• Aucun résultat trouvé

Rational Limitation of Deflections in Reinforced Concrete Members

N/A
N/A
Protected

Academic year: 2021

Partager "Rational Limitation of Deflections in Reinforced Concrete Members"

Copied!
26
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1963

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331404

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Rational Limitation of Deflections in Reinforced Concrete Members

Mehmel, A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=750db8c1-29fa-412f-a503-aea6d7cc3ec1 https://publications-cnrc.canada.ca/fra/voir/objet/?id=750db8c1-29fa-412f-a503-aea6d7cc3ec1

(2)

PREFACE

S a t i s f a c t o r y c r i t e r i a f o r p e r m i s s i b l e d e f l e c t i o n s I n r e i n f o r c e d c o n c r e t e members has n o t y e t been c l e a r l y

e s t a b l i s h e d . New forms o f c o n s t r u c t i o n and h i g h e r w o r k h g s t r e s s e s a r e making t h e need f o r such c r i t e r i a nrore a p p a r e n t . T h i s p a p e r b y D r . A . Mehnlel was t r a n s l a t e d a t t h e r e q u e e t of t h e B u i l d i n g S t r u c t u r e s S e c t i o n of t h e D i v i s i o n of B u i l d i n g Research because i t c o n t a i n s an i n t e r e s t 1 : l g approach t o t h e s u b j e c t of d e f l e c t i o n s which should be o f i n t e r e s t t o

N a t i o n a l B u i l d i n g Code and Canadian S t a n d a r d s A s s o c i a t i o n Committees on Reinforced Concrete and t o d e s i g n e r s i n g e n e r a l .

The D i v i s i o n i s g r a t e f u l t o M r . D.A. S l n c l a i r of t h e

N.R.C. T r a n s l a t i o n s S e c t i o n f o r p r e p a r i n g t h e t r a n s l a t i o n .

Ottawa R.F. Legget

(3)

Title :

NATIONAL FESEARCH COUNC IL OF CANADA

Technical Translatlon 1069

A

rational limitation of deflections in reinforced concrete

members

( h e r eine sinnvolle ~ e s c h r g n k u n ~ der Durchbiegungen von Stahlbe tonbauteilen )

Author:

A.

Mehmel

Re.ference: Bauingenieur,

36

(8):

293-300, 1961

(4)

A RATIONAL LIlclITATION OF DEFLECT IOl\TS I31 REJXPORCED CONCRETE bEFTBE1IS

Every s t r u c t u r a l member. s u b J e c t t o bending s t r e s s has a c e r t a i n d c f l e c - t i o n . This depends n o t o n l y on t h e load and t h e e x l s t i n ~ s t a t i c system, but a l s o on t h e " s t i f f n e s s t ' E J and hence a l s o on t h e ditnensions and t h e m a t e r i a l s enlployed ( c f . e.g. r e f . 1 and 2 ) . According t o t h e former r u l e l a i d down i n

DIN 10145

-

" ~ e i n f o r c e d c o n c r e t e rnenibers"

-

f o r c e r t a i n s t r u c t u r a l members t h e r e were minirnurn requirements with r e s p e c t t o t h e e f f e c t i v e depth h , which could n o t be l e s s t h a n a c e r t a i n f r a c t i o n of t h e span 1. This f r a c t i o n d i d n o t depend on t h e c o n c r e t e and s t e e l s t r e s s e s o c c u r r i n g i n t h e member. There was a b a s i c d i f f e r e n c e I n t h e value of t h i s f r a c t i o n f o r one-way and two-way s l a b s . I n p a r t i c u l a r , DIN 1045 l a y s dovm t h e following:

"Sec. 22. S l a b s with main reinforcement i n one d i r e c t i o n

1.

...

2.

...

The e f f e c t i v e depth h of t h e s l a b must a l s o be a t l e a s t : f o r simple s u p p o r t b o t h s i d e s , 1/35 of t h e span,

f o r continuous o r f i x e d s l a b s , 1/35 of t h e maximum d i s t a n c e between p o i n t s of i n f l e c t i o n . I f t h i s d i s t a n c e i s n o t c a l c u l a t e d , i t can be assumed a t 4/5 of t h e span.

For s l a b s t h a t a r e walked on o n l y d u r i n g r e p a i r s and c l e a n i n g o p e r a t i o n s , e t c . , t h e corresponding v a l u e s a r e 1/40 of t h e span and 1/40 of t h e maximum d i s t a n c e between p o i n t s of i n f l e c t i o n .

"Sec

.

23. Two-way r e i n f o r c e d s l a b s

The e f f e c t i v e depth hU r e f e r r e d t o t h e bottom s t e e l reinforcement must be a t l e a s t :

f o r f r e e l y supported, s i n g l e - s p a n s l a b s

1/50,

and f o r continuous o r f i x e d

slabs 1/60 of t h e s m a l l e r span.

I f t h e r a t i o of l a r g e r t o s m a l l e r span i s g r e a t e r than 1.5, then Sec. 22, 2 , holds f o r the e f f e c t i v e depth hu.

2.

..."

Despite observance of t h e s e minimun~ e f f e c t i v e depths, a c c o r d i n g t o DIN

1045 i n c r e a s i n g darnage of widely v a r y i n g k i n d s has occurred a s

a

r e s u l t o f e x c e s s i v e d e f l e c t i o n s . Deserving of s p e c i a l mention i n t h i s connection a r e craclcs a p p e a r i n g i n non-bearing i n s i d e walls supported on f l o o r s . Such damage

(5)

was f o r r i ~ c r l y l e s s pi-cvalcnt, and i t i s an obvious i n f e r e n c e t h a t whercafi t h e niininl~un e f f c c t i v c d c p t h s rcquil,ctd 1 1 1 D I N 10115 vrerc for:rierly a d e q u a t e , urider

p r e s e n t c o n d i t i o r l s t h c y no l o n g c r r e s u l t i n s u f f i c i e n t l l - m i t a t i o n o f t h e d e f l e c t i o n . The d i f f e r e n c e between former and p r e s e n t - d a y c o n d i t i o n s a r e sulu~led up i n t h e f o l l o v ~ i n g two p o i n t s :

( a ) The use of h i g h q u a l i t y m a t e r i a l s and hence t h e u t i l i z a t i o n o f h i g h a d ~ l l i s s i b l e s t r e s s e s now p e r m i t s g r e a t e r s p a n s t h a n f o r m e r l y f o r a g i v e n s t i f f - n e s s v a l u e , o r s m a l l e r d i n ~ e n s i o n s f o r a g i v e n s p a n .

( b ) It was n o t f o r n l e r l y customary t o e r e c t i n s i d e p a r t i t i o n i n g w a l l s on f l o o r s , 1 . e . w i t h o u t s u p p o r t i n g then1 on t h e ground.

