• Aucun résultat trouvé

Tout ce qu’il faut savoir sur les sondes lambda

N/A
N/A
Protected

Academic year: 2022

Partager "Tout ce qu’il faut savoir sur les sondes lambda"

Copied!
16
0
0

Texte intégral

(1)

Information technique n° 03

Tout ce qu’il faut savoir sur les sondes lambda

P e r f e c t i o n

I n t é g r é e

(2)

2

Table des matières

Introduction

Principe de la mesure comparative de l’oxygène Structure et fonctionnement d’une sonde lambda Chauffage et câblage de la sonde

Principe général de la régulation par sonde lambda Vérification de la sonde lambda

La boucle de régulation Contrôle de la sonde Lambda

Détection des défaillances de la régulation par sonde lambda Vérification de la régulation par sonde lambda dans un circuit de régulation ouvert

Comparaison d’une sonde neuve avec une sonde usagée Conversion des substances nocives

Surveillance et analyse de l’état du pot catalytique Défauts typiques des sondes lambda

Testez vos connaissances Réponses au test

Page Page Page Page Page Page Page Page Page Page

Page Page Page Page Page Page

3 4 4 5 5 6–8 6 7 7 8

9 10 10 11 12–13 14–15

(3)

3

Vue en coupe d’une sonde lambda

Introduction

Pour brûler parfaitement 1 kg d’essence dans un moteur thermique, il faut 14 kg d’air, soit environ 11 mètres cubes.

Le rapport entre la quantité d’air réellement requise et les besoins théoriques en air s’appelle l’indice lambda (symbole de la formule: λ). Un indice „λ=1“ signifie l’arrivée au moteur d’une quantité d’air, la plus adaptée à la combustion.

Il faut toutefois se rappeler que le moteur thermique atteint sa puissance maximale avec une carence de 0 à 10 % en air (donc entre λ=0,9 et λ=1,0), et que la moindre consommation d’essence s’obtient avec un excédent d’air d’environ 10 % (soit λ ≈1,1).

En matière de mélange air/carburant, il faut faire la différence entre un „mélange riche“ (part de carburant relativement élevée) et un „mélange pauvre“ (part d’air relativement élevée). Dans les gaz d’échappement d’un mélange très riche, la part de monoxyde de carbone et d’hydrocarbures est très élevée et baisse au fur et à mesure que l’indice lambda augmente. Dans un mélange riche, la part d’azote est relativement faible et atteint son maxi- mum à λ=1. Dans un mélange pauvre par contre, la part d’air dans les gaz d’échappement, donc la part d’oxygène, est relativement élevée.

Avec un pot catalytique fonctionnant optimalement, la part de monoxyde de carbone se transforme en gaz carbo- nique par oxydation avec l’oxygène. De la sorte, il resterait cependant trop peu de CO pour convertir le monoxyde d’azote en azote élémentaire. L’épuration catalytique des gaz d’échappement ne dépend donc pas que de l’adéquation du pot catalytique, il faut aussi que la composition des gaz d’échappement soit optimale dans chaque cas.

C’est dans ce but que le catalyseur à trois voies a été déve- loppé. Faisant office de réacteur, il transforme simultané- ment le monoxyde de carbone, les hydrocarbures et les oxydes d’azote. La composition des gaz d’échappement requise à cette fin lui est fournie par le traitement, à régula- tion électronique, du mélange air/carburant.

Opération préalable: il faut mesurer en permanence la teneur des gaz d’échappement en oxygène. Le capteur chargé de cette fonction est la sonde lambda.

La valeur mesurée indique le rapport du mélange air/car- burant.

La sonde lambda détermine la concentration des gaz d’échappement par une mesure comparative de l’oxygène : elle compare la teneur en oxygène de l’air atmosphérique avec l’oxygène résiduel présent dans les gaz d’échappe- ment. Elle communique les différences à l’appareil de com- mande sous la forme d’un signal électrique. L’appareil de commande corrige ensuite l’allumage et l’injection en conséquence.

Vu les fortes contraintes auxquelles la sonde lambda est exposée dans le flux des gaz d’échappement, elle est sujette à une usure naturelle.

Lors des contrôles périodiques des gaz d’échappement, le technicien vérifie le fonctionnement de la sonde lambda et détermine une usure éventuelle. Le remplacement d’une sonde lambda doit s’effectuer entre 60 000 et 80 000 km maximum.

Câble de branchement de la tension de la sonde et de la résistance chauffante

Couche électro- conductrice (-)

Couche électro- conductrice (+) Côté gaz d’échappement Contact pour la tension de la sonde Résistance chauffante

Corps isolant

Douille de protection

Tube support en céramique

Corps (-)

Tuyau d’échappement

Corps en céramique Tube protecteur à fentes Gaz

d’échappement Côté air

(4)

Structure et fonctionnement d’une sonde lambda

4

Principe de la mesure comparative de l’oxygène

La teneur en oxygène de l’air atmosphérique se situe normalement à 20,8 %. Le système compare ce taux de référence à la teneur résiduelle en oxygène du flux baignant la sonde lambda.

Si dans le flux de gaz d’échappement cette teneur s’élève à 2 % („mélange pauvre“), cette différence par rapport au taux de l’air atmosphérique fait que la sonde génère une tension d’env. 0,1 volt.

Si la teneur en oxygène s’élève à moins de 2 % („mélange riche“), cette différence accrue par rapport au taux d’oxy- gène de référence se manifeste par une tension d’env.

0,9 volt à la sonde.

La sonde lambda se compose essentiellement d’un corps en céramique spéciale dont les surfaces présen- tent des électrodes en platine perméables aux gaz.

L’action de la sonde se fonde sur deux types de facteurs physiques : d’une part cette céramique est poreuse et permet ainsi à l’oxygène de l’air de se diffuser, d’autre part la céramique devient électroconductrice à partir de 300°C env. Les teneurs en oxygène de l’air sont mesurées des deux côtés des électrodes. La différence variant entre les deux teneurs engendre une tension électrique, de l’ordre de quelques milli-volts, au niveau

des électrodes. Les sondes lambda présentent différents modes de fonctionnement : les sondes à l’oxyde de titane présentent une résistance variable en fonction de la dif- férence des taux, les sondes au zirconium font varier la tension en fonction de cette différence. Vu que les sondes au zirconium sont les plus employées, c’est sur elles que porte la suite de ce descriptif.

Dans un corps en acier est logé un élément en céramique (électrolyte solide). La partie extérieure du corps en céra- mique baigne dans les gaz d’échappement, sa partie intérieure baigne dans l’air atmosphérique.

La différence de taux mesurée aux extrémités des électro- des provoque une hausse brutale de la tension émise par la sonde. