. Sherbrooke, Canada, ** Delegation from Univ. Guyane, Kourou, France

Summer School Bordeaux INP - June 25th to July 6th, 2018

(3)

ORGANIC ELECTRONICS & MEMS AUTOMATIC CONTROL PRODUCTION ENGINEERING Y. Ducq X. Moreau L. Hirsch NANOELECTRONICS DEVICES RELIABILITY CIRCUITS DESIGN D. Dallet G. Duchamp P. Mounaix COGNITICS J-M André 10 groups Y. Ousten ELORGA MDA ARIA MEI D. Chen A. Zolghadri L. Hirsch EDMINA CRONE ICO P. Girard P. Melchior L. Bechou PSP R. Dupas LASER EC2 T. Taris D. Lewis PACE MODEL CSH H. Frémont N. Del<mple C. Maneux POWER III-V CSN J-M. Vinassa C. Jégo N. Malbert CIH

J-M André ERGO J. Pe<t

FFTG F. Cazaurang 27 teams D. Rebière From Materials to Devices

Hardware IntegraIon

Systems Systems and InteracIons PRIMS I. Dufour F. Demontoux MIM ONDES / WAVES

BIOELECTRONICS N. Lewis BIO-EM

I. Lagroye ELIBIO Y. Bornat AS2N S. Saïghi

RUDII

V. Lique`e

SIGNAL

Y. Berthoumieu MOTIVE J.P. Da Costa Spectral A. Giremus

Thema&c Organiza&on at IMS Lab.

Up to 350 staff involved in InformaIon Technologies (IT) & Engineering www.ims-bordeaux.fr/en AS2N RUDII Group ONDES (WAVES), 18 permanent staff Towards communica<ng, sustainable, mul<physics and mul<technology systems

(4)

Laboratoire de l’IntégraIon du

Matériau au Système

!

October, 2016

ONDES (Waves)

Towards Multi-disciplinary Multi-technology Smart and Sustainable systems Yves Ousten, Professor (C.Dejous, 2011-2017)

MIM : Materials, Interactions, Micro-waves (F.Demontoux, Prof.)

MDA : Acoustic wave-based Detection Microsystems (D.Rebière, Prof.)

EDMiNA : Evaluation of Micro- Nano- Assembled Devices (L.Bechou, Prof.) A2M, Spin-off on Non-Destructive Material Micro-wave Characterization (G.Ruffié) OpERaS, Technological platform for Electro-Optical Characterizations (L.Bechou)

Strategic topics

•  Microdevices for Optics / Photonics

•  Connected Multi-technology Microsensors

(5)

13 mars 2014 Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 4 >

ONDES / WAVES

MDA, Acous&c wave-based Detec&on Microsystems Resonant devices – microsensors, prototypes Using of innova&ve sensi&ve materials Wave propaga&on in devices, dynamical interac&on phenomena with solid, liquid, gaseous medium From Materials to Devices 1 ! ONDES / WAVES EDMiNA, Evalua&on of Micro- Nano- Assembled Devices   Influence on microelectronic / photonic devices : IntegraIon of newmaterials Assembly, interconnecIon   Influence of environmental condi&ons - Reliability   Permanent Staff (18): 6 Prof., 9 Assoc.&Assist. Pr., 3 Ing. MIM, Materials, Interac&ons, Micro-waves   Interac&ons electromagne&c waves (CW to mm-wave) / materials   Natural materials : wireless ac&ve / passive detec&on Structured materials with specific proper&es: photonic crystal, meta-materials, radar stealth (fur&vity) … Towards Mul<-disciplinary Mul<-technology Smart and Sustainable systems

(6)

13 mars 2014 Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 5 >

ONDES / WAVES

From Materials to Devices… Pluri- Inter-Disciplinarity 1 ! ONDES / WAVES - MulIphysic Modeling - IntegraIon - CharacterisaIon - Sustainability -  ApplicaIon Microwaves- Materials (A2M Spin-Off) - InnovaIve transducIon (acousIcal, opIcal, high frequency) - Interface CharacterisaIon - High resoluIon Electrical / OpIcal CharacterisaIon - Reliability - Heterogeous IntegraIon - Prototyping - EvaluaIon of performances, Tests in controlled environment - Data treatment / inversion Materials for High Frequencies and Photonics Micro- Nano-Assembled Sensors and Devices Mul<-technology Smart and Sustainable Systems Strategic topics •  Microdevices for OpIcs / Photonics •  Connected MulI-technology Microsensors •  Wireless soluIons for micro-energy Towards Mul<-disciplinary Mul<-technology Smart and Sustainable systems h`ps://www.ims-bordeaux.fr - Research – Research groups - WAVES

(7)

13 mars 2014 Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 6 >

Philosophy in agreement with IMS scien&fic strategy

Two combined paradigms: Interdiscipinarity & Partnership

The Group is involved into the 4 Major Research Projects at IMS

Four Major Research Projects since 2015 Smart Transports Innova&ve Systems for Health Environments Internet of Things EnvironmentS 1. Societal Environment 2. ICT and Sustainability 3.Opera<onal Environment of Devices 4. Energies 2018, the year of green engineering, INSIS/CNRS

(8)

13 mars 2014

Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 7 >

Wave-based resonant microsensors

Environmental and health related applications

  Introduction: Background, Principle of Wave-based Resonant Microsensors   Focus on Acoustic Love Wave Devices