There i s a l s o a l o n g l i s t o f o t h e r t y p e s of damage which c a l l f o r t h e s t u d y of d e f o m i a t i o n s , e . g . t h e b r e a k i n g o f window panes i n l a r g e - a r e a fa$ade p a n e l s , t h e jamming of d o o r s , t h e damaging of i n s t a l l a t i o n s and many o t h e r s . Alvrays, however, i t i s a q u e s t i o n o f d e f i c i e n c i e s i n t h i n g s which a r e a d j o i n e d t o t h e deforming lneinbers, n o t i n t h e s e members themselves. T h i s i s obvious, s i n c e I n r e g u l a r d e s i p p t h e d e f o r m a t i o n o c c u r r i n g i n any g i v e n c a s e , w i t h i n t h e l i m i t s imposed by v a r i a t i o n s i n t h e m a t e r i a l , i s c l e a r l y a f u n c t i o n o f t h e c a l c u l a t e d s t a t e o f s t r e s s . The s t r u c t u r e s a f e t y o f t h e deforming member

i t s e l f , t h e r e f o r e , i s n o t a s u b j e c t o f d i s c u s s i o n i n t h e p n e s e n t c o n s i d e r a - t i o n s . T h i s must be emphasized i f t h e p o i n t s which a r e t o be d i s c u s s e d l a t e r i n c o n n e c t i o n w i t h t h e s t r u c t u r a l d e s i g n and t h e s t a t i c c a l c u l a t i o n a r e t o be k e p t i n p r o p e r p e r s p e c t i v e . These a r e c e r t a i n l y o f i n t e r e s t , b u t t h e i r i r p o r - t a n c e f a l l s c o n s i d e r a b l y s h o r t o f s t r e n g t h a s such.

It i s sonieti~nes p o i n t e d o u t t h a t e x c e s s i v e d e f o r m a t i o n s would a l s o endanger t h e s t r u c t u r a l s a f e t y of t h e deforrlled lilembers themselves o r t h e members on which t h e y a r e s u p p o r t e d . The f i r s t o f t h e s e c a s e s can a r i s e when l e v e r arms a r e c r e a t e d by t h e d e f o r m a t i o n which no l o n g e r p e r m i t t r a n s m i s s i o n of t h e f o r c e s i n t h e undeforrned s t r u c t u r e . We t h e n have a s t r u c t u r e which r e q u i r e s a s t a t i c c a l c u l a t i o n o f t h e deformed system. Such s p e c i a l c a s e s , however, do n o t come w i t h i n t h e scope of t h e d i s c u s s i o n h e r e . They were n o t , n o r a r e , a s u b j e c t of DD? 1045, n o r can t h e y i n any c a s e be d e a l t w i t h by

" l i ~ n i t a t i o n o f d e f l e c t i o n " . The second c a s e could o c c u r , f o r example, i f e x c c s s i v c d e f o r m a t i o n o f a c e i l i n g r e s u l t e d i n u n f o r e s e e n bending moments i n t h e s u p p o r t e d members. I i i t h o u t s p e c i a l v e r i f i c a t i o n , t h e r e f o r e , i t i s

c e r t a i n l y n o t p o s s i b l e , from t h e p o i n t of view of s t a b i l i t y , t o s u p p o r t a s i n g l e - s p a n r e i n f o r c e d c o n c r e t e s o l i d - s l a b c e i l i n g w i t h a 1 0 m span on masonry w a l l s 24 cm t h i c k and t o t r e a t t h e b e a r i n g p r e s s u r e a s uniform. Once a g a i n , t h i s i s n o t a q u e s t i o n o f a d e f l e c t i o n l i r i l i t a t i o n f o r t h e c e i l i n g , b u t r a t h e r one o f c o n t i n u i t y between t h e deforrnations o f c e i l i n g and w a l l . I n such a

(6)

c e i l i n g and w a l l and v e r i f y t h e r e s u l . t i n g s t r e s c e s . Unless he makes t h i s v e r i f i c a t i o n hirllself, h i s c a l c u l . a t l o n s a r e Incolnpletc and t h e i n s p e c t i o n d c p a r t n c n t w i l l demand t h a t i t be niadc. I call t h e r e f o r e s e e no p o s s i b i l i t y of endangering t h e s t r e n g t h of t h e s u p p o r t i n g member because of e x c e s s i v e deformations of t h e supported one u n l e s s t h e ~ t a t i c c a l c u l a t i o n i s i n c o r r e c t , o r a t l e a s t i n c o ~ n p l e t e

.

It i s c l e a r from what has been s a i d , t h a t I n o r d e r t o a s s e s s a d m i s s i b l e d e f o r ~ ~ i a t i o n s i t i s n e c e s s a r y t o d i s t i n g u i s h between:

1. Reinforced c o n c r e t e members t h a t cannot do any damage by r e a s o n o f t h e i r d e f l e c t i o n , and

2 . Reinforced c o n c r e t e members whose d e f l e c t i o n s can cause damage. By damage h e r e we mean harmful e f f e c t s which d e t r a c t from t h e s e r v i c e - a b i l i t y of t h e s t r u c t u r e . If l a r g e d e f l e c t i o n s do r e s u l t i n e f f e c t s which reduce o r endanger t h e s t r u c t u r a l s a f e t y , t h i s Is due t o t h e exceeding o f t h e p e r m i s s i b l e m a t e r i a l stresses, which can o n l y happen i f t h e s t r e n g t h c a l c u l a - t i o n s have been i n c o r r e c t l y o r i n c o m p l e t e l y executed. Such e x c e s s i v e s t r e s s e s cannot be avoided by s e t t i n g minimum requirements f o r t h e stiffness of t h e f l o o r .

In group 1 we can d o u b t l e s s i n c l u d e a l l f l o o r s which do n o t s u p p o r t w a l l s beyond t h e main s t r u c t u r e ( ~ u s b a u w 8 n d e ) and which themselves r e s t on b e a r i n g w a l l s o r r i g i d crossbeams. T h i s t a k e s i n t h e m a j o r i t y of f l o o r s i n m u l t i - s t o r e y i n d u s t r i a l b u i l d i n g s , a s w e l l a s t h e f l o o r s of apartment houses i n which t h e i n s i d e p a r t i t i o n s a r e borne by t h e s o i l o r on f l o o r s of s m a l l span.

In n g o p i n i o n t h i s a p p l i e s t o a l a r g e p r o p o r t i o n of modern apartment houses.

( 3

1

Recent s t a t i s t i c a l i n v e s t i g a t i o n s a l s o b e a r t h i s o u t

.

Group 2 I n c l u d e s , e . g . f l o o r s of wide span w i t h non-bearing w a l l s , f l o o r s o r s p a n d r e l beams ( ~ a n d t r : ~ e r ? ) with web ri~er~ibers mounted on t h e s e unsupported edges ( g l a s s panes!), e t c . In c e r t a i n c a s e s a e s t h e t i c f a u l t s can be included among t h e harrnful e f f e c t s , f o r example i f i n s t e a d o f a s t r a i g h t l i n e a t t h e edge o f a t h i n continuous f l o o r a d i s t i n c t c a t e n a r y shape can be recognized. The harmfulness o f a d e f l e c t i o n must a l s o be judged from t h e s t a n d p o i n t of t h e uses t o wiilch t h e roolcs a r e t o be p u t . It Is c e r t a i n l y n o t d e s i r a b l e , f o r example, f o r t h e wlde-span f l o o r o f a schoolroom t o s a g v i s i b l y . Even from t h e s e few examples it w i l l be e v i d e n t t h a t a given s t r u c t u r e can be a s s i g n e d e i t h e r t o group 1 o r 2, even when i n t e n d e d f o r t h e same purpose, depending on t h e i n d i v i d u a l p o i n t o f view. However, s i n c e q u e s t i o n s of s t r e n g t h a r e n o t involved, a s a l r e a d y explained i n d e t a i l , i t a p p e a r s a p p r o p r i a t e t o me t o make c e r t a i n minimurn requirements o b l i g a t o r y f o r a l l r e i n f o r c e d c o n c r e t e members

