• Aucun résultat trouvé

Peano’s axioms – 1

N/A
N/A
Protected

Academic year: 2022

Partager "Peano’s axioms – 1"

Copied!
5
0
0

Texte intégral

(1)

MAT246H1-S – LEC0201/9201

Concepts in Abstract Mathematics

NATURAL NUMBERS – 1

January 12th, 2021

(2)

What is ℕ?

0 1 2 3 4

• There is an initial element: 0”zero”.

• Every natural number𝑛has asuccessor𝑠(𝑛), intuitively𝑛 + 1.

But, that’s not enough:

0 0is not the successor of another natural number

0 A natural number can’t be the successor of two distinct natural numbers

0 The successor can’tloop backto a previous natural number

0 The successor of a natural number is uniquely defined

0 Every natural number is obtained from0applying iteratively the successor

So we need extra assumptions on0and𝑠.

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 12, 2021 2 / 5

(3)

Peano’s axioms – 1

We admit the following theorem (we have to start from somewhere…).

Theorem: Peano axioms

There exists a setℕtogether with an element0 ∈ ℕ”zero” and a function𝑠 ∶ ℕ → ℕ”successor” such that:

1 0is not the successor of any element ofℕ, i.e.0is not in the image of𝑠:

0 ∉ 𝑠(ℕ)

2 If the successor of𝑛equals the successor of𝑚then𝑛 = 𝑚, i.e. 𝑠is injective:

∀𝑛, 𝑚 ∈ ℕ, 𝑠(𝑛) = 𝑠(𝑚) ⟹ 𝑛 = 𝑚

3 The induction principle.If a subset ofℕcontains0and is closed under𝑠then it isℕ:

∀𝐴 ⊂ ℕ, {

0 ∈ 𝐴

𝑠(𝐴) ⊂ 𝐴 ⟹ 𝐴 = ℕ

The last point means we obtainℕtaking iteratively the successor starting at0(we don’t miss any element).

• That’s why we can define a sequence(𝑢𝑛)𝑛∈ℕiteratively by fixing𝑢0and setting𝑢𝑛+1= 𝑓 (𝑢𝑛).

• It is closely related to the notion of proof by induction.

(4)

Peano’s axioms – 2

Remarks

• We can’t use+and×yet, because they are still not defined.

Currently, we can only use the three Peano’s axioms from above.

• Intuitively,𝑠(𝑛) = 𝑛 + 1(which will become true after we define the addition).

• All the results aboutℕwill derive from these three basic properties (and even more since we will construct the other setsℤ, ℚ, ℝ, ℂfromℕ).

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 12, 2021 4 / 5

(5)

A first result

Proposition

A natural number is never its own successor, i.e.

∀𝑛 ∈ ℕ, 𝑛 ≠ 𝑠(𝑛) Proof.

Set𝐴 = {𝑛 ∈ ℕ ∶ 𝑛 ≠ 𝑠(𝑛)}. Then

• 𝐴 ⊂ ℕ

• 0 ∈ 𝐴since0 ≠ 𝑠(0)(remember that0 ∉ 𝑠(ℕ)).

• 𝑠(𝐴) ⊂ 𝐴

Indeed, let𝑚 ∈ 𝑠(𝐴). Then𝑚 = 𝑠(𝑛)for some𝑛 ∈ 𝐴. So𝑠(𝑛) ≠ 𝑛.

Since𝑠is injective, we get that𝑠(𝑠(𝑛)) ≠ 𝑠(𝑛), i.e. 𝑠(𝑚) ≠ 𝑚.

Hence𝑚 ∈ 𝐴.

So, by the induction principle,𝐴 = ℕ.

Thus, for every𝑛 ∈ ℕwe have that𝑛 ≠ 𝑠(𝑛). ■

Références

Documents relatifs

L’élève réagira au texte en exprimant ses goûts et

We consider parabolic problems with non-Lipschitz nonlinearity in the different scales of Banach spaces and prove local-in-time existence theorem.. © 2009 Elsevier

Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 71, série Mathéma- tiques, n o 20 (1982),

(1) The bomology is linearly generated, i.e.. Hence by the Uniform Boundedness Principle the canonical and the pointwise bornology of E’ coincide.. in the sense

Bien sûr, on peut décrire, de plusieurs manières naturelles, la catégorie ^ comme limite inductive dans Cat de catégo- ries plus simples, mais ceci est sans intérêt pour la suite..

A est bien convexe, fermé et on montre par le théorème d’Ascoli que A

Mais nous montrons dans un second temps que la fa¸con dont Peano lit Pasch est comple`te- ment tributaire de son engagement ante´rieur dans la tradition grassmannienne : le segment

Ce mot, jamais défini mais d’usage constant, fait penser à ce qui peut être dessiner par un crayon. On pense donc au support d’une