• Aucun résultat trouvé

In Section 2.5, we state and prove technical lemmas which are necessary for the main results of the paper

N/A
N/A
Protected

Academic year: 2022

Partager "In Section 2.5, we state and prove technical lemmas which are necessary for the main results of the paper"

Copied!
29
0
0

Texte intégral

(1)

SUPPLEMENTARY MATERIAL OF NONPARAMETRIC BAYESIAN ESTIMATION FOR MULTIVARIATE HAWKES PROCESSES

By Sophie Donnet, Vincent Rivoirard and Judith Rousseau†,‡

INRA, Universit´e Paris Saclay, Universit´e Paris-Dauphine and University of Oxford

In this supplement, we provide in Section 1 additional numerical results. Section 2 is devoted to the proofs of Theorems 1 and 2 (Sections2.1 and 2.2). We also prove Corollary 1 in Section 2.3and Lemma1 in Section 2.4. In Section 2.5, we state and prove technical lemmas which are necessary for the main results of the paper. Finally, Section 2.6is devoted to the proofs of results of Section 2.3 of [1].

1. Supplementary material for the simulation Section. In this section, we present two additional elements. First, in Table 1 we present a detailed version of the number of observations resulting from the chosen simulation parameters for the three scenarios.

Neuron k 1 2 3 4 5 6 7 8

K= 2

T = 5 415.96 227.88 T = 10 840.24 457.92 T = 20 1667.16 903.44

K= 8 T = 10 801.72 399.36 799.28 194.16 390.68 397.76 396.24 399.20 T = 20 1601.68 805.68 1599.20 392.36 788.20 796.64 794.40 802.32 K=2 with smoothhk,`

T = 5 428.24 206.60 T = 10 841.64 412.80 T = 20 1731.48 838.40

Table 1

Mean numbers of events on each neuron for the three simulation scenarios (the average is done over all the simulated datasets)

In Figure 1, we then present the posterior density of ν1 and ν2 for one given dataset and the regularized distribution of the posterior mean of ν1 and ν2 over the 25 simulated datasets for the regular histogram prior (upper panel) and the random histogram prior (bottom panel). We thus illustrate the fact that both priors provide very similar results.

2. Supplementary material for the proof section.

2.1. Proof of Theorem 1. To prove Theorem 1, we apply the general methodology of Ghosal and van der Vaart [2], with modifications due to the fact that exp(LT(f)) is the likelihood of the distribution of (Nk)k=1,...,K on [0, T] conditional on G0 and that the metric d1,T depends on the observations. We set MT =M√

log logT, forM a positive constant. Let

A ={f ∈ F; d1,T(f0, f)≤K}

1

(2)

(a) Results for the regular histogram prior distribution :On the left, posterior distribution ofν1 (top) and ν2 (bottom) withT = 5,T = 10 andT = 20 for one dataset.On the right, regularized distribution of the posterior mean of (ν1, ν2)

Eb

ν`|(Ntsim)t∈[0,T]

sim=1...25 over the 25 simulated datasets.

(b)Results for the random histogram prior distribution :On the left, posterior distribution ofν1 (top) andν2

(bottom) withT = 5,T = 10 andT = 20 for one dataset.On the right, regularized distribution of the posterior mean of (ν1, ν2)

Eb

ν`|(Ntsim)t∈[0,T]

sim=1...25 over the 25 simulated datasets.

Fig 1: Results ofscenario 1 : influence of the prior distribution (random or regular histogram) on the inference of (νk)k=1,2

(3)

and for j≥1, we set

(2.1) Sj ={f ∈ FT; d1,T(f, f0)∈(KjT, K(j+ 1)T]},

whereFT ={f = ((νk)k,(hk,`)k,`)∈ F; (hk,`)k,`∈ HT}. So that, for any test functionφ, Π AcMTT|N

= R

AcMT T eLT(f)−LT(f0)dΠ(f) R

FeLT(f)−LT(f0)dΠ(f) =: N¯T

DT

≤1cT +1

DT< Π(B(T ,T))

exp(2(κT+1)T 2 T)

+φ1T + e2(κT+1)T 2T Π(B(T, T))

Z

FTc

eLT(f)−LT(f0)dΠ(f)

+1T

e2(κT+1)T 2T Π(B(T, T))