  Principle

  Examples of Gas sensing applications

  Introduction of microfluidics and examples of Liquid-phase sensing

applications

  Other Resonant Devices and Applications

  Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films

  Polymer Optical Microring Resonators & Digital Microfluidics

(9)

Chemical sensor market

Yole Développement, February 2016,h`p://www.yole.fr/iso_album/illus_gassensors_forecast_yole_feb2016.jpg Industrial Transport Environment Defense Consumer realis&c scenario Medical Building Total gas sensors market with op&mis&c consumer scenario 2014 2015 2016 2017 2018 2019 2020 2021 900 600 300 0

(10)

Sensors for healthcare

(11)

Medical microsystems roadmap

(12)

Chemical sensor and Energy

(13)

Issues of chemical detec&on

■  System dedicated to an applicaIon or a specific compound? ■  Test cost? ■  Measuring Ime? ■  DuraIon of phase calibraIon? ■  Frequency of maintenance periods? ■  SensiIve elements form disposable? (typical case for a biomedical applicaIon) ■  Major, minor or trace compound? ■  Staff qualificaIon (to perform the measurement)?

(14)

Trend: a wide variety

Micro Détecteur Field effect transistor ChemFET OpIcal Fibre Phototransistor AcousIc waves Quartz microbalance (BAW) Surface waves Plate wave, ... VariaIon of conductance Oxide semiconductor Electrochemical sensor Thermal conducIvity Pellistor

Chemical microsensors:

an economical and efficient alternaIve Mobile microstructures

(15)

Smart (bio)chemical Sensor

Structure of a

smart integrated senso

r

Element to analyze 1 2 transducer 3 signal conditioning 5 responses treatment 8 calibration 6 results 7 powers 4 responses pre treatment alarm on alarm

(16)

Food industry Chemical industry Environment Biological and medical field Military & Security Fine chemistry cosmeIc

Chemical and biological fields

(17)

Wave-based Sensor Research ac&vity

InteracIon

mechanisms

Transducing

component

Sensing

pladorm

DetecIon

systems

Microsystem design & fabricaIon for a specific applicaIon Necessary to idenIfy applicaIon areas

(18)

Gas or Biosensor principle

(piezoelectric substrate) AcousIc pladorm ElectromagneIc pladorm (flexible substrate) OpIcal pladorm (polymer materials)

UltrasensiIve AcousIc & ElectromagneIc & OpIcal

transducers : ApplicaIon for gas and bio sensing

"

Overview of devices and applicaIons

"  Materials : polymeric, hybrid, meso- and nano-structured, biomaterials (anIbodies, whole micro-organisms), etc.

(19)

13 mars 2014

Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 18 >

Wave-based resonant microsensors

Environmental and health related applications

  Introduction: Background, Principle of Wave-based Resonant Microsensors   Focus on Acoustic Love Wave Devices

  Principle

  Examples of Gas sensing applications

  Introduction of microfluidics and examples of Liquid-phase sensing

applications

  Other Resonant Devices and Applications

  Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films

  Polymer Optical Microring Resonators & Digital Microfluidics

(20)

Acous&c wave transducers

Surface wave transducer MoIon MoIon Bulk wave transducer (QCM : quartz microbalance)

AcousIc or elasIc wave: mechanical displacement

GeneraIon by piezoelectric effect

Planar device: collecIve fabricaIon Energy near the surface: sensiIvity

(21)

SAW Delay Line

# 

Piezoelectric effect

# 

Acous&c wave propaga&on using IDTs

(Inter Digital Transducers)

# 

Wave perturba&on induces

–  Phase velocity variaIon

–  AjenuaIon (InserIon Loss)

# 

Design - Modeling

–  Wave propagaIon

–  InteracIon mechanisms

InterDigital Transducers (IDTs) Piezoelectric Substrate dB f f

dB With target compounds

(22)

STW (Bleustein Gulyaev) •  SH wave •  Weak trapping energy SAW (Rayleigh) •  EllipIc polarizaIon (longitudinal & SH •  Good mass-loading sensiIvity FPW (Lamb) • Longitudinal + Shear VerIcal • h < λ : technological difficulIes SH-APM •  SH guiding wave •  weak mass-loading sensiIvity

Love

•  Guiding SH SAW •  Guiding layer •  High mass-loading sensiIvity BAW (QCM) •  Shear Honrizontal (SH) polarizaIon •  Low mass-loading sensiIvity (working frequency)

A.E.H. Love

(1863-1940, UK)

(23)

Love waves delay lines

X Piezoelectric substrate Quartz cristal Interdigital Transduceur (IDT) Guiding layer SiO2 SensiIve layer

Love waves device PropagaIon study model

• 

Oriented substrate + IDT electrodes: TH waves

liquid

Guiding layer: energy confinement

sensiIvity

SensiIve layer: amplificaIon, specificity

(24)

Sensi&vity to mass effect

b 1 V V Smv b 0 Δρ Δ =

V

0

V

1

due to the detecIon with ΔV=V1-V0 ρb

ρb+Δρb

ΔV (SiO2 épaisseur) 3800 4000 4200 4400 4600 4800 5000 1 2 3 4 5 6 7 8 9 10 h (µm) V (m/s)

