• Aucun résultat trouvé

Basis of method for predicting thermal stresses and deformations in frozen soils

N/A
N/A
Protected

Academic year: 2021

Partager "Basis of method for predicting thermal stresses and deformations in frozen soils"

Copied!
54
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Technical Translation (National Research Council of Canada), 1976

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=a261d401-48ba-43a3-9906-aa59715c06ea https://publications-cnrc.canada.ca/fra/voir/objet/?id=a261d401-48ba-43a3-9906-aa59715c06ea

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20359113

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Basis of method for predicting thermal stresses and deformations in

frozen soils

Grechishchev, S. E.; National Research Council of Canada. Division of

Building Research

(2)

CANADA INSTITUTE

FOR SCIENTIFIC AND TECHNICAL

INFORMATION

I S S N 0 0 7 7

-

5 6 0 6

I NSTITUT CANADl EN

DE L'INFORMATION SClENTlFlQLlE

ET TECHNIQUE

TECHNICAL TRANSLATION TRADUCTION TECHNIQUE

S.E. GRECHISHCHEV

B A S I S OF METHOD FOR P R E D I C T I N G THERMAL STRESSES

AND DEFORMATIONS I N FROZEN S O I L S

MINISTERSTVO G E O L O G I I SSSR.

VSESOYUZNYI

NAUCHNO-ISSLEDOVATEL ' S K I

I INSTITLIT GIDROGEOLOGI I I

INZHENERNOI GEOLOGI I

(VSEGINGEO)

.

MOSCOW, 1 9 7 0 .

53 PP.

TRANSLATED BY ITRADUCTION DE

V. POPPE

I S I S THE TWO HUNDRED AND TWENTY-EIGHTH I N THE S E R I E S OF TRANSLATIONS

PREPARED FOR THE D I V I S I O N

OF B U I L D I N G RESEARCH

4 , , ,

TRADUCTION NLIMERO

228

DE L A S E R I E PRkPAREE POUR

L A D I V I S I O N DES RECHERCHES EN BATIMENT

OTTAWA

National Research

Conseil national

(3)

NATIONAL RESEARCH COUNCIL OF CANADA CONSEIL NATIONAL DE RECHERCHES DU CANADA

TECHNICAL TRANSLATION 1886 TRADUCTION TECHNIQUE B a s i s of method f o r p r e d i c t i n g t h e r m a l s t r e s s e s and d e f o r m a t i o n s i n f r o z e n s o i l s (K osnovam m e t o d i k i prognoza t e m p e r a t u r n y k h n a p r y a z h e n i i i d e f o r m a t s i i v m e r z l y k h g r u n t a k h ) A u t h o r /Aut e u r : S .E. G r e c h i s h c h e v R e f e r e n c e / R g f Grence: M i n i s t e r s t v o G e o l o g i i SSSR. V s e s o y u z n y i Nauchno- I s s l e d o v a t e l ' s k i i I n s t i t u t G i d r o g e o l o g i i i I n z h e n e r n v i G e o l o g i i (vSEGINGEO). Moscow, 1970. 53pp. T r a n s l a t o r / T r a d u c t e u r : V. Poppe, T r a n s l a t i o n S e r v i c e s / S e r v i c e d e t r a d u c t i o n Canada I n s t i t u t e f o r I n s t i t u t c a n a d i e n d e S c i e n t i f i c and T e c h n i c a l 1

'

i n £ ormat i o n s c i e n t i f i q u e e t I n £ orma t i o n t e c h n i q u e O t t a w a , Canada

KlA

OS2

(4)

PREFACE

The i n f l u e n c e o f t e m p e r a t u r e on t h e s t r e n g t h and deformation b e h a v i o u r of f r o z e n ground i s o f p a r t i c u l a r i n t e r e s t t o t h e D i v i s i o n of B u i l d i n g Research i n i t s s t u d i e s of p e r m a f r o s t . T h i s p a p e r d e a l s w i t h some of t h e fundamental f a c t o r s t o b e considered i n a s s e s s i n g and p r e d i c t i n g c r e e p t h e r m a l s t r e s s e s and d e f o r m a t i o n s of f r o z e n s o i l s .

The D i v i s i o n wishes t o r e c o r d i t s t h a n k s t o M r . V. Poppe of t h e T r a n s l a t i o n S e r v i c e s , CISTI, who t r a n s l a t e d t h i s p a p e r and t o M r .

G.H. J o h n s t o n of DBR, who checked t h e t r a n s l a t i o n f o r t e c h n i c a l a c c u r a c y . O t t awa November 1976 C

.

B

.

Crawf o r d

,

D i r e c t o r , D i v i s i o n of B u i l d i n g Research

(5)

T a b l e of C o n t e n t s

Page

Chapter I. Some Data on t h e Mechanical P r o p e r t i e s of

F r o z e n s o i l s . . . 4

1. Creep

. . .

.

. .

.

. . .

.

. .

.

.

. . .

4

2. R e l a x a t i o n

. .

. . .

.

.

. . .

. . .

.

. .

8

3. S t r e n g t h

. . .

11

Chapter 11. Thermal Deformation of F r o z e n S o i l s

. . . .

.

. . .

1 6 1. General

.

.

.

.

. . . .

.

. . .

.

. .

.

. .

1 6 2. Some E x p e r i m e n t a l Data on Thermal Deformation of Frozen S o i l s

.

. . .

.

. . .

. . .

. .

.

. .

18

3. Main P a t t e r n s of Thermal Deformation of F r o z e n S o i l s

. .

.

.

. .

.

. .

.

. . .

.

.

.

1 9 C h a p t e r 111. Thermal S t r e s s e s i n U n d i s t u r b e d Frozen Ground

. . .

28

1. E q u a t i o n of One-dimensional Thermo-rheological S t a t e of F r o z e n s o i l .

. .

.

. . .

.

. . .

.

.

.

28 2. Thermal S t r e s s e s During F r e e z i n g of t h e A c t i v e Layer

. . .

.

.

.

. . . .

.

.

.

. . . .

. .

. .

32 3 . Thermal S t r e s s e s i n a F r o z e n A c t i v e Layer

. .

.

38 R e f e r e n c e s

.

. .

. . .

.

.

.

.

.

. .

. .

. . .

.

.

50

(6)

Chapter I

SOME DATA ON THE MECIIANICAL PROPERTIES OF FROZEN SOILS

1. Creep

A t s t r e s s e s exceeding t h e u l t i m a t e long-term s t r e n g t h , t h e t o t a l d e f o r m a t i o n of f r o z e n s o i l s may b e r e p r e s e n t e d a s a sum of t h e i n i t i a l e l a s t i c d e f o r m a t i o n

EH, t h e e l a s t i c d e f o r m a t i o n E and t h e v i s c o u s - p l a s t i c f l o w & (Vyalov, 1959) :

3 n A t s t r e s s e s below t h e u l t i m a t e long-term s t r e n g t h , E i s a b s e n t . n The f i r s t two t e r m s i n e q u a t i o n (1.1) r e p r e s e n t a r e v e r s i b l e d e f o r m a t i o n , and t h e r e f o r e i n t h e t r e a t m e n t t h a t f o l l o w s we s h a l l u s e t h e f o l l o w i n g e x p r e s s i o n i n s t e a d of e q u a t i o n (1.1) : where tzYnP i s t h e r e v e r s i b l e ( c o n d i t i o n a l l y e l a s t i c ) d e f o r m a t i o n .

The r e l a t i o n s h i p between t h e r e v e r s i b l e d e f o r m a t i o n , s t r e s s and t i m e i s

d e s c r i b e d by t h e f o l l o w i n g n o n l i n e a r e q u a t i o n (Vyalov e t a l . , 1962):

where

a

i s t h e c o m p r e s s i v e o r t e n s i l e s t r e s s ,

A ( t ) i s t h e time-dependent modulus of n o n l i n e a r d e f o r m a t i o n , and

m i s t h e c o e f f i c i e n t of n o n l i n e a r i t y .

S i n c e i t i s d i f f i c u l t t o u s e t h e n o n l i n e a r e q u a t i o n ( 1 . 3 ) i n c a l c u l a t i o n s , we may u s e , i n t h e f i r s t a p p r o x i m a t i o n , a l i n e a r e x p r e s s i o n on t h e a s s u m p t i o n t h a t m

-

1, i . e . :

(7)

where E ( t ) i s t h e time-dependent modulus of l i n e a r d e f o r m a t i o n which v a r i e s between i t s i n s t a n t a n e o u s v a l u e E Mr' a t t = 0 t o i t s long-term v a l u e Em a t t +

Em

and E Wr d i f f e r from each o t h e r and Em may exceed E

m

by a f a c t o r of 1 0 o r more.

The d e f o r m a t i o n modulus d u r i n g compression i s q u i t e d i f f e r e n t from t h a t d u r i n g t e n s i o n . During compression t h e i n s t a n t a n e o u s v a l u e of t h e modulus i s

l e s s t h a n d u r i n g t e n s i o n , w h i l e t h e long-term v a l u e i s g r e a t e r d u r i n g compression t h a n d u r i n g t e n s i o n . For example, f o r f r o z e n sand a t - 3 " ~ , t h e i n s t a n t a n e o u s d e f o r m a t i o n moduli a r e : 2 x

l o 3

kg/cm2 d u r i n g t h e compression and 5 x

l o 3

kg/cm2 d u r i n g t e n s i o n . The long-term v a l u e s a r e : 0.6 x

l o 3

kg/cm2 d u r i n g compression and 0.4 x

l o 3

kg/cm2 d u r i n g t e n s i o n . S i m i l a r d a t a were p r e s e n t e d g r a p h i c a l l y by S . E . G o r o d e t s k i i (1969).