( 1 . e . f o r both groups 1 and 2), a s h a s a l r e a d y been done i n D I N 1045 f o r s l a b s and ribbed f l o o r s , and i n a d d i t i o n t o recommend t h e a p p l i c a t i o n o f more

(7)

stringent rcquirerllcnts f o r group 2. T l ~ c conscqucnces of l a r g e d e f l e c t i o n s w i l l t h c n be c l c a r l y indicated, s o t h a t t h e c o n s c i e n t i o u s e n g i n e e r can t a k e hced. It would then be up t o him and h i s c l i e n t whether he should merely s a t i s f y t h c o b l i g a t o r y requirements, o r should improve t h e q u a l i t y of t h e s t r u c t u r e by o b s e r v i n g f u r t h e r requirements which w i l l p r e v e n t o r a t l e a s t m i t i g a t e t h e harl~iful e f f e c t s . \ h e n a p u b l i c a u t h o r i t y i s t h e c l i e n t , e . g . i n t h e c a s e of a school b u i l d i n g , i t w i l l then be i n a p o s i t i o n t o demand observ- ance of t h e recommendations f o r group 2.

The German Committee f o r Reinforced Concrete has l o n g been concerned

with t h e problem of l i m i t i n g d e f l e c t i o n s . S i n c e t h e r e v i s i o n of DIN 1045 w i l l

s t i l l t a k e some time, a temporary s e t of i n s t r u c t i o n s should b e i s s u e d drawing t h e a t t e n t i o n of t h e d e s i g n i n g e n g i n e e r s t o t h e importance of t h e problem of l a r g e d e f l e c t i o n s and t h e v a r i o u s k i n d s of damage t h a t may r e s u l t from them. With t h i s i n view t h e German Committee f o r Reinforced Concrete has d r a f t e d

a

" ~ e n i p o r a r y r e g u l a t i o n on t h e l i m i t a t i o n of d e f l e c t i o n of r e i n f o r c e d c o n c r e t e members a c c o r d i n g t o DIN 1 0 4 5 " ~ which has a l r e a d y been i n t r o d u c e d i n some s t a t e s of t h e F e d e r a l Republic of Germany ( c f . e . g . r e f . 4 ) . The a p p l i c a t i o n of t h i s r e o o l u t i o n has l e d i n some c a s e s t o c o n s i d e r a b l e i n c r e a s e s i n t h e dimensions even f o r members i n r e s p e c t t o which v e r y l i t t l e damage, i f any, h a s h i t h e r t o been e x p e r i e n c e d . We s h a l l l e a v e a s i d e f o r t h e moment t h e ques- t i o n of whether t h i s was t h e f a u l t of t h e f o r m u l a t i o n o r t h e i n t e r p r e t a t i o n of t h e r e g u l a t i o n . A l a r g e number of p u b l i c a t i o n s p r e s e n t i n g c h a r t s and t a b l e s f o r t h e d e t e r m i n a t i o n of s l e n d e r n e s s have appeared (5-8)

,

some of which comment on t h e r e g u l a t i o n a p p a r e n t l y without knowledge even of t h e p u b l i s h e d p r i n c i - p l e s on which it was based. A t t h e working s e s s i o n of t h e Betonverein

( c o n c r e t e A s s o c i a t i o n ) on March 24, 1961, i n B e r l i n , a number of p a p e r s

r e f e r r e d t o inadequacies of t h e new d e f l c c t i o n T h e r e f o r e it

appeared n e c e s s a r y t o r e v i s e t h e s e r e g u l a t i o n s . The s t a t e of IIessen, c i t e d a s an example f o r p u b l i c a t i o n of t h e decree('), took accourit of t h i s n e c e s s i t y by suspending i t s compulsory a p p l i c a t i o n f o r t h e time b e i n g (lo, ' I ) . The a u t h d r of t h e p r e s e n t r e p o r t , himself a member of t h e subcommittee on " l i m i t a t i o n of d e f l . e c t i o n s " of t h e German Committee f o r Reinforced Concrete, w i l l p r e s e n t i n what f o l l o w s h i s own i d e a s on t h e s e m a t t e r s , and a t t h e end of t h e r e p o r t w i l l

o f f e r a s u g g e s t i o n f o r a r e v i s i o n of d e f l e c t i o n l i m i t a t i o n s . The i n t e n t i o n i s n o t , and t h i s must bc emphasized, t o s e c u r e g r e a t e r "accuracy", b u t r a t h e r t o i n d i c a t e by c l e a r d e f i n i t i o n s t h e p o s s i b i l i t y of a p p l i c a t i o n even i n c a s e s n o t n u m e r i c a l l y conprchcnded i n any d e c r e e , and a t t h e sanie time t o d i s t i n g u i s h c l e a r l y between t h e t r e a t m e n t of members f o r which t h e d e f l e c t i o n s can o r cannot have harmful e f f e c t s .

(8)

For rcinforcccl c o i ~ c r c t c mclrtbcrs trhcrc the d e f l e c t i o n s can have no harmful

e f f e c t s t h c p r e v i o u s ret;ul.ations of DDJ 1045, Sec. 22, 2, can be r e t a i n e d , r c q u l r - l n g n mini~~irus e f f e c t i v e h e i g h t of t i = 1 I

/35.

The r e d u c t i o n t o h = 11/40

f o r s l a b s vrlllch a r c walked on o n l y f o r r e p a i r s and c l e a n i n g work, should be dropped, because owing t o t h e slriall l i v e l o a d s on such rnerrtbers t h e supplernen- t a r y d e f l e c t i o n s r e p r c s e n t a l a r g e r p r o p o r t i o n o f t h e t o t a l d e f l e c t i o n . The i d e a l l e n g t h t i was d c f l n e d i n D I N 1045 f o r onc-vray s l a b s a s t h e d i s t a n c e between p o i n t s o f i n f l e c t i o n ; f o r t h i s a more meaningful d e f i n i t i o n should be chosen, which w i l l a t t h e same time cover two-way s l a b s . Such a d e f i n i t i o n i s d e r i v e d from t h e problem of spanning a space of g i v e n dimensions f o r an