(25)

SiO2 thickness, h (µm) (Euler angles (0°,θ°,90°)) |Smv| ( m²/ kg )

Theore&cal results

Mass loading sensi&vity

AT-cut ST-cut substrate: quartz wavelength: λ = 40 µm guiding layer: SiO2 sensiIve coaIng: PMMA, b = 50 nm, Δρb = 5% Sm = Δfm fm × 1 Δm Quartz crystal Air SiO2 PMMA Maximum SensiIvity to mass effect : Quartz AT cut, h from 4 to 8 µm

(26)

Theore&cal

results

Choice and characteriza&on of the guiding material

0,01 0,1 1 10 100 1000 Rigidity transverse modulus (GPa) 100 300 1000 5000 30000 Density (kg/m 3) 0 500 1000 1500 2000 Se nsI Ivity m 2 /kg SiO 2 Su8 PMMA Pb

Elastomers Polymer foams

Wood // fibers Wood fibers Wood derivaIves Porous ceramics Steels Polymers CW

(27)

FEM* Simula&on

R. Djoumer – Master Thesis - 2012

Meshing ‘Free tetrahedral’, Size ‘Normal’

Meshing ‘Free triangular’, Size ‘Extrafine

#  Collabora&on IRD Guyane - France (O. Tamarin) #  Toolbox ‘Piezoelectric devices’ * Finite Element Method COMSOL Mul4physics

"

Inhomogeneous materials such

as nanostructured thin films

(28)

FEM Simula&on

# 

Parametric study, effect of SiO

2

thickness (h) of a structure without

any sensi&ve film

# 

Gain max: h = 4µm

# 

Phase velocity decreases from

4900m/s downto 4450m/s

with h in the range [2.5µm – 7 µm]

Gain vs. h Vp vs. h R. Djoumer – Master Thesis - 2012 PhD, C. Zimmermann - 2002

(29)

1.  Piezoelectric substrate: AT cut ( 0°,121.5°,90°) "  Shear Horizontal polariza&on "  Working in liquid medium 2.  Interdigital transducers (IDTs) (λ=40 µm, Lcc=8.4 mm, e=200nm) 3.  SiO2 guiding layer (4µm, PECVD) "  Trapping Energy ! near free surface: arrac&ve way for sensing applica&ons

Towards Love-waves devices

(30)

Technology achievements

Love wave devices : Quartz cut AT, λ=40µm, Électrodes : Al, Ti/Au Guiding layer SiO2, 4,6 µm

Delay lines :

•  Rayleigh waves (SAW)

•  SH-APM

•  Love waves

1992 1998 2001 2003

(31)

SAW delay-line devices

Quartz substrate: AT-cut Wavelength λ = 40 µm Synchronous frequency

(32)

From the delay line to the oscillator

Transmission response characteriza&on of a delay line using a network analyzer Opera&ng frequency : 117 MHz Test cell designed and realized according to the one proposed by F.Josse et R.Cernosek, Sandia Labs

(33)

Electrical

characteriza&ons

using Network Analyser

# 

f

0

= 117 MHz

# 

Inser&on Loss: 25 dB

# 

Delay: 1.542µs

V

phase velocity

≈ 4300m.s

-1 Tme Domain, [1] acousIc signal S21 (magnitude & phase) LOVE Wave delay line

(34)

Read-out electronics

$ 

Arduino-based read-out

$ 

CommunicaIng object (Ethernet)

$ 

Sensor network ability

(35)

Acous&c sensors:

various applica&ons

# 

Gas sensors

%  CO, CO2, NO, NO2, … %  VolaIle organic compounds, organophosphorus & organosulfur, … # 

Electronic noses

%  Gas mixture, odors, … # 

Liquid sensors

%  Viscosity meter, conducIvity meter, organic compounds, …

# 

Biosensors

%  Bacteria, viruses, toxins, heavy metals, hydrocarbons, … # 

Thin film & complex fluid characterizaIon

# 

SensiIve coaIng

% Material % DeposiIon method % StructuraIon

# 

Result

% SensiIvity % SelecIvity % Reversibility % Response Ime % Recovery Ime % Reproducibility, Reliability

(36)

•  Clean room class 10 000 (hood 100)

•  Thin films microprocessing: spin-coater, spray-coater, Graphtec, mask aligner, hotplates, wet etching of photoresist

•  Thick films processing

screen printers, ovens, inks formulation

•  Wire-bonding assembly

ball-bonder, wedge-bonder, flip-chip

•  Films and devices characterization: profilers, AFM, SEM, vibrometer, gain/phase analyzer, network analyzer…

•  Soft lithography

•  Mechanical micro-fabrication

•  Partnerships

Technological facili&es (TAMIS)

(37)

13 mars 2014

Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 36 >

Wave-based resonant microsensors

Environmental and health related applications

  Introduction: Background, Principle of Wave-based Resonant Microsensors   Focus on Acoustic Love Wave Devices

  Principle

  Examples of Gas sensing applications

  Introduction of microfluidics and examples of Liquid-phase sensing

applications

  Other Resonant Devices and Applications

  Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films

  Polymer Optical Microring Resonators & Digital Microfluidics

(38)

Sensi&ve materials : polymers

Molecular interacIons

● 

van der Waals s forces - Non specifics

Low energy

● 

Hydrogen bondings -

specifics

Intermediate energy level (40 kJ)