Changes i n t h e d e f o r m a t i o n modulus i n r e l a t i o n t o t e m p e r a t u r e may be r e p r e s e n t e d a s f o l l o w s :

where

a l ,

61

and K 1 a r e e m p i r i c a l c o e f f i c i e n t s , and

8

i s t h e a b s o l u t e n e g a t i v e t e m p e r a t u r e i n O'C. C o n s i d e r i n g t h a t t h e f i r s t term i n e q u a t i o n (1.5) i s s m a l l compared t o t h e second t e r m , we s h a l l u s e t h e f o l l o w i n g s i m p l i f i e d e x p r e s s i o n i n t h e t r e a t m e n t t h a t f o l l o w s : E x p r e s s i o n (1.6) h o l d s f o r b o t h i n s t a n t a n e o u s and long-term v a l u e s of t h e d e f o r m a t i o n modulus, a l t h o u g h t h e e m p i r i c a l c o e f f i c i e n t s i n i t w i l l d i f f e r

.

According t o N. A. T s y t o v i c h (1937), f o r t h e i n s t a n t a n e o u s v a l u e s we may t a k e K

-

1 . 0 , i . e . , t h e dependence i s l i n e a r . However, a c c o r d i n g t o o t h e r a u t h o r s ,

e . g . , A. D. F r o l o v and A . A . Smirnov ( 1 9 6 1 ) , who measured t h e speed of u l t r a - sound i n f r o z e n s o i l , K 1

<<

1.

(8)

A t s t r e s s e s exceeding t h e u l t i m a t e long-term s t r e n g t h , f r o z e n s o i l b e g i n s t o c r e e p a t a c o n s t a n t r a t e which i s p r o p o r t i o n a l t o t h e d i f f e r e n c e between t h e a p p l i e d s t r e s s and t h e u l t i m a t e long-term s t r e n g t h . The r e l a t i o n s h i p between t h e c r e e p r a t e and t h e s t r e s s i s u s u a l l y n o n l i n e a r and i s d e s c r i b e d by a n n e m p i r i c a l e x p r e s s i o n suggested by S. S. Vyalov (1959) : 4 m

L,,=q-(6-64~)

,

( 1 - 7 ) where q i s t h e c o e f f i c i e n t of p l a s t i c v i s c o s i t y ,

a

i s t h e a p p l i e d s t r e s s , 0 i s t h e u l t i m a t e long-term s t r e n g t h , and Wr m i s t h e c o e f f i c i e n t of n o n l i n e a r i t y .

Expression (1.7) h o l d s f o r any u n i a x i a l t y p e s of s t r e s s : u n i a x i a l compres- s i o n , t e n s i o n , and pure s h e a r , b u t t h e e m p i r i c a l f a c t o r s rl and U

m

w i l l be

d i f f e r e n t i n each i n d i v i d u a l c a s e .

There a r e c o n s i d e r a b l e d i f f e r e n c e s between t h e c o e f f i c i e n t s of p l a s t i c v i s c o s i t y d u r i n g compression q and d u r i n g t e n s i o n rl :

P rlc i s 2 t o

4

t i m e s C

g r e a t e r t h a n q

.

According t o our own r e s u l t s (1963), f o r f r o z e n sand a t - 3 ' ~ : P

QC = 0.4 x

l o *

kg*days/cm2 and 17 = 0.1 x

l o *

kg*days/cm2; f o r

P

*

f r o z e n s u g l i n o k a t t h e same t e m p e r a t u r e :

rlC = 1.2 x

l o 4

kg*days/cm2, 17 P = 0.67 x

l o 4

kg*days/cm2.

The c o e f f i c i e n t s of p l a s t i c v i s c o s i t y a r e s t r o n g l y dependent on t e m p e r a t u r e . According t o S. E. G o r o d e t s k i i (1969), t h i s dependence may b e r e p r e s e n t e d a s

f o l l o w s :

where q o , B 2 and K 2 a r e e m p i r i c a l c o e f f i c i e n t s , and 8 i s t h e a b s o l u t e n e g a t i v e

t e m p e r a t u r e , O C .

*

"Suglinok"

-

c l a y e y s i l t w i t h some sand, c l a y e y s i l t y loam; c o n t a i n s 1 0 t o 30% c l a y by weight w i t h c l a y p a r t i c l e s l e s s t h a n 0.005 mm i n s i z e .

(9)

The f i r s t term i n e x p r e s s i o n (1.8) i s u s u a l l y c o n s i d e r a b l y s m a l l e r t h a n t h e second term. T h e r e f o r e , i n t h e t r e a t m e n t t h a t f o l l o w s , we s h a l l u s e t h e f o l l o w i n g s i m p l i f i e d e x p r e s s i o n i n s t e a d of (1.8) :

For c o a r s e - g r a i n e d and sandy s o i l s , t h e n o n l i n e a r i t y coef f i c i e n t m i n e x p r e s s i o n (1.7) i s a p p r o x i m a t e l y e q u a l t o u n i t y . For c l a y e y s o i l s , m > 1 and i n c r e a s e s w i t h t h e i n c r e a s e i n t h e c l a y f r a c t i o n . The r a t e of v i s c o u s - p l a s t i c f l o w d u r i n g s h e a r i n t h e p r e s e n c e of normal s t r e s s e s depends on t h e l a t t e r , a s d e s c r i b e d by t h e f o l l o w i n g e x p r e s s i o n which r e p r e s e n t s t h e b a s i c law of t h e v i s c o u s - p l a s t i c f l o w of f r o z e n s o i l s : where i s t h e r a t e of t h e v i s c o u s - p l a s t i c s h e a r d e f o r m a t i o n , T i s t h e a c t i n g s h e a r s t r e s s , 0 i s t h e normal s t r e s s , @ i s t h e u l t i m a t e long-term v a l u e of t h e a n g l e of i n t e r n a l f r i c t i o n , C i s t h e long-term v a l u e of t h e c o e f f i c i e n t of c o h e s i o n , WI i s t h e c o e f f i c i e n t of p l a s t i c v i s c o s i t y , and m i s t h e n o n l i n e a r i t y f a c t o r . The c o e f f i c i e n t s @,

Cm'

m and

rl

depend on t h e p h y s i c a l p r o p e r t i e s of t h e s o i l and a r e determined e x p e r i m e n t a l l y .

Let u s n o t e t h a t C i s s t r o n g l y dependent on t h e t e m p e r a t u r e and i n c r e a s e s ,

Jm

a s t h e t e m p e r a t u r e d r o p s , a p p r o x i m a t e l y a s f o l l o w s ( T s y t o v i c h , 1958):

The f i r s t term i n (1.11) may b e n e g l e c t e d , and we may u s e t h e f o l l o w i n g approximate e x p r e s s i o n :

(10)

According t o Vyalov (1959), K g

"

0.5. According t o Grechishchev, f o r sand B 3 = 1

-

2 kg/cm2 ( d e g l K 3 and f o r s u g l i n o k 0g = 0.5

-

1 . 5 kg/cm2 ( d e g ) K 3 . The e m p i r i c a l c o e f f i c i e n t s rl and m i n e x p r e s s i o n (1.10) depend on t h e p h y s i c a l

p r o p e r t i e s of t h e s o i l , a s was t h e c a s e w i t h t h e same c o e f f i c i e n t s i n e x p r e s s i o n ( 1 . 7 ) .

C o m p r e s s i b i l i t y of f r o z e n s o i l s i s low. According t o Brodskaya (1962),

*

f r o z e n sands cannot be compressed below -0. ~ O C , f r o z e n s u p e s e s below -2. O'C,

and f r o z e n s u g l i n o k s and c l a y s below - 4 . 0 ' ~ .

2. R e l a x a t i o n

Many a u t h o r s c a r r i e d o u t experiments t o d e r i v e e q u a t i o n s d e s c r i b i n g t h e r h e o l o g i c a l s t a t e of v a r i o u s m a t e r i a l s . S i m i l a r s t u d i e s were done on f r o z e n

s o i l s a s w e l l (Vyalov, 1959; V o i t k o v s k i i , 1961; Grechishchev, 1961, 1963; Vyalov, 1962)

.