e f f e c t i v e load of q = g -I- p w i t h a c e i l i n g supported i n any manner. T h i s can be r e s o l v e d e i t h e r with a one-way c e i l i n g s l a b hinged a t b o t h ends o r , depend- i n g on t h e a d j o i n i n g s p a c e s , w i t h a c e i l i n g system t h a t i s continuous i n one o r both d i r e c t i o n s . I have a l l u d e d above t o t h e f a c t t h a t f o r m e r l y t h e i n s t a l l a - t i o n of i n s i d e p a r t i t i o n s r e s t i n g on f l o o r s b u t n o t supported on t h e s o i l was unusual, 1 . e . members were g e n e r a l l y designed i n such a way t h a t t h e i r d e f l e c - t i o n s could have no d e l e t e r i o u s e f f e c t s . In such members, t h e r e f o r e , we can r e l y on t h e e s t a b l i s h e d f a c t t h a t t h e minimum s t i f f n e s s o b t a i n e d w i t h min h = 1/35 i s adequate. However, o n l y a few decades ago continuous f l o o r systems were n o t n e a r l y a s common a s t h e y a r e today, s o t h a t t h e e x p e r i e n c e i s d e r i v e d e s s e n t i a l l y from s i n g l e - s p a n f l o o r s . It i s r e a s o n a b l e , t h e r e f o r e , t o allow s m a l l e r e f f e c t i v e nlinimum h e i g h t s f o r continuous f l o o r s t h a n f o r s i n g l e - s p a n f l o o r s , such t h a t f o r e q u a l l e n g t h t h e d e f l e c t i o n corresponds t o a s i n g l e - s p a n s l a b w i t h h = 1/35. Ile t h e r e f o r e I n t r o d u c e a n " i d e a l l e n g t h "

such t h a t f o r t h e s l a b on two s u p p o r t s and hinged a t both ends t h e system- dependent c o e f f i c i e n t i s k = 1, and f o r o t h e r boundary c o n d i t i o n s k i s s o deterrnincd t h a t t h e sarne load q f o r t h e same span 1 c a u s e s t h e same d e f l e c t i o n f a s i n t h e two-way hinged s l a b . For one-way and two-way members t h e d e f l e c - t i o n a t mid-span o r f o r c a n t i l e v e r c o n s t r u c t i o n s a t t h e end of t h e c a n t i l e v e r and f o r continuous mectbers, f u l l load i s always a p p l i e d . Regardless of t h e k i n d s of load a c t u a l l y o c c u r r i n g i n an i n d i v i d u a l c a s e , t h e uniform load q i s

chosen h e r e , s i n c e i t i s n o t a q u e s t i o n of e x a c t l y p r e d i c t i n g a d e f l e c t i o n but n e r c l y a r e a s o n a b l e vray o f d e t e r m i n i n g an a p p r o p r i a t e minimum s t i f f n c s s

.

For t h e sane r e a s o n t h e v a r i o u s load d i s t r i b u t i o n s i n continuous systems were excluded. The f o l l o w i n g c o n s i d c r a t i o ~ ~ s a r e f o r s o l i d r e i n f o r c e d c o n c r e t e s l a b s ; however, t h e rninilllurn c f f e c t i v e d e p t h s c a l c u l a t e d from them must hold a l s o f o r o t i i e r t y p e s of ~ r ~ c n ~ b e r s such a3 r i b b e d f l o o r s , beams, T-beams, e t c .

(9)

This i s p o s s i b l e ~ ~ i l ; l l i n t h c limits imposed by t h e r e q u i r e d accuracy,

especially as t h e dimensioning i s d e c i s i v c l - y de t c m ~ i n c d by t h e minimum cf f e c - t i v c depth, p r a c t i c a l l y speaking, o n l y i n t h c c a s e of s o l i d s l a b s .

Tlle deflection of t h e two-way hinged s l a b , r e f e r r e d t o t h e span 1, a c c o r d i n g t o F i g . 1 ( s u b s c r i p t o ) nlay be w r i t t e n

For any s l a b , r e g a r d l e s s of how supported, e.g. a c c o r d i n g t o F i g . 2

( s u b s c r i p t k ) :

From t h e requirement of e q u a l i t y of d e f l e c t i o n s f o = f k , w i t h e q u a t i o n ( 1 ) it f o l l o w s t h a t

Now, .A = 5/384, and e .g. f o r a one-way r e i n f o r c e d s i n g l e - s p a n s l a b f i x e d both ends (assuming p = 0 ) A k = 1/384, and t h e r e f o r e , f o r t h i s s u p p o r t c a s e k =

3

40.2

= 0.58. For a square s l a b hinged on f o u r s i d e s

$

= l/246, hence k =

3 7 . -

4 384/(5 246) =

0.63.

The k v a l u e s c a l c u l a t e d f o r one-way, s i n g l e - s p a n - s l a b s a r e shovrn i n F i g .

3

and f o r two-way s l a b s i n F i g . 4. For any span o f a one-way continuous system a c c o r d i n g t o F i g . 5 we o b t a i n with

ml = -Mdq12 and mr = - 1 ~ l d ~ 1 2 , ( 5 4

M1 and Mr a r e rnornents a t t h e s u p p o r t s t h a t g e n e r a t e t e n s i l e s t r e s s e s on t o p and a r e t h e r e f o r e p u t n e g a t i v e i n e q u a t i o n ( 5 a ) , s o t h a t f o r n e g a t i v e

(10)

moments nil and IT', a r e p o s i t i v e . Thc k v a l ~ c s under f u l l load f o r a number of

s l a b s of two t o f i v e spans a r e c o l l e c t e d i n Plg.

6

-

8. For an e l a s t i c a l l y f i x e d overhangrlng s l a b acco13ding t o F i g . 9 w e o b t a i n with

The 1c v a l u e s f o r an overhanging s l a b w i t h one s p a w a n d w i t h two ad j o i n i n g spans a r e shown i n F i g . 10; t h e f u l l load has been p l o t t e d f o r t h e e n t i r e s y s tem.

With t h e d . e f l n i t i o n introduced above two-way s l a b s a r e a l s o covered a d e q u a t e l y and i n a way analagous t o t h e former DIN 1045, which h a s proved i t s e l f . The c o n d i t i o n h

2

li/35 f o r a s q u a r e s l a b hinged on f o u r s i d e s means t h a t h

2

0.681/35 = 1/51.5, s i n c e I i = 0.681. It i s t h u s almost i d e n t i c a l w i t h t h e former

DIN

c o n d i t i o n h

2

1/50

.

For a s l a b w i t h b/l = 1 . 5 a c c o r d i n g

t o F i g . 4, hinged on f o u r s i d e s , L i = 0.64; t h e r e f o r e h L li/35 means h =

0.841/35 = 1/42.

T h i s r e v i s i o n of t h e previous h

2

1/50 a p p e a r s q u i t e a p p r o p r i a t e , because w i t h i n c r e a s i n g r a t i o b/l t h e b e a r i n g e f f e c t of a two-way s l a b c o n t i n u o u s l y approaches t h a t of a one-way s l a b .