A preference for good

reversibility & selecIvity

Low glass transiIon temperature (T

G

)

For a fast diffusion of species in the polymer

SelecIon tool : solubility energy linear relaIon

DeterminaIon of parIIon coefficients polymer/gas (K)

Abraham s method - LSER

(39)

Interac&on sensi&ve layer /gas

Test medium

(vapour)

Polymer

Piezoelectric substrate

K func&on of:

- polymer

- nature of gaseous compound

- temperature

Sensi&vity to the vapor A : high value of K

A

Selec&vity with respect to the compound B : K

A

> K

B

Molecules sorbed in the polymer

mass effect,

rigidity,

viscosity, …

K = C

s

/C

v

Thermodynamic equilibrium

par&&on coefficient

(40)

Polymer Sensi&vity and Selec&vity

Abraham s method: Linear SolvaIon Energy RelaIonship (LSER)*

log K

=

c

+

r.R

2

+

s.π

2*

+

a.α

2H

+

b.β

2H

+

l .log L

16

Ability to provide

hydrogen bonds

Acidity

Ability to accept

hydrogen bonds

Basicity

Dispersive

interacIons

Polarity

Polarisability

r, s, a, b, l : solvant parameters (polymer)

R

2

, p

2

*, a

2H

, b

2H

, log L

16

: solute parameters (vapor)

Constant

(41)

Interest of Polysiloxanes

R

1

Si O

!

"

#

#

#

$

%

&

&

&

n

R

2

PLG : Polymethylhydrosiloxane

graÑing of hexafluorodimethylcarbinol (C(CF3)2OH) : fluorinated linear polymer

A good candidate for

the detecIon of

organophosphates

Ability to interact with compounds acceptors of hydrogen bonds (bases) Log K PMHS PLG PHG PMTFPS PCPMS Toluène 2,882 2,659 2,813 2,592 3,675 H20 0,910 2,650 2,808 1,0280 2,631 DMMP 3,107 7,105 6,775 4,559 4,600 Sensi<ve layer-gas interac<on Works achieved by Thales TRT (formerly Thomson, LCR)

polarisability polarity basicity acidity dispersion

c r s a b PHG -0,331 -0,979 0,774 1,324 4,269 0,810 PMHS -0,077 0,139 0,203 1,025 -0,469 0,846 PLG -0,296 -1,161 1,325 0,971 4,785 0,674 PMTFPS -0,328 -0,757 1,443 0,112 1,221 0,721 PCPMS -0,258 0,167 1,480 1,997 0,694 0,674

(42)

Pressure trimming Spray Valve Love wave sensor Controller Syringe

Polymer deposiIon by spray

(43)

Vapor Detec&on (GB)

LCR Thalès -10000 -8000 -6000 -4000 -2000 0 0 300 600 900 1200 1500 1800 2100 temps (s) Δ f (Hz) 0,5ppm 1ppm 2,5ppm 5ppm 8ppm 12ppm time f0 = 109 MHz, SAW Rayleigh wave, SensiIve coaIng: •  Graxed Polysiloxane PLG, Δf0 = 138 kHz & emphasize hydrogen interac&ons (sensi&vity / reversibility) & low glass-transi&on temperature (diffusion @ ambient T°C) •  Spray-coa&ng & High effec&ve surface

(44)

Sensi&ve material : mesoporous

$  Large specific surface

$  Thin film technology

$  Microstructure funcIonalizaIon

0.1 nm 1nm 10nm 100nm 1µm

Microporous Mesoporous Macroporous

Mesoporous silica Protonic Crystal Zeolite

Porosity Domain

(45)

SensiIve layer

MINERAL layer : MESOPOROUS Material

Silica and CethylTrimethylAmmonium Bromide (C16H33N(CH3)3Br or CTAB

Mesoporous sensi&ve layer

Chemical sensor Delay line T-T. TRUONG, G. LEDOUX, T-H. TRAN-THI, D. GROSSO, C. SANCHEZ, Benzene chemical sensors based on porous sol-gel materials The 16th European Conference on solid state transducers, Prague, Czech Republic, pp 1237-1240 (2002) Homogeneous

(46)

Mesoporous sensi&ve layer

1. « Dip coaIng »

#  Ini&al solu&on : Surfactant (CTBA) + soluble silica + H2O + EtOH #  Mesostructure: depends on the sol-gel chemistry (nature of the compound, experimental condi&ons: Humidity, Temperature)

2. Self-assembly by evaporaIon

EtOH H2O Engine Final film Love wave plateform IniIal Sol

(47)

Mesoporous sensi&ve layer

' 

CTAB/silica = 0.14

' 

2 nm mesopores periodic organizaIon

' 

Thickness : 50 – 500 nm

'

High apparent surface (>700 m

2

/cm

3

)

'

High volume porosity (0.5 cm

3

/cm

3

)

TEM pictures

(48)

High temperature SAW Pla{orm using LGS

Harsh environmental applica&ons

Complete assembly : •  Stainless steel shell •  Inlet/Outlet integrated cover for safe gas detecIon •  PCB-SMA RF connector PhD G.Tortissier 2009 #  SAW delay-line on LGS #  Mesoporous sensi&ve film $  Mesoporous : 2 - 50 nm $  Sol-gel technique, spin or dip-coa&ng $  Stability: thermal, mechanical, chemical … $  High specific surface : 10 - 1000 m2/g