Equations d e r i v e d i n t h e s e i n v e s t i g a t i o n s were based on

e x p e r i m e n t a l c r e e p d a t a . S t r e s s r e l a x a t i o n was s t u d i e d t h e o r e t i c a l l y and i n t h e c a s e of f r o z e n s o i l s was checked e x p e r i m e n t a l l y o n l y r e c e n t l y (Vyalov, Ermakov, 1966; G o r o d e t s k i i , 1969). S t u d i e s of c r e e p showed t h a t s e v e r a l e q u a t i o n s of s t a t e c o u l d be s u g g e s t e d . For example, t h e r e s u l t s of e x p e r i m e n t a l i n v e s t i g a t i o n s of c r e e p i n f r o z e n s o i l s c a n b e d e s c r i b e d e q u a l l y w e l l by e q u a t i o n s of n o n l i n e a r i n h e r i t e d c r e e p (Vyalov, 1959) and e q u a t i o n s of n o n l i n e a r f l o w (Grechishchev, 1961; V o i t k o v s k i i , 1961). However, i f t h e same e q u a t i o n s a r e s o l v e d w i t h r e s p e c t t o s t r e s s e s a t c o n s t a n t d e f o r m a t i o n , i . e . , on proceeding from c r e e p t o r e l a x a t i o n , t h e r e s u l t s w i l l b e v a s t l y d i f f e r e n t , and t h i s i s c o m p l e t e l y u n a c c e p t a b l e i n c a l c u l a t i o n s of t h e s t a t e of t h e r m a l s t r e s s of f r o z e n s o i l , where s t r e s s r e l a x a t i o n i s of primary importance

.

By way of i l l u s t r a t i o n , we s h a l l c i t e t h e i n t e r e s t i n g a t t e m p t by Lachen- bruch (1962) t o c a l c u l a t e t h e f i e l d of t e m p e r a t u r e s t r e s s e s i n f r o z e n s o i l . S i n c e Lachenbruch p o s t u l a t e d t h i s a s a problem of t e m p e r a t u r e s t r e s s e s i n a c o n t i n u o u s semispace, t h e s t r e s s f i e l d d i f f e r e d from z e r o , w h i l e d i s p l a c e m e n t s

*

"Supes"

-

s i l t y sand w i t h c l a y , sandy s i l t y loam; c o n t a i n s 3 t o 10% c l a y by

(11)

a l o n g t h e c o o r d i n a t e a x e s (except v e r t i c a l d i s p l a c e m e n t ) were z e r o , i . e . , it was a c a s e of r e l a x a t i o n . The p r o p e r t i e s of f r o z e n s o i l were i n t e r p r e t e d by Lachenbruch f i r s t w i t h t h e h e l p of t h e Maxwell e q u a t i o n ( c a s e 1 ) and t h e n u s i n g t h e model of n o n l i n e a r f l o w ( c a s e 2 ) . C a l c u l a t i o n s showed t h a t a f t e r a b r u p t changes i n t h e s o i l t e m p e r a t u r e , t h e s t r e s s was reduced by 90% i n t h e c o u r s e of o n e day i n c a s e 1, and i n t h e c o u r s e of one week i n c a s e 2, i. e.

,

t h e r e s u l t s of c a l c u l a t i o n d i f f e r e d by a f a c t o r of

7 .

T h e r e f o r e , i n c a s e s where t h e s t r e s s f i e l d v a r i e s w i t h t i m e , t h e s e l e c t e d e q u a t i o n of s t a t e must b e i n good agreement w i t h t h e r e s u l t s of t h e r e l a x a t i o n t e s t s .

The e q u a t i o n s of s t a t e were v e r i f i e d e x p e r i m e n t a l l y i n r e l a x a t i o n t e s t s on f r o z e n s o i l s i n v o l v i n g b o t h t e n s i o n and u n i a x i a l compression. The r e s u l t s of some of t h e s e t e s t s a r e summarized i n T a b l e I.

It may b e ' s e e n from T a b l e I t h a t a t i n i t i a l s t r e s s e s g r e a t e r t h a n t h e u l t i m a t e long-term t e n s i l e s t r e n g t h , s t r e s s r e l a x a t i o n w i l l occur up t o t h e u l t i m a t e long-term s t r e n g t h i r r e s p e c t i v e of t h e i n i t i a l s t r e s s . However, i f

i n i t i a l s t r e s s e s a r e l e s s t h a n t h e u l t i m a t e long-term s t r e n g t h , r e l a x a t i o n i s i n s i g n i f i c a n t

.

S i m i l a r c o n c l u s i o n s were reached by Vyalov and Ermakov (1966) who noted t h a t t h e r e i s a c e r t a i n s t r e s s l i m i t below which r e l a x a t i o n and hence c r e e p a r e p r a c t i c a l l y a b s e n t .

Experimental v e r i f i c a t i o n of t h e e q u a t i o n s of s t a t e showed t h a t i f t h e

i n i t i a l stresses exceed t h e u l t i m a t e long-term s t r e n g t h , t h e e x p e r i m e n t a l r e s u l t s a r e d e s c r i b e d b e s t by t h e e q u a t i o n of s t a t e f o r a n e l a s t i c - v i s c o u s body s u g g e s t e d by I s h l i n s k i i and R z h a n i t s y n and modified f o r f r o z e n s o i l s by Vyalov (1962). However, i t i s v e r y d i f f i c u l t t o u s e t h i s e q u a t i o n i n p r a c t i c e s i n c e , a s a f i r s t

s t e p , i t must b e g e n e r a l i z e d f o r t h e c a s e of complex s t r e s s e d s t a t e f o r which f u r t h e r i n v e s t i g a t i o n s a r e r e q u i r e d .

Theref o r e , w i t h a l l o w a n c e s f o r t h e f a c t t h a t r e l a x a t i o n i s n e g l i g i b l e a t i n i t i a l s t r e s s e s l e s s t h a n t h e u l t i m a t e long-term s t r e n g t h , we c a n u s e , a s a n a p p r o x i m a t i o n , a s i m p l i f i e d e q u a t i o n of s t a t e of t h e Bingam-Shvedov t y p e :

(12)

I t s s o l u t i o n f o r t h e c a s e of r e l a x a t i o n

( t

= 0) a t OH > 0 is:

m

6 = 6,. + (6.- ~..)-CXP(-

v)

,

(1.14) and a t 6'" B 6 4 4

6'

= C O ~ S ~ .

.

(1.15) The l a s t e q u a t i o n shows t h a t i n a c c o r d a n c e w i t h e q u a t i o n (1.13) t h e r e i s no r e l a x a t i o n a t CJ < CJ A s was noted e a r l i e r , t h i s i s q u i t e f e a s i b l e . A t H An' > 0 e q u a t i o n (1.14) y i e l d s a r e l a x a t i o n c u r v e which i s less s t e e p t h a n OH

m y

t h e e x p e r i m e n t a l c u r v e . The d i f f e r e n c e , however, i s n o t v e r y g r e a t (10

-

1 5 % ) . Furthermore, i n t h e c a l c u l a t i o n of t h e s t a t e of t h e r m a l s t r e s s , t h i s w i l l y i e l d e x a g g e r a t e d v a l u e s of t h e s t r e s s , which w i l l improve t h e s a f e t y f a c t o r . E q u a t i o n (1.13) was d e r i v e d f o r t h e s t a t e of u n i a x i a l s t r e s s ( t e n s i o n o r compression). It c a n be g e n e r a l i z e d f o r t h e s t a t e of complex s t r e s s a s was s u g g e s t e d e a r l i e r (Grechishchev, 1963). T h i s a u t h o r f e e l s t h a t t h e f o l l o w i n g e q u a t i o n should b e used i n t h e f i n a l c a l c u l a t i o n of t h e s t a t e of t h e r m a l s t r e s s of f r o z e n s o i l : where rl i s t h e c o e f f i c i e n t of p l a s t i c v i s c o s i t y , t g 0 i s t h e c o e f f i c i e n t of i n t e r n a l f r i c t i o n , T

m

i s t h e u l t i m a t e long-term s t r e n g t h i n t h e c a s e of p u r e s h e a r , GH i s t h e s h e a r modulus, S i s t h e o c t a h e d r a l s h e a r s t r e s s , H i s t h e r a t e of s h e a r . 0

.

T

...

a r e t h e s t r e s s components, X x Y b

...,

T x y . . .

a r e t h e components.,of s t r a i n r a t e s , X

(13)

3 . S t r e n g t h

It i s e v i d e n t t h a t f o r t h e same s o i l t h e r e may b e any number of r e l a x a t i o n c u r v e s d e f i n e d by e q u a t i o n ( 1 . 1 4 ) , depending on t h e i n i t i a l s t r e s s OH. I t i s assumed t h a t t h e u l t i m a t e r e l a x a t i o n c u r v e i s t h e c u r v e of long-term s t r e n g t h ( a t OH = 0 where Om i s t h e i n s t a n t a n e o u s s t r e n g t h ) . T h e r e f o r e , i n t h e o r y , M r

'

t h e e q u a t i o n f o r t h e c u r v e of long-term s t r e n g t h i s o b t a i n e d from e q u a t i o n (1.14) i n t h e f o l l o w i n g form:

where t i s t h e t i m e p r i o r t o f a i l u r e under t h e l o a d 0

,

and T = l /i s ~t h e ~

P nP

r e l a x a t i o n time.

By t p i s meant t h e moment of t r a n s i t i o n from t h e d e f o r m a t i o n s t a g e t o t h e a c c e l e r a t i n g s t a g e of c r e e p .

For f r o z e n s o i l s , t h e i n s t a n t a n e o u s and long-term compression s t r e n g t h i s

2 t o 4 t i m e s h i g h e r t h a n t h e i n s t a n t a n e o u s and long-term t e n s i l e s t r e n g t h . The r e l a x a t i o n t i m e i n t h e c a s e of compression may b e 2 t o 1 0 t i m e s l o n g e r t h a n i n t h e c a s e of t e n s i o n .