DIN

1045 p r e v i o u s l y took account of t h i s

f a c t o n l y inasmuch a s t h e v a l u e s f o r one-way s l a b s were s u b s t i t u t e d from b/l = 1.5 on. A s l a b w i t h b/l = 1.4, f i x e d on f o u r s i d e s , h a s l i = 0.551, s o t h a t t h e c o n d i t i o n h li/j5

is

e q u i v a l e n t t o t h e c o n d i t i o n h

2

1/64. A s l a b t h a t

is r i g i d l y f l x e d on a l l f o u r s l d e s can t h u s be made more s l e n d e r t h a n b e f o r e . Since t h e above c o n s i d e r a t i o n s f o r d e f l e c t i o n s of r e i n f o r c e d c o n c r e t e members t h a t can have l i t t l e o r no damaging e f f e c t lead t o r e s u l t s t h a t

approximate t h e former

DIN

1045 r e g u l a t i o n , i t seems a p p r o p r i a t e t o a s k whether

one should r e v i s e t h i s proven r e g u l a t i o n a t a l l a s f a r a s t h e s e members a r e concerned. The a u t h o r b e l i e v e s t h a t we should do so, because t h e d e f i n i t i o n given h e r e o f f e r s t h e p o s s i b i l i t y of a s s e s s i n g every p o s s i b l e b e a r i n g s i t u a - t i o n . T h i s i s most c l e a r l y dernonstratcd on t h e overhanging beam ( c f . F i g . l o ) , f o r which i n f u t u r e , g r e a t e r e f f e c t i v e d e p t h s w i l l be n e c e s s a r y i n some c a s e s t h a n were f r e q u e n t l y p r o j e c t e d i n t h e p a s t . O f course t h i s does n o t seem n e c e s s a r y f o r a l l overhanging c o n s t r u c t i o n , e s p e c i a l l y i n t h e c a s e of f i l l i n g s t a t i o n r o o f s , canopies o v e r e n t r a n c e s , e t c . In such c a s e s t h e diminished c o n d i t i o n h = li/50 i s suggested, a f t e r t h e p a t t e r n of t h e s t r u c t u r a l s t e e l r e g u l a t i o n s .

F o r r e i n f o r c e d c o n c r e t e members whose d e f l e c t i o n s may have harmful e f f e c t s we s t a r t from t h e f a c t t h a t f o r f o r m e r l y customary a d m i s s i b l e s t r e s s e s up t o

(11)

about tsb

-

65

bg/cm2 and o = 1800 1ce/cri12 and t h e former c o n d i t i o n h = 1/35

e

f o r t h e s l a b hinged on two s i d e s no harmful e f f e c t s of d e f l e c t i o n s were

experienced. With -

-

l i = lc

-

1 ( 7

1

we s h a l l i n t r o d u c e , f o r s t r e s s c s g r e a t e r than 65/1800 ke/cm2, a s t r e s s -

dependent value ~ ( o ) and a s u i t a b l e niininiun s l e n d e r n e s s h L

TI/@.

Accordingly

w e e s t a b l i s h p =

Po

=

35

and

TI

= 1 f o r a one-way s l a b hinged a t b o t h s i d e s and s u b j e c t e d t o a uniformly d i s t r i b u t e d load q, i f i t s s t r e s s e s a t mid-span come t o ab = 65 kg/cm2 and oe = 1800 ke/cm2. F o r o t h e r s t r e s s e s a t mld-span t h e s t r e s s - d e p e n d e n t value @ i s determined such t h a t f o r e q u a l s u p p o r t and e q u a l b e a r i n g c o n d i t i o n s t h e same d e f l e c t i o n f o c c u r s . The e l a s t i c d e f l e c t i o n of t h e beam of span 1 supported a t two p o i n t s i s

f o , e l /1 = A.

-$$-

w i t h hO = 5/j84.

With t h e mid-span moment No = q12/8 and mo = ~ d =

1/8,

~ i t 1 f o l l o w s t h a t ~

and f i n a l l y w i t h s u b s t i t u t i n g t h e c o n c r e t e and s t e e l s t r e s s e s t h e n t h e e l a s t i c d e f l e c t i o n i s given by In o r d e r t o t a k e i n t o account t h e i n f l u e n c e of c r e e p and s h r i n k a g e , t h e e l a s t i c d e f l e c t i o n f a c c o r d i n g t o r e f . 1 Is m u l t i p l i e d by a c o r r e c t i o n o,e

f a c t o r u which a l s o depends on t h e s t r e s s . F o r ob = 65 kg/cm2 and o e =

1800 kg/cm2 t h i s i s denoted by o o . The t o t a l d e f l e c t i o n r e f e r r e d t o t h e span

(12)

For a r b i t r a r y s t r e s s e s 0 b,k and oc, k~ b u t t h e same a t a t i c system i t f o l l o w s t h a t

We now wish t o know t h e e f f e c t i v e d e p t h

%

= 1/J3 which f o r t h e stresses o b

,

k

and o g i v e t h e same d c f l e c t i o n and t h e e f f e c t i v e d e p t h ho = f o r t h e e , k

s t r e s s e s a = 65 kdcn12 and a = 1800 kg/cm2. Equating ( 8 a ) and ( 8 b ) we

b , o e , 0

g e t

The v a l u e s n o and xk a r e o b t a i n e d from r e f . 1, assuming S = 3 0

With xo = 1.32, n =

15,

a b J o =

65

kg/cm2, a = 1800 kg/cm2, and

Po

=

35

e , o we g e t These

B

v a l u e s a r e p l o t t e d i n F i g . 11 f o r 0

2

a b J k

6

120 kg/cm2 and 1400

I

u e.k

-

1

2800 kp/cm2. For p r a c t i c a l u s e i t i s a d v i s a b l e t o combine t h e v e r i f i c a t i o n w i t h t h e u s u a l d e s i g n procedure. Accordingly

%

=

dm,

where h i s i n om, M i n t m and b i n m. If we wish t o r e s t r i c t d e f l e c t i o n t o t h e amount recommended f o r members which may cause damage, t h e n we must t a k e h =

Ti/B,

i . e . hrequired

-

-

Ti/& From t h e two e q u a t i o n s

h r e q u i r e d [cm] = kh

.

d n ~ b hobtained [cm] = l 0 0 i i / ~ w i t h

ii

i n m i t f o l l o w s t h a t With t h e a b b r e v i a t i o n s kf =

Ti/

./

Ti

i n ~ n ,

M

i n t m , b i n m +

In

r e f . 1 t h i s v a l u e i s denoted ~y x,; i n F i g . 3b o f t h a t a r t i c l e t h e r i s a t y p o g r a p h i c a l e r r o r ; t h e s o l i d c u r v e s h o l d f o r s s =

15

.

lo",

t h e broken l i n e c u r v e s f o r e S = 3 0

lom5

(13)

we o b t a i n

The recommended l i m i t a t i o n of d e f l e c t i o n i s t h u s observed i f

The kh values and corresponding k? v a l u e s a r e c o l l e c t e d i n Fig. 12. For double reinforcement t h e k? v a l u e s which correspond t o t h e v a l u e s which determine t h e c o n c r e t e s t r e s s e s . I would recommend b a s i n g t h e assessment of d e f l e c t i o n s f o r bending and compression s t r e s s e s on t h e c o n c r e t e s t r e s s e s t h a t would be e f f e c t i v e I n s t a t e

-

I1 without normal f o r c e .