X

j=MT

Z

FT1f∈SjeLT(f)−LT(f0)(1−φ)dΠ(f) and

E0

Π AcMTT|N

≤P0(ΩcT) +P0

DT < e−2(κT+1)T 2TΠ(B(T, B))

+E0[φ1T] + e2(κT+1)T 2T

Π(B(T, B))

Π(FTc) +

X

j=MT

Z

FT

E0

Ef

1T1f∈Sj(1−φ)|G0 dΠ(f)

,

since E0

"

Z

FTc

eLT(f)−LT(f0)dΠ(f)

#

=E0

"

E0

"

Z

FTc

eLT(f)−LT(f0)dΠ(f)|G0

##

=E0

"

Ef

"

Z

FTc

dΠ(f)|G0

##

= Π(FTc), which is controlled by using Assumption (ii). SinceeT+1)T 2TeLT(f)−LT(f0)≥1{LT(f)−LT(f0)≥−(κT+1)T 2T},

P0

DT ≤e−2(κT+1)T 2TΠ(B(T, B))

≤P0

Z

B(T,B)

eLT(f)−LT(f0) dΠ(f)

Π(B(T, B)) ≤e−2(κT+1)T 2T

!

≤P0

Z

B(T,B)

1{LT(f)−LT(f0)≥−(κT+1)T 2T}

dΠ(f)

Π(B(T, B)) ≤e−(κT+1)T 2T

!

≤ E0

hR

B(T,B)1{LT(f)−LT(f0)<−(κT+1)T 2T}Π(B(dΠ(fT,B)))

i

1−e−(κT+1)T 2T

≤ R

B(T,B)P0 LT(f0)−LT(f)>(κT + 1)T 2T dΠ(f) Π(B(T, B))

1−e−(κT+1)T 2T

. log log(T) log3(T) T 2T ,

(4)

by using Lemma 2 of Section 4.2 of [1]. Remember we have set ρ0k,` := kh0k,`k1 and ρk,` := khk,`k1. Since hk,` and h0k,` are non-negative functions,RA

−sh0k,`(u)du≤ρ0k,`, RT−s

0 h0k,`(u)du≤ρ0k,`,and note that

T d1,T(f, f0) =

K

X

`=1

Z T 0

ν`−ν`0+

K

X

k=1

Z t t−A

(hk,`−h0k,`)(t−s)dNsk

dt

K

X

`=1

Z T 0

ν`−ν`0+

K

X

k=1

Z t t−A

(hk,`−h0k,`)(t−s)dNsk

! dt

K

X

`=1

T(ν`−ν`0) + Z T

0 K

X

k=1

Z t t−A

(hk,`−h0k,`)(t−s)dNsk

! dt

,

then for any`= 1, . . . , K, d1,T(f, f0) ≥

ν`−ν`0+ 1 T

K

X

k=1

Z T 0

Z t t−A

(hk,`−h0k,`)(t−s)dNskdt

=

ν`−ν`0+

K

X

k=1

k,`−ρ0k,`)Nk[0, T −A]

T +1

T Z 0

−A

Z A

−s

(hk,`−h0k,`)(u)dudNsk+ 1 T

Z T T−A

Z T−s 0

(hk,`−h0k,`)(u)dudNsk

=

ν`+

K

X

k=1

ρk,`Nk[0, T−A]

T + 1

T Z 0

−A

Z A

−s

hk,`(u)dudNsk+ 1 T

Z T T−A

Z T−s 0

hk,`(u)dudNsk

− ν`0+

K

X

k=1

ρ0k,`Nk[0, T−A]

T + 1

T Z 0

−A

Z A

−s

h0k,`(u)dudNsk+ 1 T

Z T T−A

Z T−s 0

h0k,`(u)dudNsk

! .

This implies forf ∈Sj that ν`+

K

X

k=1

ρk,`

Nk[0, T −A]

T ≤ν`0+

K

X

k=1

ρ0k,`Nk[−A, T]

T +K(j+ 1)T

ν`+

K

X

k=1

ρk,`

Nk[−A, T]

T ≥ν`0+

K

X

k=1

ρ0k,`Nk[0, T−A]

T −K(j+ 1)T. (2.2)

On ΩT,

K

X

k=1

ρ0k,`Nk[−A, T]

T ≤

K

X

k=1

ρ0k,`0kT),

(5)

so that, forT large enough, for all j≥1Sj ⊂ Fj with

Fj :={f ∈ FT; ν` ≤µ0` + 1 +KjT,∀`≤K}, since

(2.3) µ0``0+

K

X

k=1

ρ0k,`µ0k.