(49)

Mesoporous sensi&ve layer

- 2 2 0 0 0 0 - 2 0 0 0 0 0 - 1 8 0 0 0 0 - 1 6 0 0 0 0 - 1 4 0 0 0 0 - 1 2 0 0 0 0 - 1 0 0 0 0 0 - 8 0 0 0 0 - 6 0 0 0 0 - 4 0 0 0 0 - 2 0 0 0 0 0 0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 time ( s ) fr e q u en cy s h if t (H z) RegeneraIon dry air RelaIve Humidity : 37% 50% 60% 70%

(50)

Sensi&vity to humidity

-3000 -2500 -2000 -1500 -1000 -500 0 35 45 55 65 75 HR rate ( % ) Δ f/f 0 (p pm

) bare sensor: without mesoporousmaterial with mesoporous material

Linéaire (with mesoporous material)

3.5 kHz / % RH

(51)

Solvant and monomers discrimina&on

Styrene Butyl acrylate Monomers Solvants Toluene Butyl Acetate C O O C4H9 C O O C4H9

(52)

Nonpolar molecules

Polar molecu

les

Polar & Non polar molecules separaIon in real Ime

Future : specificity by funcIonalizaIon of the pores

(53)

Real Ime detecIon of Ethanol (VOC) and humidity (RH)

I. Nikolaou, H. Hallil, G. Deligeorgis, V. Conedera, H. Garcia, C. Dejous, D. Rebière , Novel SH-SAW gas sensor based on Graphene, SPIE Microtechnologies, Paper 9517-38, 2015.

(  RH detecIon (  VOC detecIon Oscillator1 Nitrogen (carrier gas) Vaporizer Vapor nozzle transmission Liquid to Vapor Frequency meter 1 T °C Temperature Controller of Targeted VOC Frequency meter 2 Calibrated Sensor Humidity, Temperature and Due Point Arduino Uno Configuration Card

Parallel Connection with GBIP Card connection

Exit Gases Oscillator1 Valencia (Spain) Crete (Greece) Toulouse (France)

SAW transducers: Gas sensing

with carbon-based materials

Graphene oxide on Love wave sensor

PhD I.Nikolaou, on-going

(54)

EvaluaIon of the Love wave sensor: Humidity detecIon

This study

Comparison of Graphene Oxide based-devices (Lamb sensor in

Xuan W. et al study) with similar condiIons under RelaIve

Humidity

Xuan W. et al., ScienIfic Reports 4,Nature (2014) Love Wave – GO (this study) Lamb Wave – GO (Xuan W. et al)

GO-LW Device:

+

SensiIvity

++

Low RH% !

SAW transducers: Gas sensing

with carbon-based materials

(55)

Comparison of Graphene Oxide with alternaIve funcIonal

materials under C

2

H

6

O vapors

SensiIvity with

GO

compared to:

-  Silica mesoporous

x4

-  MIP

x50

-  TiO

2

x100

TorIssier et al., Sensor Lejers,7, 5, 2009. This study Aouled et al., Sensors, 1, 4, 2013.

EvaluaIon of the GO-LW: Ethanol as OCV

SAW transducers: Gas sensing

with carbon-based materials

(56)

Mesoporous thin film characteriza&on

Mesoporous film characterizaIon •  Isotherms of type IV (BET) •  Porosity : 25% •  Capillary condensaIon at 70% relaIve humidity Ellipsometry and acousIcs •  adequacy •  complementarity Acous&c wave frequency Refrac&on indice Thickness Humidity generator Ellipsometry Capillary condensaIon zone Ellipsometric measurement Acoustic detection Relative humidity (%RH) Fr eque nc y va ri at io n (kH z)

(57)

) Star&ng value IV : Filled pores ) Disappearance of the curvature of liquid meniscus ) Decrease of ΔP III : Sharp pore filling ) Capillary condensa&on II : Film of water ) Adsorp&on of water in grains boundaries )Stress relaxa&on I : Micropores (< 2 nm)

Film characteriza&on: mesoporous TiO

2

Young modulus vs. rela4ve humidity

L. Blanc – PhD, 2011 RH (%)

(58)

Kine&cs – Monitoring of menthol evapora&on

Few minutes …Classic method : Weighing film 100µm, …weeks Solubilized menthol Complexed menthol Ethyl Cellulose

(

)

! " # $ % & − − − = 1 1 − τ1 − τ2 α α t t e e F f

EvaporaIon complexed menthol EvaporaIon solubilized menthol

EC Film (mass effect) Re la <v e fr eq ue nc y (H z) Time (s) 0

τ

1

τ

2

-100000 -80000 -60000 -40000 -20000 0 20000 250 300 350 400 450 re la/ ve fr eq ue nc y (Hz) /me (s) Spray of the solu/on 3

( 40% of menthol) (20% of menthol) solu/on 4 (10% of menthol ) solu/on 5 (5% of menthol) solu/on 6

Different profiles of evaporaIon Film on SAW device: -  Ethyl Cellulose Matrix -  Solu<on menthol + solvent D. Monin, M. Joanicot, C. Dejous, D. Rebière, F. Razan, Procédé de détermina4on de la varia4on de masse d’un système chimique, procédé de criblage comprenant un tel procédé de détermina4on et installa4on correspondante, FR2887631, 2006-12-29

(59)

13 mars 2014

Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 58 >

Wave-based resonant microsensors

Environmental and health related applications

  Introduction: Background, Principle of Wave-based Resonant Microsensors   Focus on Acoustic Love Wave Devices

  Principle

  Examples of Gas sensing applications

  Introduction of microfluidics and examples of Liquid-phase sensing

applications

  Other Resonant Devices and Applications

  Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films

  Polymer Optical Microring Resonators & Digital Microfluidics

(60)

Acous&c Waves & Microfluidic

Interest of both…

#  Microfluidic % Small volumes % ParallelizaIon #  AcousIc pladorm % High sensiIvity % Microelectronic fabricaIon process

+

Weibel, D. B. et al. - Anal. Chem. 77,

(61)

PDMS Microfluidic chip

%  Microfluidic chip

(  Isolates transducers

(  Decreases liquid volume (< µL)

(  Limits acoustic losses

(  Minimizes acoustic reflections (  Low cost and green technology

(62)

ANALYSIS CHAMBER AIR CAVITIES VIAS INLET OUTLET ANALYSIS

CHAMBER NETWORK µFLU

INLET OUTLET ANALYSIS CHAMBER HydrostaIc configuraIon Hydrodynamic configuraIon PHS1 PHD1 PHD2

(63)

Biological Micro organisms detec&on

PDMS chip+PT100

Teflon insulaIon

Ceramic heaIng

SAW pladorm

Prototype

(64)

Biological Micro organisms detec&on

' 

Toxins (

shellfish

Quality)

' 

Bacteria Escherichia Coli

' 

Heavy metals

' 

Cancer biomarkers : nucleosides

(65)

Target species

10 nm AnIbody Bacteriophage 900 nm Bacteria Bacteria Unicellular micro-organismes, 1 à 5 mm Simple structure with no nucleus Self-reproduc<on by cell division ex. : coliforms, streptococci, bacilli Virus Intracellular parasi<c micro-organisms, 20 to 300 nm Bacteriophage : virus infec<ng bacteria Small molecules Hormones, toxins, proteins, … Mass 1/1000 à 1 that of an an<body 90 nm Virus Several µm

(66)

Current methods of biosensing

# 

Physico-chemical : extrac&on, separa&on, detec&on

long, expensive, low sampling

# 

Immunological : an&gen – an&body reac&on

–  An&gen •  immunogenic •  an&genic –  An&body (Immunoglobulin, IgG) •  synthesized by the immune system •  specific an&body-an&gen binding, neutraliza&on •  Generic shape: fixed part, variable ends

specific, sensi4ve, reproducible, parallelism

(67)

Surface Acous&c Wave Biosensors

for Real Time Immunodetec&on

SensiIve membrane (anIbodies) Link layer Target compound (bacteriophage) AcousIc wave device SaturaIng agent

(68)

Surface Func&onaliza&on

(3-glycidoxypropyl)trimethoxysilane (GPTS) Monomolecular film AFM image of the sensor surface (SiO2 – PECVD deposited) Roughness : Rq ~ 8nm (~ anIbodies) Epoxy end: link with amine

funcIons of anIbodies Hydrolyzable End: bonding with silanol on the sensor surface O Si(OMe)3 O 49 ° Current: new nanostructured materials, new silylated coupling agents, surface characterizaIons O O Si Si O O O Si O O Si O O Si O O O O O Si O O O O O O S ubstrate Substrate Contact angle 49°

(69)

Immunodetec&on :

E. Coli

BiofuncIonalizaIon

BiorecepIve anIbodies

SaturaIng agent

(70)

ApplicaIon to detecIon of bacteria

EvaluaIon of characterisIcs

Controls : 1 : Without bacteria 2 : Nonspecific anIbody 3 : Nonspecific bacteria -20000 -15000 -10000 -5000 0 5000 0 2000 4000 6000 8000 10000 Temps (s) V ar ia ti o n F ré qu en ce ( H z) Co ntrô le 1 Co ntrô le 2 Co ntrô le 3 B actéries specificity -20000 -15000 -10000 -5000 0 5000 0 2000 4000 6000 8000 10000 Temps (s) V a ri at io n F ré q u e n c e ( H z) Contrôles Bactéries 1h 2h repeatability •  Specificity •  Repeatability •  DuraIon of detecIon $  Total duraIon: 3h $  Significant duraIon : 1h •  DetecIon threshold $  EsImated at 106 bactéries/mL

(71)

Applica&on :

Heavy metals

Whole cell-based biosensor

Trapping of E. coli bacteria

• 

PerturbaIon of viscoelasIc properIes due to modificaIons

of bacterial metabolism

• 

DetecIon threshold lower than 10-12 M (Cd, Hg)

Cd2+ detection

((PAH-PSS)3-PAH) + E.Coli

(72)

Cancer Biomarkers detec&on (nucleosides)

71 N. Omar-Aouled et N. Lebal - PhD Molecular imprinIng #  Molecularly Imprinted Polymer (MIP) –  Thin film, Spin-coated –  Compa&ble with acous&c propaga&on #  Thin film characteriza&on –  Profilometry, SEM –  Sensor response to vapor sorp&on (toluene, ethanol) #  Target species detec&on –  Sta&c tests –  Dynamic with microfluidic handling #  Adapta&on to various target biomarkers SEM pictures : MIP layer morphology Thickness layer : 500 nm to 1µm