The i d e a l l e n g t h

TI

= k 1 f o r members whose d e f l e c t l o n s can have harm- f u l e f f e c t s should be d e f i n e d , u n l i k e l i f o r members whose d e f l e c t i o n s can produce no damage, by e q u a t i n g t h e s t r e s s e s i n s t e a d of t h e l o a d s ( o n l y t h e f3

values, n o t t h e

'E

values, i n f l u e n c e t h e s t r e s s e s ! ) . For t h e s l a b hinged on both s i d e s we have a l r e a d e s t a b l i s h e d k = 1. For o t h e r boundary c o n d i t i o n s k i s determined such t h a t f o r e q u a l span 1 and e q u a l s t r e s s e s

ab

and ae i n mid- span, or, i n t h e case of overhanging beams a t t h e f i x i n g p o i n t , t h e same d e f l e c t i o n s f a r e obtained a s f o r hinged s u p p o r t on both s i d e s . For one-way

and two-way members t h e d e f l e c t i o n i n mid-span i s a p p l i e d ; f o r overhanging beams a t the overhang end and f o r continuous members f u l l load I s a p p l i e d . For two-way members t h e s h o r t e r span i s always t h e d e c i s i v e one. The maximum s t r e s s e s ab and oe i n mid-span can occur, of course, i n t h e d i r e c t i o n of t h e longer span and I n such c a s e s they must be introduced i n t o t h e c a l c u l a t i o n . For a s i n g l e - s p a n s l a b hinged on two s i d e s ( s u b s c r i p t o ) t h e d e f l e c t i o n

r e f e r r e d t o t h e span, according t o e q u a t i o n (Ba), f o r given s t r e s s e s ob and oe

For a s l a b supported i n any manner (index k ) of e q u a l span 1 with t h e same s t r e s s e s ob and oe, u s i n g e q u a t i o n ( 7 ) and i i / h = f3, is

(14)

where

q

i s t h e bending moii~ent a t mld-span d i v i d e d by q12 ( i n t h e c a s e of

overhanging s l a b s a t t h e p o i n t of f i x i n g ) and f o r two-way s l a b s i s t h e g r e a t e r of t h e moments a c t i n g i n both d i r e c t i o n s . A s an example we a g a i n choose a one-way r e i n f o r c e d s l a b f i x e d a t both ends. Here = 5/304, mo =

1/8,

and f o r f i x a t i o n on two s i d e s

\

= 1/384 and

5

= 1/24, hence f o r t h i s case k =

24/40 = 0.6. This value d i f f e r s b u t l i t t l e from t h e v a l u e k = 0.58 o c c u r r i n g f o r t h e same c a s e . The main d i f f e r e n c e s a r c found f o r two-way s t r e s s e d s l a b s . The v a l u e s computed a c c o r d i n g t o e q u a t i o n ( 1 1 ) f o r one-way s i n g l e - s p a n s l a b s

are shown in F i g . 13 and f o r two-way s i n g l e - s p a n s1.abs i n F i g . 14. In a l l c a s e s p = 0 was employed. In two-way s l a b s v a l u e s of

%

> 1 a r e o b t a i n e d , owing t o t h e f a c t t h a t f o r t h e same load q and t h e same span 1 t h e d e f l e c t i o n of a two-way s l a b d e c r e a s e s t o a l e s s e r degree in r e l a t i o n t o t h e one-way s l a b t h a n t h e bending moment. For t h e c a s e of a one-way continuous system accord- i n g t o F i g .

5

we o b t a i n , w i t h

rill

and mr a i c o r d i n g t o ( 5 a )

The

i?

v a l u e s f o r a number of two t o f i v e - s p a n s l a b s under f u l l load a r e given i n F i g .

15

-

17. For an e l a s t i c a l l y f i x e d s l a b a c c o r d i n g t o F i g .

9,

w i t h rnr

a c c o r d i n g t o ( 6 a ) we g e t

I n F i g . 18

E

v a l u e s a r e given f o r overhanging s l a b s with one span and with two a d j o i n i n g spans. F u l l load on t h e e n t i r e system i s a g a i n assumed.

Wlth t h e d e f l n l t i o n i n t r o d u c e d h e r e we g e t

Ti

v a l u e s f o r two-way s l a b s s i m i l a r t o t h o s e o b t a i n e d f o r one-way s l a b s , t h e s u p p o r t c o n d i t i o n s of t h e two s l d e s p a r a l l e l t o t h e s m a l l e r span d i r e c t i o n I n t h l s c a s e d e t e r m i n i n g t h e v a l u e s f o r t h e two-way s l a b s . For members whose d e f l e c t i o n s can have harmful e f f e c t s t h i s i s a l t o g e t h e r a p p r o p r i a t e , because f o r e q u a l s t r e s s e s and e q u a l span t h e two-way s l a b can t r a n s m i t a much l a r g e r load t h a n a one-way s l a b .

According t o F i g . 11 v a l u e s of f3 >

35

a l s o o c c u r , depending on t h e rnagni- tude of t h e s t r e s s e s ab and a e . It would n o t be c o r r e c t t o r e p l a c e t h e s e v a l u e s by B = 35, a s provided i n t h e former temporary r e g u l a t i o n , because Ti

#

l . Rather, t h e a p p l i c a b l e v a l u e s of l3 a r e l i m i t e d by t h e c o n d i t i o n

(15)

In

members i n t h e open a i r o r i n unheated s p a c e s s m a l l e r permanent

d e f l e c t i o n s occur t h a n i n heated rooms. It i s r e a s o n a b l e t h e r e f o r e , i n compli- ance with t h e a l r e a d y e s t a b l i s h e d r u l e , t o allow f o r 15% g r e a t e r v a l u e s of

B

t h a n t h o s e a c c o r d i n g t o F i g . 11 and 12, where t h e l i m i t 11/35 a g a i n a p p l i e s . In o t h e r words we nlust have

min h = maxPi/(l.15B); 1 ~ / 3 5 ] .

Experience shows t h a t i n c o n v e n t i o n a l l y designed apartment b u i l d i n g s where t h e spans a r e determined by average room dimensions, harmful e f f e c t s due

t o l a r g e d e f l e c t i o n s h a r d l y e v e r occur, ever1 when e x t r a w a l l s ( ~ u s b a u w h d e ) n o t supported on t h e ground a r e e r e c t e d on t h e f l o o r s . F o r t h e s e f l o o r s ,

t h e r e f o r e i t i s o n l y n e c e s s a r y t o observe t h e minimum c o n d i t i o n h = 11/35.

A s a l i m i t beyond which t h i s c o n d i t i o n no l o n g e r s u f f i c e s I would s u g g e s t

Ti

=

5.0 m. I n one-way systems -under s t a n d a r d s u p p o r t c o n d i t i o n s t h e f o l l o w i n g t r u e spans correspond t o t h i s v a l u e :

Single-span s l a b hinged b o t h s i d e s 1 =

5.0

m End span of a continuous s l a b hinged

a t t h e o u t s i d e l

=

5.5

m Single-span s l a b hinged one s i d e ,

f i x e d t h e o t h e r a i d e 1 =

6.2

m I n s i d e span of a continuous s l a b 1

6.6

m Single-span s l a b f i x e d b o t h s i d e s l =

8.3

m

T h i s t a b l e shows t h a t t h e d e s i g n s of t h e c o n v e n t i o n a l apartment house a r e s c a r c e l y a f f e c t e d by t h e s u g g e s t i o n s made h e r e .

F i g u r e 19 g i v e s a swnmary of k and v a l u e s . These a r e v a l u e s t h a t can be c o n s i d e r e d a d m i s s i b l e without v e r i f i c a t i o n . For t h i s r e a s o n upper l i m i t i n g v a l u e s have been given f o r one-way continuous systems f o r overhanging o u t s i d e and i n s i d e spans. The same h o l d s f o r t h e k v a l u e s of two-way s l a b s where t h e curves i n F i g . 4 have been r e p l a c e d by s t r a i g h t l i n e s s i t u a t e d above them, which a t b/l = 2 a t t a i n t h e k v a l u e s f o r one-way nlembers of span 1, s o t h a t f o r 1 b/1 5 2 a l i n e a r i n t e r p o l a t i o n i s p o s s i b l e . A v a l u e s f o r two-way s l a b s t h o s e of one-way s l a b s with t h e s u p p o r t c o n d i t i o n s of t h e s h o r t e r span d i r e c t i o n were i n t r o d u c e d , a l t h o u g h t h e v a l u e s g i v e n i n F i g . 14 a r e a l i t t l e h i g h e r . In view of t h e r e l a t i v e l y low accuracy requirements t h i s s i n i p l i f i c a - t i o n seemed j u s t i f i a b l e .