Let (fi)i=1,...,Nj be the centering points of a minimal L1-covering of Fj by balls of radius ζjT with ζ = 1/(6N0) (with N0 defined in Section2of [1]) and defineφ(j) = maxi=1,...,Njφfi,j whereφfi,j is the individual test defined in Lemma 1associated tofi andj (see Section4.1of [1]). Note also that there exists a constant C0 such that

Nj ≤(C0(1 +jT)/jT)KN(ζjT/2,HT,k.k1)

whereN(ζjT/2,HT,k.k1) is the covering number ofHT byL1-balls with radiusζjT/2. There exists CK such that if jT ≤ 1 then Nj ≤ CKe−Klog(jT)N(ζjT/2,HT,k.k1) and if jT > 1 then Nj ≤ CKN(ζjT/2,HT,k.k1). Moreover j 7→ N(ζjT/2,HT,k.k1) is monotone non-increasing, choosing j≥2ζ0/ζ, we obtain that

Nj ≤CK(ζ/ζ0)KeKlogTex0T 2T,

from hypothesis (iii) in Theorem1. Combining this with Lemma1, we have for all j≥2ζ0/ζ, E0[1Tφ(j)].Nje−T x2(jT∧j22T).eKlogTex0T 2Te−x2T(jT∧j22T) sup

f∈FjE0

Ef[1T1f∈Sj(1−φ(j))|G0]

.e−x2T(jT∧j22T), forx2 a constant. Setφ= maxj≥MTφ(j) withMT >2ζ0/ζ, then

E0[1Tφ].eKlogTex0T 2T

b−1T c

X

j=MT

e−x2T 2Tj2 + X

j≥−1T

e−T x2Tj

.e−x2T 2TMT2/2

and

X

j=MT

Z

FT E0

Ef

1T1f∈Sj(1−φ)|G0

dΠ(f).e−x2T 2TMT2/2. Therefore, using Assumption (i),

e2(κT+1)T 2T Π(B(T, B))

X

j=MT

Z

FTE0

Ef

1T1f∈Sj(1−φ)|G0

dΠ(f) =o(1) ifM is a constant large enough, which terminates the proof of Theorem 1.

(6)

2.2. Proof of Theorem2. The proof of Theorem2 follows the same lines as for Theorem1, except that the decomposition of FT is based on the sets Fj and HT ,i, i≥1 andj ≥MT for someMT >0.

For each i ≥ 1, j ≥ MT, consider Si,j0 a maximal set of ζjT-separated points in Fj ∩ HT,i (with a slight abuse of notations) andφi,j = maxf1∈S0

i,jφf1 with φf1 defined in Lemma 1. Then,

|Si,j0 | ≤CK(ζ/ζ0)KeKlog(T)N(ζjT/2,HT ,i,k.k1).

Setting ¯NT ,ij := R

FT∩HT ,i1f∈SjeLT(f)−LT(f0)dΠ(f), using similar computations as for the proof of Theorem1, we have

E0

Π AcM

TT|N

≤P0(ΩcT) +P0

DT < e−2(κT+1)T 2TΠ(B(T, B))

+ e2(κT+1)T 2T

Π(B(T, B))Π(FTc) +E0

1T

+∞

X

i=1 +∞

X

j=MT

φijT,ij DT

+ e2(κT+1)T 2T Π(B(T, B))E0

1T

+∞

X

i=1 +∞

X

j=MT

(1−φij) ¯NT,ij

.

Assumptions of the theorem allow us to deal with the first three terms. So, we just have to bound the last two ones. Using the same arguments and the same notations as for Theorem 1,

E0

1T

+∞

X

i=1 +∞

X

j=MT

(1−φij) ¯NT ,ij

 =

+∞

X

i=1

Z

FT∩HT ,i +∞

X

j=MT

E0

h

1T1f∈Sj(1−φij)eLT(f)−LT(f0) i

dΠ(f)

=

+∞

X

i=1

Z

FT∩HT ,i

+∞

X

j=MT

E0

Ef[1T1f∈Sj(1−φij)|G0] dΠ(f)

.