F i g u r e 1 shows t h e e x p e r i m e n t a l c u r v e s of long-term s t r e n g t h f o r f r o z e n sand and s u g l i n o k . The r e l a x a t i o n t i m e f o r sand i n t h e c a s e of compression i s T = 1 0 d a y s and i n t h e c a s e of t e n s i o n T =

3.3

days. The c o r r e s p o n d i n g

C P

r e l a x a t i o n t i m e s f o r s u g l i n o k a r e T = 4.5 d a y s and T = 2 . 2 d a y s , r e s p e c t i v e l y .

C P

The i n s t a n t a n e o u s and long-term s t r e n g t h of f r o z e n s o i l s depends on t h e t e m p e r a t u r e i n t h e c a s e of b o t h compression and t e n s i o n . According t o T s y t o v i c h

(1958)

,

t h i s dependence may b e d e s c r i b e d by t h e f o l l o w i n g e m p i r i c a l e x p r e s s i o n :

where 0 i s t h e a b s o l u t e n e g a t i v e t e m p e r a t u r e , OC.

For f ine-grained s o i l s , t h e f i r s t term i n e x p r e s s i o n (1.18) i s u s u a l l y v e r y s m a l l compared t o t h e second term, and may b e o m i t t e d :

(14)

For some f r o z e n s o i l s we may t a k e n

'

0.5 ( ~ y a l o v , 1959).

The s t r e n g t h of f r o z e n s o i l s i s g r e a t l y a f f e c t e d by t h e i r w a t e r c o n t e n t ( i c e c o n t e n t ) . The s t r e n g t h i s a t a maximum a t a c e r t a i n water c o n t e n t c h a r a c t e r i s t i c of a g i v e n s o i l ( F i g u r e 2 ) .

I n problems concerning t h e s t a t e of t h e r m a l s t r e s s i n f r o z e n s o i l , t h e s t r e n g t h of s o i l and c o n d i t i o n s l e a d i n g t o i t s f a i l u r e under v a r i a b l e s t a t i c l o a d s a r e e s p e c i a l l y i m p o r t a n t . T h i s was i n v e s t i g a t e d t h e o r e t i c a l l y by Kachanov

(1961, 1967), who p o s t u l a t e d a g e n e r a l t h e o r y of f a i l u r e under c o n d i t i o n s of c r e e p f o r any m a t e r i a l s , and by Vyalov (1968) who c a r r i e d out a t h e o r e t i c a l s t u d y of t h e long-term s t r e n g t h of f r o z e n s o i l s under c o n d i t i o n s of v a r i a b l e l o a d s and temperature. E v i d e n t l y t h i s problem was n o t s t u d i e d e x p e r i m e n t a l l y .

According t o Vyalov (1968), t h e s t r e n g t h of f r o z e n s o i l s s u b j e c t e d t o v a r i a b l e s t a t i c l o a d s i s expressed a s f o l l o w s :

where

B

and B a r e c o n s t a n t s , t i s t h e time p r i o r t o f a i l u r e , and ~ ( t ) i s t h e P

s t r e s s which v a r i e s w i t h time.

I f t h e change i n ~ ( t ) i s known, t h e n t c a n b e determined from e q u a t i o n P

(1.20). I n p a r t i c u l a r , i f t h e change

i n

~ ( t ) i s g i v e n a s

i t f o l l o w s from e q u a t i o n (1.20) t h a t t i s d e s c r i b e d by t h e f o l l o w i n g e x p r e s s i o n : P

where

t,=Be

i s t h e t i m e p r i o r t o f a i l u r e under a c o n s t a n t l o a d T I .

To d e t e r m i n e t h e a p p l i c a b i l i t y of e q u a t i o n (1.20), t h i s a u t h o r c a r r i e d o u t a s e r i e s of experiments. The e x p e r i m e n t a l m a t e r i a l w a s k a o l i n c l a y c o n t a i n i n g

30% water a t - 3 " ~ . I t s t e n s i l e s t r e n g t h was: i n s t a n t a n e o u s 8.5 kg/cm2, long- term 1 . 2 kg/cm2. The specimens were s u b j e c t e d t o a t e n s i l e s t r e s s of 2.2 kg/cm2, which was k e p t c o n s t a n t f o r a c e r t a i n p e r i o d of t i m e and t h e n r a p i d l y i n c r e a s e d

(15)

( b u t w i t h o u t impact) u n t i l f a i l u r e o c c u r r e d . I n o t h e r words, we determined t h e temporary t e n s i l e s t r e n g t h a f t e r keeping t h e samples under a l o a d of 2.2 kg/cm2. The r e s u l t s of t h e s e experiments a r e shown i n T a b l e 11.

A s may b e s e e n from T a b l e 11, t h e temporary s t r e n g t h d e c r e a s e s v e r y l i t t l e i f a specimen i s preloaded f o r a s h o r t p e r i o d of t i m e , b u t l a t e r , a s t h e pre- l o a d i n g t i m e i n c r e a s e s and e v e n t u a l l y becomes e q u a l t o t h e t i m e t o f a i l u r e a t

0 = 2.2 kg/cm2, t h e temporary s t r e n g t h b e g i n s t o d e c r e a s e e x p o n e n t i a l l y .

S i n c e t h e l o a d was a p p l i e d Fn accordance w i t h e q u a t i o n ( 1 . 2 1 ) , t h e d e c r e a s e i n t h e temporary s t r e n g t h ( t h e s t r e s s T2) should have been d e s c r i b e d by e q u a t i o n (1.22) p r o v i d i n g t l = t (because i n t h e experiments t h e l o a d T 2 l e d t o f a i l u r e

P

a s soon a s t h e t i m e t 1 , i. e . , t h e time of a p p l y i n g t h e l o a d T i = 2.2 kg/cm2, was up). However, a s i n d i c a t e d by e q u a t i o n ( 1 . 2 2 ) , i t i s i m p o s s i b l e t o d e t e r m i n e

T 2 under such c o n d i t i o n s . Moreover, i n accordance w i t h e x p r e s s i o n ( 1 . 2 2 ) , no m a t t e r how g r e a t t h e second l o a d i n g s t a g e (K -+ a ) , t h e time t o f a i l u r e w i l l always b e l o n g e r t h a n t l . Consequently, t h e b a s i c e q u a t i o n (1.20) c o n t a i n s some

d i s c r e p a n c i e s , t h e e x t e n t of which must b e determined e x p e r i m e n t a l l y .

To d e t e r m i n e t h e t i m e t o f a i l u r e , Kachanov (1961) i n t r o d u c e d t h e "damage" f u n c t i o n

Ji

which i s e q u a l t o 1 when m a t e r i a l i s undamaged, and t o 0 when i t h a s f a i l e d . He suggested t h e f o l l o w i n g e q u a t i o n r e l a t i n g $ t o t h e s t r e s s : where A and n a r e c o n s t a n t s c h a r a c t e r i s t i c of a g i v e n m a t e r i a l . I n t h e c a s e of t o t a l f a i l u r e , )I = 0 and t h e t i m e t o f a i l u r e i s determined from t h e f o l l o w i n g e x p r e s s i o n : I f t h e l o a d s v a r y i n accordance w i t h ( 1 . 2 2 ) , i t f o l l o w s from (1.24) t h a t It f o l l o w s from t h e l a s t e x p r e s s i o n t h a t a t t l = t

,

K -+ a , i . e . , t h e P

(16)

t e m p o r a r y s t r e n g t h d o e s n o t d e c r e a s e , and r e m a i n s i n d e f i n i t e l y l a r g e i r r e s p e c t i v e of t h e p r e l o a d i n g t i m e . A s may b e s e e n from T a b l e 11, t h i s t o o c o n t r a d i c t s t h e e x p e r i m e n t a l d a t a . We s h o u l d n o t e t h a t t h e problem of t h e s t r e n g t h o f f r o z e n s o i l s s u b j e c t e d t o v a r i a b l e s t a t i c l o a d s e v i d e n t l y r e m a i n s u n s o l v e d . I t i s a v e r y i m p o r t a n t problem, e s p e c i a l l y i n t h e c a s e of t h e r m a l s t r e s s e s ( w h i c h , i n c i d e n t l y , may a l s o c h a n g e s i g n s ) . Hence, f u r t h e r i n v e s t i g a t i o n s a r e e s s e n t i a l . T a b l e I S t r e s s r e l a x a t i o n d u r i n g t e n s i o n (sand c o n t a i n i n g 20% w a t e r , t e m p e r a t u r e -3°C) Note: 0 = 1.8 kg/cm2 d e t e r m i n e d i n c r e e p t e s t s .

-

Wr I n i t i a l s t r e s s S t r e s s 0 , kg/cm2

a,,

kg/cm2

t

A f t e r A f t e r ( ~ f t e r A f t e r No. o f t e s t s

(17)

T a b l e I1 T e n s i l e t e s t s on f r o z e n k a o l i n c l a y c o n t a i n i n g 30% w a t e r a t - 3 ' ~

-

- - .- - - - .- . - .. P r e l o a d i n g t i m e ,

a

= 2 . 2 kg/cm2, h r Temporary s t r e n g t h a £ t e r p r e l o a d i n g

a

= 2 . 2 kg/cm2 No. of t e s t s F i g . 1 Long-term s t r e n g t h of f r o z e n s u g l i n o k ( a ) , a n d f r o z e n s a n d ( b ) : 1

-

u n d e r c o m p r e s s i o n , 2

-

u n d e r t e n s i o n F i g . 2 C o m p r e s s i v e s t r e n g t h of f r o z e n s o i l a s a f u n c t i o n of i t s t o t a l w a t e r c o n t e n t ( a f t e r T s y t o v i c h ) 1

-

s a n d ; 2

-

s u p e s ; 3

-

c l a y ; 4

-

s i l t y c l a y

(18)

Chapter I1

THERMAL DEFORMATION OF FROZEN SOILS

1. General

There have been v e r y few q u a n t i t a t i v e s t u d i e s of t h e r m a l d e f o r m a t i o n s and s t r e s s e s i n f r o z e n s o i l s . There a r e two r e a s o n s f o r t h i s . F i r s t l y , i t i s d i f f i c u l t t o c a r r y out e x p e r i m e n t a l i n v e s t i g a t i o n s of t h e s e phenomena under n a t u r a l c o n d i t i o n s . Secondly, t h e r m a l d e f o r m a t i o n s and s t r e s s e s i n f r o z e n s o i l s a r e o f t e n r e g a r d e d i n our c o n s t r u c t i o n p r a c t i c e s i n t h e North and N o r t h e a s t a s phenomena of secondary importance, a l t h o u g h t h e r e i s no j u s t i f i c a t i o n f o r t h i s . I t i s known from e x p e r i e n c e t h a t t h e r m a l d e f o r m a t i o n , and e s p e c i a l l y development of f r o s t f i s s u r e s , may r e s u l t i n t o t a l d e s t r u c t i o n of e n g i n e e r i n g s t r u c t u r e s

(Grechishchev, Zhigul' s k i i , 1969).

Experimental s t u d i e s of t h e r m a l d e f o r m a t i o n of f r o z e n s o i l s were i n i t i a t e d by P.V. Shvetsov and I . N . Votyakov (1963, 1966) a t t h e P e r m a f r c s t I n s t i t u t e i n Yakutsk. These s t u d i e s showed t h a t f r o z e n s o i l s have an abnormally l a r g e

c o e f f i c i e n t of t h e r m a l expansion between O O C and

-loOc,

i . e . , w i t h i n a t e m p e r a t u r e

r a n g e which i s important i n p r a c t i c e . For example, t h e c o e f f i c i e n t of thermal expansion of some c l a y s o i l s (Votyakov, 1966) i s about 300 x I l d e g between -1. O"C and - 0 . 4 " ~ , and a b o u t 100 x I / d e g between - 8 . 0 ' ~ and - 3 . 6 ' ~ . L e t u s r e c a l l t h a t t h e l a r g e s t c o e f f i c i e n t e v e r recorded i s 100 x I l d e g

(capron*)

.

Normal t h e r m a l expansion c o e f f i c i e n t s of b u i l d i n g m a t e r i a l s a r e

1 4 x I l d e g ( c o n c r e t e ) and 1 2 x 1/deg ( s t e e l ) . According t h e Votyakov, t h e c o e f f i c i e n t of i c e , which i s one of t h e components of f r o z e n s o i l , i s

35 t o 50 x I / d e g .

Furthermore, t h e c o e f f i c i e n t of t h e r m a l expansion of f r o z e n s o i l i s v e r y s t r o n g l y dependent on t h e t e m p e r a t u r e ; i t d e c r e a s e s almost e x p o n e n t i a l l y w i t h a n i n c r e a s e i n t h e a b s o l u t e temperature. Consequently, t h e dependence of t h e r m a l

(19)

d e f o r m a t i o n on t h e i n i t i a l and f i n a l s o i l t e m p e r a t u r e i s d i s t i n c t l y n o n l i n e a r .

A l l t h e s e f a c t s i n d i c a t e t h a t t h e mechanism of t h e r m a l d e f o r m a t i o n and s t r e s s e s i n f r o z e n s o i l s i s more complex t h a n i n o t h e r m a t e r i a l s . T h i s may b e e x p l a i n e d by t h e multicomponent s t r u c t u r e of f r o z e n s o i l s and t h e p h y s i c a l p r o p e r t i e s of p h a s e components: t h e c o l l o i d a l p r o p e r t i e s of m i n e r a l p a r t i c l e s and t h e s p e c i f i c c h a r a c t e r i s t i c s of u n f r o z e n w a t e r f i l m s .

A t t e m p t s t o p o s t u l a t e a g e n e r a l t h e o r y of t h e r m a l e x p a n s i o n of two-

component systems were made by V.M. Levin ( 1 9 6 7 ) , S.D. Volkov (1968) and o t h e r s . However, e q u a t i o n s d e r i v e d by t h e s e a u t h o r s c a n n o t b e a p p l i e d t o f r o z e n f i n e - g r a i n e d c l a y s o i l s , s i n c e t h e s e f o r m u l a e do n o t a c c o u n t f o r t h e r h e o l o g i c a l p r o p e r t i e s , t h e i n t e r n a l phase t r a n s i t i o n s of u n f r o z e n w a t e r t o i c e , and t h e s t r u c t u r a l c h a r a c t e r i s t i c s of f r o z e n s o i l s . N e v e r t h e l e s s , t h e y may b e u s e f u l i n t h e c a s e of low-temperature f r o z e n c o a r s e - g r a i n e d and sandy s o i l s , which i n t h e f i r s t a p p r o x i m a t i o n may b e r e g a r d e d a s two-component systems ( m i n e r a l

p a r t i c l e s and ice-cement). However, t h e r e i s s t i l l no e x p e r i m e n t a l c o n f i r m a t i o n f o r a l l t h i s .

The c o m p l e x i t y of p r o c e s s e s t a k i n g p l a c e w i t h i n f r o z e n f i n e - g r a i n e d s o i l s d u r i n g t h e r m a l e x p a n s i o n c a n o n l y b e g u e s s e d a t . For example, Votyakov (1966) s u g g e s t s t h a t , t o g e t h e r w i t h t h e phase t r a n s i t i o n of w a t e r f i l m s , t h e physico- c h e m i c a l c o a g u l a t i o n - p e p t i z a t i o n t r a n s i t i o n and i n t e r n a l s t r u c t u r a l t r a n s f o r - m a t i o n s a r e a l s o e x t r e m e l y i m p o r t a n t . Votyakov came t o t h i s c o n c l u s i o n

b e c a u s e s o i l s t e s t e d by him a t "high" t e m p e r a t u r e s (about - 1 ' ~ ) r e t a i n e d a p o s i t i v e c o e f f i c i e n t of t h e r m a l e x p a n s i o n , i . e . , t h e t e m p e r a t u r e i n c r e a s e was accompanied by s o i l e x p a n s i o n r a t h e r t h a n by t h e e x p e c t e d c o n t r a c t i o n due t o a p a r t i a l t r a n s i t i o n of i c e t o l i q u i d w a t e r .

On t h e b a s i s of contemporary i d e a s on t h e p h y s i c s of f r o z e n s o i l s , we may assume t h a t a change i n t h e volume of f r o z e n s o i l s d u r i n g t e m p e r a t u r e changes i s accompanied by s e v e r a l d i f f e r e n t i n t e r n a l p r o c e s s e s proceeding i n d i f f e r e n t d i r e c t i o n s . These a r e : 1) c o n v e n t i o n a l expansion o r c o n t r a c t i o n of s o i l components; 2 ) c o n t i n u o u s e q u i l i b r i u m t r a n s i t i o n s a t t h e i n t e r f a c e " i c e

-

u n f r o z e n w a t e r " , which have s i g n s o p p o s i t e t o t h o s e of e x p a n s i o n o r c o n t r a c t i o n ; and 3 ) t h e r m a l d e f o r m a t i o n of i n t e r n a l m i c r o s t r u c t u r e s , which i s r e l a t e d t o t h e a f o r e m e n t i o n e d p r o c e s s e s b u t t h e s i g n of which i s d i f f i c u l t t o d e t e r m i n e , s i n c e

(20)

i t i s t o some e x t e n t a r e s u l t a n t of "normal" t h e r m a l expansion and i n t e r n a l phase t r a n s i t i o n s . E v i d e n t l y i t was Shvetsov (1958) who f i r s t p a i d a t t e n t i o n t o t h e p e c u l i a r p h y s i c a l a s p e c t s of t h e r m a l expansion of f r o z e n s o i l s .

C o n s i d e r i n g a l s o t h a t a l l components of f r o z e n s o i l a r e i n a m e c h a n i c a l i n t e r a c t i o n w i t h each o t h e r ( e . g . , t h e i n t e r n a l p h a s e t r a n s i t i o n s should r e s u l t

i n a c o n s i d e r a b l e h y d r o s t a t i c p r e s s u r e t r a n s m i t t e d by w a t e r f i l m s t o m i n e r a l p a r t i c l e s and i c e ) , we must a g a i n c o n c l u d e t h a t t h e mechanism of t h e r m a l d e f o r m a t i o n i s v e r y complex and t h a t i t i s d i f f i c u l t t o p o s t u l a t e even a n

a p p r o x i m a t e t h e o r y . I n t h e meantime, we c a n m e r e l y p r o v i d e a g e n e r a l d e s c r i p t i o n of t h e p r o c e s s based on a v a i l a b l e e x p e r i m e n t a l d a t a .