I n l i n e w i t h t h e above c o n s i d e r a t i o n s I recommend r e p l a c i n g t h e former " ~ e n i p o r a r y r e g u l a t i o n on t h e l i r n l t a t i o n of d e f l e c t i o n of r e i n f o r c e d c o n c r e t e members a c c o r d i n g t o DIN 1045" by t h e f o l l o w i n g r l e g u l a t i o n :

1. In e s t a b l i s h i n g p e r m i s s i b l e minimum s l e n d e r n e s s v a l u e s f o r r e i n f o r c e d c o n c r e t e members t h e l a t t e r a r e d i v i d e d i n t o two c a t e g o r i e s :

(16)

1.1 Reinforced concre t c lrrelilbcrs whose dcf l e c t i o n s can have no harmful e f f e c t s .

1 . 2 Reinforcetl c o n c r e t e menlbers whose d e f l e c t i o n s can have harmful e f f e c t s .

The term "harmful e f f e c t s " niearis h e r e consequences which may i m p a i r t h e s e r v i c e a b i l i t y of t h e s t r u c t u r e . E f f e c t s which i m p a i r t h e s t r u c t u r a l s a f e t y a r e t h e consequence of a n i n c o r r e c t o r incorr~plete s t r e n g t h c a l c u l a t i o n and a r e n o t a f f e c t e d by t h e f o l l o w i n g l i m i t a t i o n s .

Group 1.1 i n c l u d e s e . g . a l l f l o o r s which do n o t s u p p o r t w a l l s o u t s i d e t h e main s t r u c t u r e ( ~ u s b a u w 8 n d e ) and a r e s u p p o r t e d a t t h e i r b o u n d a r i e s by b e a r i n g w a l l s o r r l g i d crossbeams, a s

-

w e l l a s a l l members w i t h s p a n s I and s u p p o r t c o n d i t i o n s such t h a t

Ti

= k I = 5 . 0 m. For t h e d e f l n i t i o n o f s e e no.

3 .

Group 1 . 2 I n c l u d e s e . g . wide-span f l o o r s

(Ti

> 5 . 0 m) w i t h n o n - b e a r i n g w a l l s , f l o o r s w i t h o u t crossbeams a t t h e b o u n d a r i e s and w i t h n o n - b e a r i n g p a n e l s

( g l a s s p a n e s ) mounted on t h e s e b o u n d a r i e s , e t c .

2 . Where members o f group 1.1 a r e s u b J e c t t o b e n d i n g s t r e s s i t i s

r e q u i r e d t h a t h 2 11/35. T h i s c o n d i t i o n a p p l i e s t o one-way s t r e s s e d and two- way s l a b s , r i b b e d f l o o r s , beams, T-beams e t c . , b o t h as s e p a r a t e s t r u c t u r a l members and a s p a r t s of c o n t l n u o u s o r framing composite s t r u c t u r e s . F o r over- hanging members o f minor importance, e . g . r o o f s o f f i l l i n g s t a t i o n s and w a i t - i n g sheds, e n t r a n c e c a o p i e s e t c . , i t i s p e r m i s s i b l e t o p u t h & 11/50.

Here h i s t h e s t a t i c e f f e c t i v e d e p t h and l i t h e a v a i l a b l e span m u l t i p l i e d by a c o e f f i c i e n t k, i . e . li = k

.

1 . F o r s i n g l e - s p a n members hinged on b o t h

s i d e s t h e system-dependent c o e f f i c i e n t k = 1. F o r o t h e r l i m i t i n g c o n d i t i o n s k

Ps determined such t h a t f o r g i v e n l o a d s q and g i v e n a v a i l a b l e s p a n 1 t h e same

d e f l e c t i o n s f a r e o b t a i n e d a s f o r hinged. s u p p o r t on b o t h s i d e s . F o r one-way and two-way members t h i s r e f e r s t o t h e d e f l e c t i o n a t mid-span, o r f o r overhang- i n g beams t o t h e d e f l e c t i o n a t t h e end of t h e overhang, and f o r c o n t i n u o u s members f u l l l o a d i s assumed.

3 . I n t h e c a s e of inembers of group 1 . 2 s u b j e c t t o bendlng s t r e s s h

Ti/

l3 i s recomniended. T h i s a p p l i e s a l s o f o r t h e same members as u n d e r 2.

The s t r e s s - d e p e n d e n t i3 v a l u e s a r e c o l l e c t e d . i n t h e t a b l e ( F i g . 11). F o r s u p p o r t hinged on b o t h s i d e s and s t r e s s e s ob =

65

kg/cm2,0e = 1800 kg/cm2,

B

-

3 5 . F o r o t h e r s t r e s s e s ob and oe,

8

i s d e t e r m i n e d s u c h t h a t f o r e q u a l spans 1 and e q u a l boundary c o n d i t i o n s e q u a l d e f l e c t i o n s f a r e o b t a i n e d . For one-way and two-way members t h i s r e f e r s t o d e f l e c t l o n s and s t r e s s e s a t m l d - span, o r f o r overhanging beams t h e d e f l e c t i o n s a t t h e end o f t h e overhang and t h e s t r e s s e s q t t h e p o i n t of f i x a t i o n u n d e r f u l l l o a d .

(17)

-

In t h i s h 1.9 t h e s t a t i c e f f c c t i v c depth, l l t h e a v a i l a b l e span m u l t i p l i e d by a c o e f f i c i e n t ( c f . No. 2 ) . For s i n g l e - s p a n members hinged on both s i d e s t h e system-dependent c o e f f i c i e n t i? = 1. For o t h e r boundary c o n d i t i o n s

i s made such t h a t f o r equal spans 1 and e q u a l s t r e s s e s a b and a,, t h e same d e f l e c t i o n s f a r e obtained a s f o r h i n g i n g on both s i d e s . For t h e l o c a t i o n of t h e determining d e f l e c t i o n s t h e same a p p l i e s a s has a l r e a d y been s a i d I n con- n e c t i o n w i t h

B.

For two-way members t h e maximum s t r e s s i s d e c i s i v e even when i t does n o t occur i n t h e d i r e c t i o n of t h e s h o r t e r span.

The m i n i m u m e f f e c t i v e h e i g h t h computed h e r e must n o t be l e s s t h a n t h a t computed a c c o r d i n g t o No. 2. I f a lower value i s obtained then t a k e t h e minimum depth a c c o r d i n g t o No. 2, 1 . e . min h = max

fli/B;

li/35].

4.

For members i n t h e open a i r o r i n unheated s p a c e s t h e c o e f f i c i e n t s f3

a c c o r d i n g t o t h e t a b l e ( F i g . 11) can be i n c r e a s e d by 15s. The r e s u l t i n g minimum d e p t h s h must n o t be l e s s t h a n those computed a c c o r d i n g t o No. 2,

1 . e . m i n h = max[Ti/(1.15~); 1,/35].