+∞

X

i=1

Z

FT∩HT ,i

dΠ(f)

+∞

X

j=MT

e−x2T(jT∧j22T).e−x2T 2TMT2/2.

Now, for γ a fixed positive constant smaller thanx2, settingπT ,i= Π(HT ,i), we have E0

1T

+∞

X

i=1 +∞

X

j=MT

φij

N¯T ,ij DT

P0

DT < e−2(κT+1)T 2TΠ(B(T, B)) +P0

∃(i, j);

πT ,iφi,j> e−γT(jT∧j22T)T

+

+∞

X

i=1 +∞

X

j=MT

e−γT(jT∧j22T)

πT ,ie2(κT+1)T 2T Π(B(T, B))E0

1T

Z

FT

1f∈SjeLT(f)−LT(f0)dΠ(f|HT ,i)

.

(7)

Now, P0

∃(i, j);√

πT ,iφi,j > e−γT(jT∧j22T)∩ΩT

+∞

X

i=1

√πT,i

+∞

X

j=MT

eγT(jT∧j22T)E0[1Tφi,j]

.

+∞

X

i=1

√πT,i

+∞

X

j=MT

e(γ−x2)T(jT∧j22T)+Klog(T)N(ζjT/2,HT,i,k.k1)

.e(γ−x2)T 2TMT2/2

+∞

X

i=1

√πT,iN(ζ0T,HT ,i,k.k1) =o(1).

But, we have

E0

1T

Z

FT 1f∈SjeLT(f)−LT(f0)dΠ(f|HT ,i)

≤ 1 and

E0

1T

+∞

X

i=1 +∞

X

j=MT

φij

T,ij DT

 .

+∞

X

i=1

√πT ,ie−γT 2TMT2 e2(κT+1)T 2T

Π(B(T, B))+o(1) =o(1), forM a constant large enough. This terminates the proof of Theorem 2.

2.3. Proof of Corollary1. LetwT →+∞. The proof of Corollary1follows from the usual convexity argument, so that

kfˆ−f0k1≤wTεT +Eπ

kf−f0k11kf−f0k1>wTεT|N ,

together with a control of the second term of the right hand side similar to the proof of Theorem 3.

We write Eπ

kf −f0k11kf−f0k1>wTεT|N

≤Eπ h

kf−f0k11AL1(wTεT)c1AεT|Ni +Eπ

h

kf −f0k11AcεT|Ni

and since R

kf−f0k1dΠ(f)≤ kf0k1+R

kfk1dΠ(f)<∞, P0

Eπ

hkf −f0k11AL1(wTεT)c1AεT|Ni

> wTεT

≤P0c1,T +P0

DT < e−c1T 2T

+ec1T 2T wTεT

Z

AL1(wTεT)c

kf −f0k1E0[Pf(Ω1,T ∩ {d1,T(f0, f)≤εT})|G0]dΠ(f)

≤o(1) +o(1) Z

kf −f0k1dΠ(f) =o(1),

(8)

where the last inequality comes from the proof of Theorem3. Similarly, using the proof of Theorem1, P0

Eπ

hkf−f0k11AcεT|Ni

> wTεT

≤P0(ΩcT) +P0

DT < e−c1T 2T

+E0[1Tφ]

+ ec1T 2T wTεT

Z

AL1(wTεT)c

kf −f0k1E0

h Ef

h

(1−φ)1T1{d1,T(f0,f)>εT}

i

|G0i dΠ(f)

≤o(1) +o(1) Z

kf−f0k1dΠ(f),

and P0(kfˆ−f0k1>3wTεT) =o(1). Since this is true for anywT →+∞, this terminates the proof.

2.4. Proof of Lemma 1. For the sake of completeness, we recall the statement of Lemma 1.

Lemma 1. Let j≥1, f1∈ Fj and define the test φf1,j = max

`=1,...,K

1{N`(A1,`)−Λ`(A1,`;f0)≥jT T/8}∨1{N`(Ac1,`)−Λ`(Ac1,`;f0)≥jT T/8}

, with for all ` ≤ K, A1,` = {t ∈ [0, T]; λ`t(f1) ≥ λ`t(f0)}, Λ`(A1,`;f0) = RT

0 1A1,`(t)λ`t(f0)dt and Λ`(Ac1,`;f0) =RT

0 1Ac1,`(t)λ`t(f0)dt. Then E0[1Tφf1,j] + sup

kf−f1k1≤jT/(6N0)

E0

Ef

1T1f∈Sj(1−φf1,j)|G0

≤(2K+ 1) max

` e−x1,`T jT(

µ0`∧jT),

with N0 is defined in Section 2 of [1] and x1,`= min

36,1/(4096µ0`),1/

1024K

q µ0`

.