(73)

#  DetecIon applicaIons #  Mechanical characterizaIon of the medium at the near interface #  A new issue… as a realisIc way for in vitro assays The real-Ime monitoring of the effect of innovaIve nanodrugs "  TherapeuIc effect "  Toxicity

Now and then…

C.Dejous, H.Hallil, V.Raimbault, R.Rukkumani, J.V. Yakhmi, Using Microsensors to Promote Development of Innova4ve Therapeu4c Nanostructuresm in Therapeu4c Nanostructures – Vol.I: Novel Approaches, Elsevier, A.M. Grumezescu, 2016, adapted from (Mahto et al., 2010)

+

(74)

13 mars 2014

Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 73 >

Wave-based resonant microsensors

Environmental and health related applications

  Introduction: Background, Principle of Wave-based Resonant Microsensors   Focus on Acoustic Love Wave Devices

  Principle

  Examples of Gas sensing applications

  Introduction of microfluidics and examples of Liquid-phase sensing

applications

  Other Resonant Devices and Applications

  Flexible imprinted Electromagnetic Devices & Carbon-based Sensitive films

  Polymer Optical Microring Resonators & Digital Microfluidics

(75)

Gas or Biosensor principle

AcousIc pladorm

(piezoelectric substrate)

ElectromagneIc pladorm

(flexible substrate)

OpIcal pladorm

(polymer

materials)

UltrasensiIve Resonant Transducers :

ApplicaIon for gas and bio sensing

74

(76)

ElectromagneIc Sensing Principle

CArbon and Microwave-based UltrasensiIve gas Sensors (CAMUS)

Microwave Resonator device • DifferenIal detecIon • Wireless CommunicaIon • Autonomy (Passive ) • Network of sensors & Easy integraIon for IoT applicaIons Carbon materials •  High sensitivity •  Totally integrated •  Room temperature

Inkjet Printing Technologies

•  Low cost

•  Planar circuits

Presence of gas molecules Modification of

microwave resonator response

Variation of the electrical properties of C-materials

Modification of

physico-chemical properties electromagnetic wave Perturbation of Sensitive resonator Reference resonator Flexible substrate Reference resonator response Sensitive resonator response ∆F ∆|GdB| Advantages Sensitive layer dB f f dB

(77)

Stop-band resonator, 2.8 GHz L2 L1 L2 W2 L1 L2 L1 L1 L2 L1 L2 W2 L1 L2 L1 L1 L2 L 2

Paper Flexible Substrate Sensitive Resonator Lsub = 26 mm Wsub = 34 mm Ground Plane W W W1 W1 L1 = 0.4 mm ; L2 = 0.3 mm W = 0.5 mm ; W1= 14 mm W2 = L1 ; L = (25×L1 )+ (24×L2 ) Reference Resonator Sensitive Layer

Design

Simulation

Champs E pour 1er

et 2ème mode Champs H pour 1er et 2ème mode

CArbon and Microwave-based UltrasensiIve gas Sensors

(CAMUS): ApplicaIon for gas sensing

76

Two (2) modes: 2.862 GHz + 5.475 GHz

(78)

77

Realization & Electrical characterization

CArbon and Microwave-based UltrasensiIve gas Sensors

(CAMUS): ApplicaIon for gas sensing

-17 -15 -13 -11 -9 -7 -5 -3 -1 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 P A R A MET R ES S (d B ) FREQUENCE (GHz) REF S21 D2 (dB) SENS S21 D2 (dB)

(79)

Experimental setup for detecIon of

Ethanol & toluene vapors

Calibrated due point, humidity & temperature Sensor Nitrogen

(carrier gas) Vapor nozzle transmission

Arduino card (USB connecIon) Gas inlet Gas outlet CharacterizaIon cell USB data storage Vector Network Analyzer (VNA) with USB communicaIon SCPI Vapor generator (Calibrage PULL 110) Temperature controller of targeted VOCs Liquid vapor transiIon $  Dedicated low cost characterizaIon cell (FR4-based) $  concentraIon range : 100-2000 ppm ethanol, 100-1200 ppm toluene

(80)

-2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 -2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 0 10 20 30 40 50 60 70 80 90 100 F R EQ (k H z) TIME (min) FREQ_MOY_LISS_S21_REF_D2RPBAIPC5C(kHz) FREQ_MOY_LISS_S21_SENS_D2RPBAIPC5C(kHz) DELTA_FREQ_MOY_LISS_S21_D2RPBAIPC5C(kHz) D ELTA F R EQ (k H z) 0 ppm 500 ppm ppm 0 500 ppm 0 ppm 1000 ppm 0 ppm 1000 ppm 0 ppm 2000 ppm

Real-Ime characterizaIon with ethanol

Frequency range 2 to 4 GHz: shiÑ of the operaIng frequence (S21)

CArbon and Microwave-based UltrasensiIve gas Sensors

(CAMUS): ApplicaIon for gas sensing

79

(81)

-6000 -5000 -4000 -3000 -2000 -1000 0 0 500 1000 1500 2000 F re q u en cy Sh ift o f S2 1 (k H z) CONCENTRATION (ppm) DELTA FREQ