2 . Some E x p e r i m e n t a l Data on Thermal Deformation of Frozen S o i l s

We s t c d i e d changes i n t h e r m a l d e f o r m a t i o n of f r o z e n s o i l samples under c o n d i t i o n s of f r e e e l o n g a t i o n , i . e . , i n t h e a b s e n c e of e x t e r n a l l o a d s . The e x p e r i m e n t s were c a r r i e d o u t by Yu.B. S h e s h i n under t h e s u p e r v i s i o n of t h e a u t h o r i n c o l d chambers a t t e m p e r a t u r e s below O O C . Deformation was r e c o r d e d

by c l o c k - t y p e ICh-3 i n d i c a t o r s l o c a t e d a t b o t h ends of t h e specimen. The specimens were p r e p a r e d i n a s t e e l frame and had t h e s h a p e of a p a r a l l e l e p i p e d

( c r o s s s e c t i o n 30 x 30 mm2, l e n g t h 380 mm). The w a l l s of t h e specimens were i n s u l a t e d w i t h a p o l y e t h y l e n e l a y e r c o a t e d w i t h g r e a s e f o r r e l i a b l e p r o t e c t i o n a g a i n s t w a t e r . The t e m p e r a t u r e was measured by a thermocouple l o c a t e d i n t h e c e n t r e of t h e specimen.

A t t h e s t a r t of each e x p e r i m e n t , t h e t e m p e r a t u r e of specimens was above

O'C and no d a t a were r e c o r d e d u n t i l a l l p h a s e t r a n s i t i o n s i n t h e specimens were complete (which c o u l d b e e a s i l y f o l l o w e d from t h e r e a d i n g s of t h e thermo- c o u p l e ) . The f i r s t r e a d i n g of t h e i n d i c a t o r was t h e n t a k e n . T h i s p r o c e d u r e was adopted t o s e p a r a t e (however r o u g h l y ) heaving of t h e s o i l (which i s

e s p e c i a l l y pronounced d u r i n g p h a s e t r a n s i t i o n s ) from t r u e t h e r m a l d e f o r m a t i o n . Readings were t h e n t a k e n e v e r y hour f o r f i v e h o u r s . Once t h e t e m p e r a t u r e of a specimen r e a c h e d t h a t i n t h e c o l d chamber, r e a d i n g s were t a k e n o n c e a day. The t o t a l d u r a t i o n of each experiment a t c o n s t a n t t e m p e r a t u r e was 1 5 t o 20 d a y s . The e x p e r i m e n t s were d i s c o n t i n u e d when d e f o r m a t i o n s of specimens were s t a b i l i z e d

(21)

We t e s t e d t h r e e t y p e s of s o i l : k a o l i n c l a y c o n t a i n i n g 222, 29% and 37% w a t e r ; medium-grained s a n d c o n t a i n i n g 6 . 5 2 , 1 0 % and 1 7 % w a t e r ; and a m i x t u r e of 70% c l a y and 30% sand c o n t a i n i n g 9%, 14% and 26% w a t e r . T y p i c a l d e f o r m a t i o n c u r v e s a r e shown i n F i g u r e 3. The s h a p e of t h e c u r v e s i n d i c a t e s t h a t s t a b i l i z a t i o n of t h e r m a l d e f o r m a t i o n s i n f r o z e n s o i l s o c c u r s r a t h e r s l o w l y f o r s e v e r a l d a y s a f t e r t h e t e m p e r a t u r e of s p e c i m e n s becomes c o n s t a n t . F i n a l d e f o r m a t i o n ( i n d i c a t e d by E~ i n F i g u r e 3) i s c o n s i d e r a b l y g r e a t e r t h a n t h a t d e v e l o p e d i n t h e s p e c i m e n p r i o r t o t h e s t a b i l i - z a t i o n of i t s t e m p e r a t u r e . F i g u r e

4

shows E~ a s a f u n c t i o n of t h e f i n a l t e m p e r a t u r e a n d a l s o t h e d a t a o n t h e r m a l e x p a n s i o n of f r o z e n s u p e s t a k e n f r o m a p a p e r by Votyakov and G r e c h i s h c h e v ( 1 9 6 9 ) . The c u r v e s i n F i g u r e

4

w e r e u s e d t o i n v e s t i g a t e t h e r m a l e x p a n s i o n a s a f u n c t i o n of t h e w a t e r c o n t e n t a n d t h e g r a i n - s i z e c o m p o s i t i o n ( F i g u r e s 5 a n d 6 ) . I n c o n t r a s t t o F i g u r e 4 , w h e r e E~ s t a n d s f o r t h e r m a l d e f o r m a t i o n , t h e l a t t e r i v F i g u r e s 5 a n d 6 i s c h a r a c t e r i z e d by t h e c o e f f i c i e n t of l i n e a r e x p a n s i o n s urn, which was c a l c u l a t e d a s a d e r i v a t i v e of t h e c u r v e s i n F i g u r e 4.

3 . Main P a t t e r n s of Thermal D e f o r m a t i o n of F r o z e n S o i l s T u r n i n g t o t h e a n a l y s i s of t h e e x p e r i m e n t a l d a t a d i s c u s s e d i n t h e p r e c e d i n g s e c t i o n , we s h o u l d f i r s t of a l l n o t e o n e v e r y i m p o r t a n t phenomenon, i . e . , t h e f a c t t h a t t h e r m a l d e f o r m a t i o n c o n t i n u e s t o d e v e l o p f o r a c o n s i d e r a b l e t i m e a f t e r t h e t e m p e r a t u r e of a s p e c i m e n becomes c o n s t a n t . T h i s phenomenon, f i r s t d i s c o v e r e d by Votyakov, i s e v i d e n t l y r e l a t e d t o t h e r h e o l o g i c a l p r o p e r t i e s of f r o z e n s o i l s , a s w e l l a s s l o w t r a n s f o r m a t i o n of t h e i r t e x t u r e which l a g s b e h i n d t h e more r a p i d t e m p e r a t u r e c h a n g e s . A s a r e s u l t of t h i s , t h e s t a b i l i z a t i o n of t h e b u l k of f r o z e n s o i l e x t e n d s o v e r a p e r i o d o f time. T h i s phenomenon was c a l l e d t h e

thermal aftereffect

(Votyakov, G r e c h i s h c h e v , 1969) by a n a l o g y w i t h t h e a f t e r e f f e c t which m a n i f e s t s i t s e l f i n t h e c r e e p of f r o z e n s o i l s a n d i s t h e r e s u l t of t h e i r r h e o l o g i c a l p r o p e r t i e s .

E v i d e n t l y t h i s t h e r m a l a f t e r e f f e c t c a n m a n i f e s t i t s e l f n o t o n l y i n f r o z e n s o i l s . An a b s t r a c t model of t h e r m a l e x p a n s i o n of a c o m p o s i t e m a t e r i a l c o n s i s t i n g

(22)

of v i s c o - e l a s t i c m a t r i x (cementing m a t e r i a l ) w i t h i d e a l l y r i g i d i n c l u s i o n s c a n s e r v e a s a t h e o r e t i c a l model of t h e a f t e r e f f e c t . Thermal d e f o r m a t i o n i n a n a b s t r a c t two-component model was c a l c u l a t e d by Levin (1967).

I n a c c o r d a n c e w i t h t h e e q u a t i o n d e r i v e d by L e v i n , t h e r m a l d e f o r m a t i o n of such a model i n c r e a s e s w i t h t i m e , and t h e n a t t e n u a t e s e x p o n e n t i a l l y . T o t a l d e f o r m a t i o n a f t e r s t a b i l i z a t i o n ( E ~ ) i s e x p r e s s e d a s f o l l o w s :

where

a2

and C 2 a r e t h e c o e f f i c i e n t s of expansion and c o n c e n t r a t i o n of cementing

m a t e r i a l r e s p e c t i v e l y . T h i s i s t h e t o t a l l i n e a r d e f o r m a t i o n of t h e m a t r i x m a t e r i a l c o n t a i n e d i n u n i t volume of a two-component model.

Frozen sand and p e b b l e s a r e two t y p e s of f r o z e n s o i l which a r e d e s c r i b e d b e s t w i t h t h e h e l p of a two-component model. However, i t i s i n t e r e s t i n g t h a t i n our e x p e r i m e n t s w i t h f r o z e n sand t h e t h e r m a l a f t e r e f f e c t was t r i v i a l . S i n c e i n L e v i n ' s model t h e development of t h e r m a l d e f o r m a t i o n s w i t h t i m e i s r e l a t e d t o t h e r e l a x a t i o n of m i c r o s t r e s s e s o n l y , t h i s i n d i c a t e s t h a t i n t e r n a l s t r u c t u r a l r e a r r a n g e m e n t s and p h a s e t r a n s i t i o n s a t t h e "unfrozen w a t e r

-

i c e " i n t e r f a c e p r e v a i l o v e r t h e i n t e r n a l c r e e p which i s r e l a t e d t o m i c r o s t r e s s e s .