5. I n s t e a d of a n i n d i v i d u a l v e r i f i c a t i o n t h e k and

TI

v a l u e s a c c o r d i n g t o t h e t a b l e ( ~ i g . 1 9 ) can be used. In t h e case of two-way s l a b s t h e k v a l u e s f o r 1.0

&

b/l

5

2.0 can be l i n e a r l y i n t e r p o l a t e d . For b/l > 2 . 0 t h e v a l u e s f o r one-way s l a b s with t h e s u p p o r t c o n d i t i o n s of t h e s h o r t e r span d i r e c t i o n aPP l y

I n c l o s i n g i t must be remarked t h a t j u s t t h e observance o f c e r t a i n minimum e f f e c t i v e d e p t h s w i l l n o t by i t s e l f p r e v e n t harmful consequences due t o

d e f l e c t i o n s . Much more can be c o n t r i b u t e d t o t h i s by e x p e r t d e s i g n i n g and by t h e p a r t i c i p a t i o n of t h e e n g i n e e r i n t h e p l a n n i n g and development of d e t a i l . Even when high a d m i s s i b l e s t r e s s e s a r e e x p l o i t e d i t i s d o u b t l e s s p o s s i b l e t o execute e n t i r e l y s a t i s f a c t o r y c o n s t r u c t i o n s i n modern r e i n f o r c e d c o n c r e t e . Of course, r e s p o n s i b l e e n g i n e e r s must do t h e d e s i g n i n g and e q u a l l y r e s p o n s i b l e c o n t r a c t o r s must execute t h e work.

(18)

References

1. 11. h l c l ~ n ~ ~ - I : I:in ncitrnf 711r n(-rcrlrnc~ric (lrr c,l.rstizrlicn und p I n s t i ~ ~ 1 1 ~ 1 1 D ~ I ~ C . I ~ I J I S ~ < I I I I ~ L , ~ .sclrI:~lf l~(wrlrr~t!r S t ~ ~ l ~ l l ~ t ~ l o i ~ l ~ : ~ l k c n , Drr

~ ~ ~ I I I ~ I I ~ I ~ I I ~ ~ I I ~ 3.1 (19:!1), S , 9,

2 . 1:. 1 , c n n h n r d t : hnfiinglidrc ~rncl r ~ n d l t r k ~ l i d i c D t ~ r ~ l r h i r g ~ r n - gc.li v1,11 S ~ : r h l l > r ~ ( ~ ~ i l ~ : ~ l k ( ~ ~ ~ im Zustnnd 11. Bcton- ~ r n d Sti~lill~eton-

I ) A I I 5.1 (Inan). s.2.10.

3. 11'. E r n 3 t : 1st dil: nrrtc SJilnnkI~citsvorsclrriIt Ilrrrd~tiyt?

R : ~ ~ ~ r t . ~ l i l ~ c ~ ~ ~ ~ ~ l i r - N n ~ l ~ r i r l ~ ~ O (lDOl), 11. 5.

.I. I?rl;tG clcs Ilcss. hli~rihtcr.s clrs Inncrn \,om 2. 11. 1080. (Aklz. Vll -- (; 1.1 : ,if03 1/60).

5 11. S c . l ~ r i i c l c ~ r : K o l ~ i r n r ~ ~ t n r 7.n D I S 10.13. (Ziff, 11. hIi11.131. XI\!\' S r . ! ) I ; vo111 26. 8 . 1980.) Ilnlr- 11nd n n ~ ~ i n d u s t r i c 7 (lROI\.

S. 262.

ti. K. O l > l : ~ d c n 11. E. R i c h t o r : Ililfsmittcl zrlr \,creit~f;~dilcn Rerrclr~ru~~g dcr I>~rrdrl,irs~rng von Stal~ll)ctonl~nutviIrn. B;rn ulrd H . ~ ~ ~ - i n d ~ ~ \ t r i t , 9 (1961). S. 363.

I . K . O p l ; i d e i ~ : nvt~rcc<~rnjir- uncl IIilfstnfeln zllr l3urii~kqidlti-

g~rllji clrl. z~~lii*si;cn Sd~l;~irLilcit fiir Stal~lbctonteile. 1X.r 1><.11tiAc I?nuinrirl(~r 3 (19131), S. 157.

S. ;\I. S t i l l c r : IIills~nlcln fiir die Ilenicssung v n n Stnlilbt.ton- tr:lgu~,rk~*n 11vi 13escirriinkt11ig der ,D11rclil)ic~1tn~ rinvli dchr Ergiitlzr~nz

Z I I ]>I9 Il)4.i. Dcto~i- u ~ ~ d S t n l ~ l l ~ c t o n l ~ m i 58 (1961). S. 00. 9. 11. n e c k : netontag 1001. Der Bnuingenieur 36 (1961). S. 321. 10. Erl:lR des IIcss. htinislors des Innern vom 4. 1. 1961. (Ak1.r. \'I> - 64;) 26/03 - 1/81.)

11. Erlnl3 (les I-lrss. Ministers dcs Innorn vom 4. 4. 1061. (Akls. \'I> - 8411 16119 - 20161.)

F i g . 1

(19)

-

1A

-

8 -8

I

-

- 1 -

-

! A A - A

F i g . 2

Rectanwlar s l a b supported on four s i d e s ,

one o f the 1onge.r s i d e s being f i x e d , the others hinged

k values f o r single-span s l a b s under d i f f e r e n t boundary conditions

(20)

F i g .

4

k v a l u e s f o r r e c t a n l a r s l a b s supported on f o u r s i d e s ; s i d e r a t i o s 1 . 0

L

b,%

6.

2.5;

v a r i o u s boundary c o n d i t i o n s

(21)

F i g . 6

k v a l u e s f o r two-span s l a b s with span r a t i o s

0.5 1,/1, 5 2.0 k v a l u e s f o r t h r e e - s p a n s l a b s with v a r i o u s span r a t i o s F i g .

8

k v a l u e s f o r t h r e e - , f o u r - , and f i v e - s p a n s l a b s w i t h v a r i o u s span r a t i o s Feld = F i e l d

(22)

4 / 1 ,

-

F i g . 1 0

k v a l u e s f o r overhanging s l a b s f o r v a r i o u s r a t i o s o f overhanging span l e n g t h t o a d j o i n i n g span l e n g t h

(23)

F i g . 1 2

Table of kh and k; values

F i g .

13

k v a l u e s f o r s i n g l e - s p a n s l a b s under v a r i o u s boundary c o n d i t i o n s

(24)

Fig. 14

k values f o r rectangular s l a b s supported on f o u r s i d e s with s i d e r a t i o s 1.0 Si b/l S 2 . 5

(25)

F i g . 15

k values for two-span slabs wlth span ratios

0.5

& 1,/1, & 2 . 0

Fig. 16

k values for three-span slabs wlth various span ratios

Fig. 17

k values for three-, four- and five-span slabs with various span ratios

(26)

Fig.

IS

k values f o r overhanging slabs for various r a t i o s o f overhanging span l e n g t h t o a d j o i n i n g span l e n g t h

Fig. 19

Figure

Table  of  kh and  k;  values
Fig.  IS

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including