CArbon and Microwave-based UltrasensiIve gas Sensors

(CAMUS): ApplicaIon for gas sensing

$  500 ppm ethanol: frequency shiÑ 1.118 MHz

80

$  Proof of concept: electromagneIc sensor, ultrasensiIve, wireless communicaIon

SensiIvity to with ethanol

(82)

Metal ions sensor integraIng polymeric opIcal microresonator (OMR) and digital microfluidics (EWOD*) for environmental applicaIons

Polymer opIcal microring resonator (OMR)

ApplicaIon for environmental detecIon

Loading

ReacIon

DetecIon

Sourc

e

Atomic absorp&on spectroscopy: common technique for Chromiun detec&on in water

* ElectroWeãng On Dielectric

PhD F.Meziane, 2016

(83)

ElectroWeãng On Dielectric (EWOD)

Polymer opIcal microring resonator (OMR)

ApplicaIon for environmental detecIon

Drop Hydrophobic Layer Top Plate Bojom plate Driving Electrodes Glass Insulator ITO Glass Input port Drop port SU-8 ring resonator OpIcal Microring Resonator (OMR) $  On glass $  Visible domain Coll. LAAS-CNRS, Tecnalia Research & InnovaIon, Spain PhD F.Meziane, 2016 PhD M.Diez Garcia, on-going

(84)

Polymer opIcal microring resonator (OMR)

ApplicaIon for environmental detecIon

GraIngs on waveguides coupled to ring resonators

First results : evidence of opIcal coupling

Gra<ngs on

waveguides coupled

to ring resonators

Light coupling to OMR?

PhD M.Diez Garcia, on-going

(85)

IntegraIon of wireless sensor network in communicaIng

systems and Internet of Things (IoT) applicaIons

Prospects – a “Graal” ?

IoT Gateway Cloud & Big data base Sensor node 1 Sensor node 2 EMT Gas & humidity & Temperature & pressure Sensor Wired instrumentaIon sensor system Wireless instrumentaIon sensor system "  Wireless CommunicaIon "  Autonomy (Passive) "  Network of sensors "  IntegraIon-Friendly Ex. Popula&on sensi&vity and vulnerability to cyanobacteria in the Amazon -  Satellite data -  Need for sensor network in situ

(86)

Transponder RF Interrogation

H

DC output Energy storage Self-powered implantable chip # 

Resonant Wave-based Microsensors

–  Acous&c, Electromagne&c, Photonic

–  …Sustainable Devices and Systems

# 

SoluIon for Micro-energy

–  Wireless implant communica&on

–  Energy harves&ng

# 

Environment and Health-related

ApplicaIons

Conclusion, perspecIves

Sensor, Drug Delivery Device, …

Work leaded by S.Hemour, LabEx AMADEus Bordeaux

(87)

Conclusion

Conclusion & Perspec<ves

'

An interdisciplinary approach, A versaIle pladorm

'

Trends: “green” materials and technologies, for

sustainable environment and environmental health

Materials

science

Immunology

Microbiology

Sensors

Microsystems

TransducIon

mechanisms

Chemistry

Biochemistry

Physical

sciences

(88)

13 mars 2014

Laboratoire de l’IntégraIon du Matériau au Système

!

July, 2018 < 87 >

IMS Bordeaux and Sensors

Sensors… circuits and instrumentation, Students welcome !

Sensor-related scien&fic communi&es

Bordeaux Electrical Engineering IEEE Student Branch

Cluster SysNum

Large-Scale Distributed Digital Systems, From Sensors to Decision Processes

•  Digital ecological systems

•  Smart campus

•  Robotics and drones

https://nuagedemots.co/

25th IEEE Intern. Conf. on Electronics Circuits and Systems Bordeaux, France, 9-12 December 2018

(89)

Thank you ………

Thank

you !

!

25th IEEE Intern. Conf. on Electronics Circuits and Systems

Bordeaux, FRANCE 9-12 December 2018

(90)

Références

Documents relatifs

Spectrum analysis of microwave pulses using the non-resonant WFR process can be realized when the spectral width Ω s = 2π/τ s of the input signal pulse of duration τ s is wider than

With the rate of feed held fairly constant, an accurate determination of the relations existing between the concentration of the feed acid, its temperature and the

(18) Selon l'article 3 de la loi du 26 mai 2002 concernant le droit à l'intégration sociale, pour pouvoir bénéficier du droit à l'intégration sociale, la personne doit notamment

Our third objective is to realize the controllable synthesis of core/shell structured superparamagnetic mesoporous silica microspheres with a large mesopore size

Infectious Diseases Unit and Department of Clinical Microbiology, patients), 2 mL of the blood specimen was introduced into a test. Rambam Medical Center, Faculty of

Semi-quantitative RT–PCR performed on RNA isolated from these cells demonstrated that rapamycin treatment reduced transcript levels from all reporter plasmids equally, indicating

Les pourcentages sont similaires aux taux observés par M ITTNIK et R IEKEN (2000a,b) dans le cas de la borne inférieure de prix mais ceux-ci sont plus de deux fois moindre pour

The radial motion amplitude and the pressure amplitude thresholds for the instability of the spherical shape have been obtained by the theory of parametric resonance.. The