F i g u r e

4

shows a l a r g e v a r i e t y of " s t a b i l i z e d d e f o r m a t i o n

-

t emperatur el' c u r v e s . F i r s t l y , t h e y a r e d i s t i n c t l y n o n l i n e a r . F a i r l y s t e e p c u r v e s a r e c h a r a c t e r i s t i c of t e m p e r a t u r e s c l o s e t o O O C . The maximums o c c u r w i t h i n t h e

f i r s t few d e g r e e s below O'C, and t h e c u r v e s l e v e l o u t a s t h e t e m p e r a t u r e f a l l s . Secondly, t h e s i g n o f t h e r m a l d e f o r m a t i o n ( c o n t r a c t i o n o r expansion) depends on t h e w a t e r c o n t e n t and t h e g r a i n - s i z e c o m p o s i t i o n of t h e s o i l . For example, k a o l i n c l a y c o n t a i n i n g 22% and 29% w a t e r undergoes c o n s i d e r a b l e c o n t r a c t i o n i n volume a s t h e t e m p e r a t u r e d r o p s from 0' t o - 2 ' ~ ( p o s i t i v e t h e r m a l d e f o r m a t i o n ) . The same c l a y c o n t a i n i n g 37% w a t e r expands w i t h i n t h e same t e m p e r a t u r e r a n g e . Supes expands w i t h i n any t e m p e r a t u r e r a n g e ( i f t h e i n i t i a l t e m p e r a t u r e i s oOC), w h i l e a m i x t u r e of c l a y and sand c o n t r a c t s , e t c . T h i r d l y , t h e s i g n of t h e r m a l d e f o r m a t i o n f o r t h e same s o i l b u t a t d i f f e r e n t f i n a l t e m p e r a t u r e s may d i f f e r . For example, sand c o n t a i n i n g 6.5% w a t e r expands up t o - 3 ' ~ and c o n t r a c t s a t lower t e m p e r a t u r e s .

(23)

a ~ ~ / 3 0 )

o n t h e w a t e r c o n t e n t i s e q u a l l y n o t e w o r t h y . As may b e s e e n from F i g u r e 5 , t h e r m a l d e f o r m a t i o n s h a v e a maximum a t d e f i n i t e w a t e r c o n t e n t s : f o r c l a y a b o u t 302, and f o r s a n d a b o u t 1 0 % . A t w a t e r c o n t e n t s g r e a t e r t h a n t h e n o r m a l v a l u e , d e f o r m a t i o n s d e c r e a s e and may e v e n a c q u i r e a n e g a t i v e s i g n . T h i s i n d i c a t e s t h a t a t low w a t e r c o n t e n t s s o i l w i l l c o n t r a c t w i t h f a l l i n g t e m p e r a t u r e , b u t a t h i g h w a t e r c o n t e n t s t h e same s o i l w i l l expand ( l e t u s r e c a l l t h a t , i n o u r m e t h o d , h e a v i n g d u r i n g p h a s e t r a n s i t i o n s was n o t c o n s i d e r e d ) . A l s o , s i n c e w a t e r c o n t e n t a n d c o n s o l i d a t i o n o f c l a y s o i l s a r e i n t e r r e l a t e d , we may c o n c l u d e t h a t w e a k l y c o n s o l i d a t e d s o i l s must c o n t r a c t w i t h f a l l i n g t e m p e r a t u r e , w h i l e c o n s o l i d a t e d s o i l s must expand. T h i s c o n c l u s i o n i s i m p o r t a n t f o r f o r e c a s t s of t h e r m a l s t r e s s e s a n d d e f o r m a t i o n s i n embankments and dams b u i l t of l o c a l m a t e r i a l s . However, i t must b e c h e c k e d e x p e r i m e n t a l l y .

A s may b e s e e n from F i g u r e 6 , which i s b a s e d o n t h e e x p e r i m e n t a l d a t a

o b t a i n e d by t h i s a u t h o r , t h e r m a l d e f o r m a t i o n s i n c l a y s o i l s a r e q u i t e c o n s i d e r a b l e a n d d e c r e a s e e x p o n e n t i a l l - y w i t h a n i n c r e a s e i n t h e s a n d f r a c t i o n . S i m p l e c a l c u l a t i o n s (Votyakov, G r e c h i s h c h e v , 1969) showed t h a t t h e d e p e n d e n c e of t h e r m a l d e f o r m a t i o n on t h e t e m p e r a t u r e w i t h i n t h e i m p o r t a n t r a n g e O O C t o -28' t o - 3 0 ' ~ c a n b e e x p r e s s e d i n t h e f o l l o w i n g n o n l i n e a r form: where : W i s t h e w a t e r c o n t e n t ,

~,d,,8.,8~

a r e e m p i r i c a l c o e f f i c i e n t s , t i s t h e c o e f f i c i e n t of e x p a n s i o n d u r i n g f r e e z i n g of w a t e r , P a l P r n a r e t h e d e n s i t i e s of w a t e r a n d t h e s o i l s k e l e t o n , r e s p e c t i v e l y , a n d O K ,

8

a r e t h e f i n a l and t h e i n i t i a l t e m p e r a t u r e s , r e s p e c t i v e l y . H We s h o u l d n o t e t h a t i n a l l e q u a t i o n s g i v e n a b o v e , E i s t a k e n a s p o s i t i v e d u r i n g e x p a n s i o n , and n e g a t i v e d u r i n g c o n t r a c t i o n . I n a s e r i e s of e x p e r i m e n t s Votyakov and G r e c h i s h c h e v (1969) a n a l y z e d t h e d e p e n d e n c e of 8 0 , 81, Bo and B I on t i m e and t h e w a t e r c o n t e n t . They c o n c l u d e d t h a t t h e f o l l o w i n g e m p i r i c a l e q u a t i o n s d e s c r i b e t h e e x p e r i m e n t a l d a t a b e s t :

(24)

where Born, B l m , a r e t h e v a l u e s of c o e f f i c i e n t s a f t e r s t a b i l i z a t i o n of d e f o r m a t i o n s w i t h t i m e ( a s a p p r o x i m a t i o n s a t t + a ) ; T o , T I , V o , V l a r e e m p i r i c a l c o e f f i c i e n t s which have t h e d i m e n s i o n a l i t y of t i m e , and X o , X I ,

B o ,

61 a r e e m p i r i c a l c o e f f i c i e n t s .

The same a u t h o r s noted t h a t B o and B1 o n l y a r e dependent on t h e w a t e r c o n t e n t . A s t h e w a t e r c o n t e n t i n c r e a s e s , B o d e c r e a s e s w h i l e B1 i n c r e a s e s , and Bo depends on t h e w a t e r c o n t e n t more s t r o n g l y t h a n B 1 . A l l t h i s f o l l o w s from e q u a t i o n (2.4)

.

I t i s v e r y d i f f i c u l t t o u s e t h e p r e c i s e e q u a t i o n ( 2 . 2 ) , i f t h e c o e f f i c i e n t s i n c o r p o r a t e d i n i t a r e time-dependent i n a c c o r d a n c e w i t h e q u a t i o n ( 2 . 5 ) .

T h e r e f o r e , t h i s a u t h o r h a s s i m p l i f i e d e q u a t i o n (2.2) c o n s i d e r i n g t h a t d e p e n d e n c i e s 80 (t) and 8 1 ( t ) i n e q u a t i o n (2.5) a r e n o t s t r o n g ( e x c e p t t h e r e g i o n t = 01,

s i n c e

60

and

B1

a r e p r a c t i c a l l y g r e a t e r t h a n u n i t y . F u r t h e r m o r e , we may assume t h a t i n e q u a t i o n ( 2 . 5 ) , T O

'

~1 and

X o

-

X 1

-

1. With a l l o w a n c e s f o r a l l t h i s , we c a n r e w r i t e e q u a t i o n ( 2 . 2 ) i n t h e f o l l o w i n g s i m p l i f i e d form, which n e v e r t h e l e s s r e t a i n s a l l e s s e n t i a l p o i n t s of t h e b a s i c e q u a t i o n :

t ~r(t)-O(8r(,8n),

where

O(@~,B.)=B,[(~&

-

A

f g

)-(e-h

-

ne-k!];

~ ( q

=

1-

e-!a

;

and Bm, 0 0 , 8 1 ,

X

and t o a r e f r o z e n s o i l c o n s t a n t s .

On t h e b a s i s of e q u a t i o n (2.4) and t h e a f o r e m e n t i o n e d s i m p l i f i c a t i o n s , t h e dependence of Brn and

X

on t h e w a t e r c o n t e n t c a n now b e r e p r e s e n t e d a s f o l l o w s :

(25)

I f t h e i n i t i a l t e m p p r a t u r e of a sample i s O ' C , t h e f u n c t i o n @(6

OH),

K

'

which r e f l e c t s t h e dependent.e of km on t h e t e m p e r a t u r e , w i l l assume t h e f o l l o w i n g form:

Q u a l i t a t i v e e x a c , l n d t i o r c q r i l ~ i : i ( 2 . 1 0 ) shnws t h a t i n p r i n c i p l e i t c a n

r e f l e c t t h e e n t i r e spectrunl :f Irvcis

.