Proof of Lemma 1. Let j ≥1 and f1 = ((νk1)k=1,...,K,(h1`,k)k,`=1,...,K) ∈ Fj. Let ` ∈ {1, . . . , K} and let

φj,A1,` =1{N`(A1,`)−Λ`(A1,`;f0)≥jT T/8}. By using (2.3), observe that on the event ΩT,

Z T

0

λ`s(f0)ds=ν`0T+

K

X

k=1

Z T

0

Z s

s−A

h0k,`(s−u)dNukds

≤ν`0T+

K

X

k=1

Z T

−A

Z T 0

1u<s≤A+uh0k,`(s−u)dsdNuk and for T large enough,

(2.4)

Z T 0

λ`s(f0)ds≤ν`0T +

K

X

k=1

ρ0k,`Nk[−A, T]≤2T µ0`.

(9)

Let j ≤ q

µ0`−1T and x = x1j2T 2T, for x1 a constant. We use inequality (7.7) of [4], with τ = T, Ht= 1A1,`(t),v= 2T µ0` and MT =N`(A1,`)−Λ`(A1,`;f0).So,

P0

n

N`(A1,`)−Λ`(A1,`;f0)≥√

2vx+x 3

o

∩ΩT

≤e−x1j2T 2T.

Ifx1≤1/(1024µ0`) and x1 ≤36, we have that

(2.5) √

2vx+x 3 = 2

q

µ0`x1jT T +x1j2T 2T

3 ≤2

q µ0`x1

1 +

√x1 6

jT T ≤ jT T

8 . Then

P0

N`(A1,`)−Λ`(A1,`;f0)≥ jT T 8

∩ΩT

≤e−x1j2T 2T. Ifj ≥q

µ0`−1T , we apply the same inequality but withx=x0jT T with x0 = q

µ0` ×x1. Then,

2vx+x 3 = 2

r µ0`x1

q

µ0`jTT + x1

q

µ0`jT T

3 ≤2

q

µ0`x1jT T + x1

q

µ0`jT T

3 ≤ jT T

8 , where we have used (2.5). It implies

P0

N`(A1,`)−Λ`(A1,`;f0)≥ jT T 8

∩ΩT

≤e−x0jT T.

Finally E0

1Tφj,A1,`

≤e−x1T jT(

µ0`∧jT).Now, assume that Z

A1,`

`t(f1)−λ`t(f0))dt≥ Z

Ac1,`

`t(f0)−λ`t(f1))dt.

Then

(2.6) kλ`(f1)−λ`(f0)k1

2 :=

RT

0`t(f1)−λ`t(f0)|dt

2 ≤

Z

A1,`

`t(f1)−λ`t(f0))dt.

Letf = ((νk)k=1,...,K,(h`,k)k,`=1,...,K)∈Sj satisfying kf−f1k1 ≤ζjT for someζ >0. Then, kλ`(f)−λ`(f1)k1 ≤T|ν`−ν`1|+

Z T 0

Z t t−A

X

k

(hk,`−h1k,`)(t−u)dNuk

dt

≤T|ν`−ν`1|+X

k

Z T

0

Z t

t−A

|(hk,`−h1k,`)(t−u)|dNukdt

≤T|ν`−ν`1|+ max

k Nk[−A, T]X

k

khk,`−h1k,`k1 ≤T N0kf−f1k1 (2.7)

(10)

and kλ`(f)−λ`(f1)k1 ≤T N0ζjT. Since f ∈Sj, there exists`(depending on f) such that kλ`(f)−λ`(f0)k1 ≥jT T.

This implies in particular that ifN0ζ <1,

`(f1)−λ`(f0)k1≥ kλ`(f)−λ`(f0)k1−T N0ζjT ≥(1−N0ζ)T jT. We then have

Λ`(A1,`;f)−Λ`(A1,`;f0) = Λ`(A1,`;f)−Λ`(A1,`;f1) + Λ`(A1,`;f1)−Λ`(A1,`;f0)

≥ −kλ`(f)−λ`(f1)k1+ Z

A1,`

`t(f1)−λ`t(f0))dt

≥ −kλ`(f)−λ`(f1)k1+kλ`(f1)−λ`(f0)k1 2

≥ −T N0ζjT + (1−N0ζ)T jT

2 = (1/2−3N0ζ/2)T jT. Taking ζ= 1/(6N0) leads to

Ef

1f∈Sj(1−φj,A1,`)1T|G0

= Ef

h

1f∈Sj1{N`(A1,`)−Λ`(A1,`;f0)<jT T/8}1T|G0i

≤ Ef

h

1f∈Sj1{N`(A1,`)−Λ`(A1,`;f)≤−jT T/8}1T|G0i

≤ Ef

h

1{N`(A1,`)−Λ`(A1,`;f)≤−jT T/8}1T|G0i .

Note that we can adapt inequality (7.7) of [4], withHt=1A1,`(t) to the case of conditional probability givenG0 since the processEtdefined in the proof of Theorem 3 of [4], being a supermartingale, satisfies Ef[Et|G0]≤E0 = 1 and, given that from (2.2) and (2.4),

Z T 0

λ`s(f)ds≤ν`T+

K

X

k=1

ρk,`Nk[−A, T]≤2T µ0`+K(j+ 1)T T =: ˜v forT large enough, we obtain

Ef

h

1{N`(A1,`)−Λ`(A1,`;f)≤− vx−x

3}1T|G0i

≤e−x. We use the same computations as before, observing that ˜v=v+K(j+ 1)T T.

(11)

Ifj ≤ q

µ0`−1T we set x=x1j2T 2T, forx1 a constant. Then,

2˜vx+x

3 ≤ √

2vx+x 3 +p

2K(j+ 1)T Tx

≤ 2 q

µ0`x1jT T + x1j2T 2T

3 +p

2K(j+ 1)Tx1jT T

≤ 2 q

µ0`x1

1 +

√x1 6

jT T + 2p

KjTx1jT T

≤ 2 q

µ0`x1

1 +

√x1 6

+ 2

r K

q µ0`x1

! jT T.

Therefore, if x1 ≤min

36,1/(4096µ0`),1/

1024K q

µ0` , then

2˜vx+ x

3 ≤ jT T 8 . Ifj ≥q

µ0`−1T , we setx=x0jT T withx0 = q

µ0` ×x1. Then,

2˜vx+x

3 ≤ √

2vx+x 3 +p

2K(j+ 1)T Tx

≤ 2 r

µ0`x1 q

µ0`jTT+ x1

q

µ0`jT T

3 +

r

2K(j+ 1)T T q

µ0`x1jT T

≤ 2 q

µ0`x1jT T + x1

q µ0`jT T

3 + 2

r K

q

µ0`x1jT T ≤ jT T

8 . Therefore,

Ef

h

1{N`(A1,`)−Λ`(A1,`;f)≤−jT T/8}1T|G0i

≤e−x1T jT(

µ0`∧jT). Now, if

Z

A1,`

`t(f1)−λ`t(f0))dt <

Z

Ac1,`

`t(f0)−λ`t(f1))dt, then

Z

Ac1,`

`t(f1)−λ`t(f0))dt≥ kλ`(f1)−λ`(f0)k1 2

and the same computations are run withA1,`playing the role ofAc1,`. This ends the proof of Lemma 1.

2.5. Technical lemmas.

(12)

2.5.1. Control of the number of occurrences of the process on a fixed interval.

Lemma 2. For any M ≥1, for any α > 0, there exists a constant Cα only depending on f0 such that for any T >0, the set

Ω˜T = (

`∈{1,...,K}max sup

t∈[0,T]

N`([t−A, t))≤CαlogT )

satisfies

P0( ˜ΩcT)≤T−α and for any 1≤m≤M

E0

"

`∈{1,...,K}max sup

t∈[0,T]

N`([t−A, t))m

×1˜c T

#

≤2T−α/2, for T large enough.

Proof. For the first part, we split the interval [−A;T] into disjoint intervals of length A and we use Proposition 2 of [4]. For the second part, we set

X := max

`∈{1,...,K} sup

t∈[0,T]

N`([t−A, t))

×1˜cT ≥0 and the equality

E0[Xm] =

Z +∞

0

mxm−1P0(X > x)dx

=

Z CαlogT 0

mxm−1P0(X > x)dx+ Z +∞

CαlogT

mxm−1P0(X > x)dx

≤ m(CαlogT)m−1

Z CαlogT 0

P0( ˜ΩcT)dx+ Z +∞

CαlogT

mxm−1P0(X > x)dx

≤ m(CαlogT)mT−α+ Z +∞

CαlogT

mxm−1P0(X > x)dx.

Furthermore, for T large enough, Z +∞

CαlogT

mxm−1P0(X > x)dx ≤

Z +∞

CαlogT

mxm−1P0 max

`∈{1,...,K} sup

t∈[0,T]

N`([t−A, t))

> x

! dx

Z +∞

CαlogT

mxm−1P0 max

`∈{1,...,K} sup

t∈[0,ex/Cα]

N`([t−A, t))

> x

! dx

Z +∞

CαlogT

mxm−1exp(−αx/Cα)dx≤T−α/2.

(13)

2.5.2. Control of N[0, T]. Letk∈ {1, . . . , K}. We have the following result.

Lemma 3. For any k∈ {1, . . . , K}, for allα >0 there existsδ0>0 such that P0

Nk[0, T] T −µ0k

≥δ0

r(logT)3 T

!

=O(T−α).

Proof of Lemma 3. We use Proposition 3 of [4] and notations introduced for this result. We de- noteN[−A,0) the total number of points ofN in [−A,0), all marks included. LetδT :=δ0p

(logT)3/T, withδ0 a constant. We have

(2.8)

P0

Nk[0, T] T µ0k

> δT

P0

Nk[0, T] Z T

0

λkt(f0)dt

>T δT 2

! +P0

Z T 0

kt(f0)µ0k]dt

> T δT 2

!

and we observe that

λkt(f0) =νk0+ Z t

t−A K

X

`=1

h0`,k(t−s)dNs`=Z◦St(N),

withZ(N) =λk0(f0), whereSis the shift operator introduced in Proposition 3 of [4]. We then have Z(N)≤b(1 +N[−A,0))

with

b= max

k max{νk0,max

` kh0`,kk}.

So, for anyα >0, the second term of (2.8) isO(T−α) forδ0 large enough depending onαandf0. The first term is controlled by using Inequality (7.7) of [4] withτ =T,x=x0T δ2T,Ht= 1,v=µ0kT+T δT/2 and

MT =Nk[0, T]− Z T

0

λkt(f0)dt.

We take x0 a positive constant such that q

0kx0<1,so that, forT large enough T δT

2 ≥√

2vx+x/3.

Therefore, we have P0

|MT|> T δT

2

≤ P0

|MT| ≥√

2vx+x/3 and Z T

0

λkt(f0)dt≤v

+P0

Z T 0

λkt(f0)dt > v

≤ 2 exp(−x) +P0

Z T 0

kt(f0)−µ0k]dt

> T δT

2

≤ 2 exp(−x0δ02(logT)3) +O(T−α) =O(T−α), which terminates the proof.

Références

Documents relatifs

[r]

We prove that arbitrary actions of compact groups on finite dimensional C ∗ -algebras are equivariantly semiprojec- tive, that quasifree actions of compact groups on the Cuntz

The history of previous attempts to obtain a stronger result than Siegers is a curious chapter of accidents, and will be briefly summarised here before

Delano¨e [4] proved that the second boundary value problem for the Monge-Amp`ere equation has a unique smooth solution, provided that both domains are uniformly convex.. This result

First introduced by Faddeev and Kashaev [7, 9], the quantum dilogarithm G b (x) and its variants S b (x) and g b (x) play a crucial role in the study of positive representations

If there is no nonconstant invariant rational function under f , then there exists a closed point in the plane whose orbit under f is Zariski dense1. This result gives us a

The second mentioned author would like to thank James Cogdell for helpful conversation on their previous results when he was visiting Ohio State University.. The authors also would

For general n ≥ 2, G n was first studied by Chai, Wang and the second author [4] from the viewpoint of algebraic geometry. Among other things, they established the