L e t u s s i n g l e o u t t h e most t y p i c a l c u r v e s ( F i g u r e 7 )

.

i; i m p l e ni f i t a t i o r ~ ot e q u a t i o n (2.10) makes i t p o s s i b l e t o s u g g e s t t h e *,:L >wir,g c l a s i i f i c a t i ~ i r i o f t h e s e c u r v e s :

1.

a ) @ ~ . , i

, the

.:...

as r x.::c7 iLm i n <:pansion r e g i o n a t

fl&=&,h

A 0. 9

w h i l e a t 6,

-&$

, t r er i h c c . b v l t r 3 ~ t i n : :gion.

b )

q c

I * ,

t 1 7 l ~ i i m 4 cl e n t i r e l y w i t h i n t h e

r e g i o n of e x p a n s i o n .

2 , ' > l

a )

e>i

,

t h c

.

L L ~

.I

.JI) .i i n ~ l n i . I m '*t

0,=&-b#~

and l i e s e n t i r e l y

w i t h i n t h e r e g i o n of c o n t t ac t i o : i .

b ) 1,

,

t h e .;me has no maximum and l i e s e n t i r e l y w i t h i n t h e r e g i o n of c o n t r a c t i o ~ ,

For p r a c t i c a l purp--,t.,-. t 2 ir;,pcr t a n t t o g e n e r a l i z e e q u a t i o n ( 2 . 6 ) f o r t h e c a s e of temperatu:-,a , . I

I

..rl,

.

L.. t h tine. I n t h e a b s e n c e of e x p e r i m e n t a l

d a t a , t h i s c a n be done on t h e b , ~ s i s sf l c g i c a l on, i d e r a t i o n s a p p l y i n g t h e

p r i n c i p l e of summ'it i . I o r i . ! i v :,iuai el i r c t s , c h ~ a r y w i t h t i m e . I n a c c o r d a n c e w i t h t h i s p r i n c i p l e , w t i i , h w l d e l ) u::?d In c r e e p r h e o r y , t h e f o l l o w i n g more g e n e r a l e x p r e s s i o n c a n b e , I : t a i l ~d i n s t e a d oL , q t . , , r Lan ( 2 . 6 ) :

where K(t

-

'I) i s t h e lur?et 11 l r t . . ' t l i c : m a i , ! f f e c t s ,

(26)

Function K(t

-

T) c a n b e e a s i l y o b t a i n e d by s u b s t i t u t i n g

O K

= c o n s t i n t o e q u a t i o n (2.11) and comparing i t t o e x p r e s s i o n ( 2 . 6 ) . Then:

F i n a l l y , l e t u s a p p l y e q u a t i o n (2.121 t o t h e c a s e of r e l a x a t i o n of thermal s t r e s s e s ( f o r e x p e r i m e n t a l d a t a s e e F i g u r e 8 ) . The t h e o r e t i c a l s o l u t i o n , w i t h allowances f o r e q u a t i o n (2.11) and i f t h e s o i l i s simulated by a Bingham-

Shvedov v i s c o - e l a s t i c - p l a s t i c medium, i s a s f o l l o w s ( l e a v i n g o u t t h e d e t a i l s of t h i s s i m p l e s o l u t i o n :

and a t

6J

>

6;n

( t

at,)

(2.14)

7

where

dUI

and

6"'

a r e t h e s t r e s s e s i n t h e e l a s t i c and t h e v i s c o p l a s t i c s t a g e s , E i s t h e d e f o r m a t i o n modulus,

T i s t h e r e l a x a t i o n time, P

0 i s t h e u l t i m a t e long-term s t r e n g t h ,

and t I i s t h e t i m e of t r a n s i t i o n from t h e e l a s t i c t o t h e v i s c o p l a s t i c s t a g e (found from

oYnP

=

am).

It f o l l o w s from e q u a t i o n (2.14) t h a t s t r e s s e s a t t h e moment of t r a n ~ i t f u n from t h e e l a s t i c t o t h e p l a s t i c s t a g e a t t = t l a r e e q u a l t o U

m'

They )lave a

T &

maximum a t

tmt,-*hk

and t h e n r e l a x a t t - + Y D t o 0 i . e . , t h e c u r v e i s i n

m y

good agreement w i t h experimental d a t a i n F i g u r e 8. The d c t t e d c u r v e i n F i g u r e

8 i s t h e e x p e r i m e n t a l c u r v e of nornril r e l a x a t i o n of t h e same s o i l a t t h e same t e m p e r a t u r e but a t a n i n i t i a l s t r e s s c l o s e t o t h e maximum on t h e t h e r m a l r e l a x a t i o n c u r v e . Comparison of t h e two c u r v e s i n d i c a t e s t h a t t h e t h e r m a l a f t e r e f f e c t p l a y s a n i m p o r t a n t r o l e i n t h e development of s t r e s s e s w i t h time. L e t u s n o t e i n c o n c l u s i o n t h a t t h e g e n e r a l i z e d e q u a t i o n (2.11) should b e used i n p r a c t i c a l c a l c u l a t i o n s , s i n c e i t r e f l e c t s t h e main c h a r a c t e r i s t i c s of t h e r m a l d e f o r m a t i o n of f r o z e n s o i l more f u l l y t h a n o t h e r e q u a t i o n s .

(27)

30% medium- g r a i n e d s a n d ) J to ' * d a y s Temp;rature i n t h e s a m p l e t. d a y s -5' F i g . 3 E x p e r i m e n t a l c u r v e s of c h a n g e s i n t h e r m a l d e f o r m a t i o n w i t h t i m e f.-' 10'

a

K a o l i n c l a y Medium-grained s a n d ~ t & f t u r $ (702 k a o l ' n c l me ium-gralneA s a d 7

'

S u p e s ( I . N. Votyakov) 1.0 0 - t o F i g . 4 S t a b i l i z e d t h e r m a l d e f o r m a t i o n ( E ~ ) a s a f u n c t i o n of t e m p e r a t u r e ( i n i t i a l t e m p e r a t u r e O'C)

(28)

Mixture (70% k a o l i n c l a 30% medium-grained sand7 20 w, % IMedium-grained sand Fig. 5 S t a b i l i z e d c o e f f i c i e n t of t h e r m a l expansion (arn) a s a f u n c t i o n of water c o n t e n t 0 50 I00 Sand c o n t e n t , % F i g , 6

(29)

C o n t r a c t i o n

+ t

.

. Expans i o n F i g . 7 Main t y p e s of t h e

@(OK,

0 H ) c u r v e s d e s c r i b e d by e q u a t i o n (2.10) Fig. 8 E x p e r i ~ n e n t a l c u r v e s showing t h e r e l a x a t i o n of compressive s t r e s s e s i n f r o z e n s u p e s 1

-

r e l a x a t i o n of t h e r m a l s t r e s s e s d u r i n g a t e m e r a t u r e r i s e from -38OC t o -3Oc;

2

-

s t r e s s r e l a x a t i o n a t c o n s t a n t t e m p e r a t u r e ( - 3 ' ~ ) and i n i t i a l s t r e s s of 8 kg/cm2;

(30)

Chapter I11

THERMAL STRESSES I N UNDISTURBED FROZEN GROUND

1. Equation of One-dimensional Thermo-rheological S t a t e of Frozen S o i l

A s o u t l i n e d i n t h e f i r s t two c h a p t e r s , t h e thermo-rheological p r o c e s s e s i n f r o z e n s o i l s a r e d e s c r i b e d b e s t i f t h e s o i l i s r e g a r d e d a s a v i s c o - e l a s t i c model of t h e Bingham-Shvedov t y p e . The d e f o r m a t i o n s c o n s i s t of two p a r t s :

e l a s t i c and v i s c o - p l a s t i c .

To d e r i v e t h e b a s i c d i f f e r e n t i a l e q u a t i o n , i t i s e s s e n t i a l t o e x p r e s s t h e r e l a t i o n s h i p between d e f o r m a t i o n and s t r e s s . The r e l a t i o n between t h e e l a s t i c p a r t of d e f o r m a t i o n and s t r e s s c a n b e expressed i n t h e c o n v e n t i o n a l l i n e a r form a s used i n t h e t h e o r y of e l a s t i c i t y :

where

cynp,

E ~

cynp

~ ~ynp ,

-

a r e t h e components of t h e e l a s t i c p a r t of

X Y z yxy

d e f o r m a t i o n ;

a

a

a

-

a r e t h e components of s t r e s s , x' y ' z

and E and G

-

a r e t h e moduli of e l a s t i c i t y and s h e a r , r e s p e c t i v e l y

.

To f o r m u l a t e t h e r e l a t i o n s h i p between t h e v i s c o - p l a s t i c p a r t of d e f o r m a t i o n and s t r e s s , we c a n u s e t h e well-known Genki-Mizes i d e n t i t i e s which hold f o r any c o n t i n u o u s media a t low d e f o r m a t i o n s :

.

Nl

where

&

,

&

,

i n

,

-

a r e t h e components of t h e r a t e of v i s c o - p l a s t i c deformat i o n ;

H

-

i s t h e r a t e of t h e v i s c o - p l a s t i c s h e a r deformat i o n ;

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé &#34;plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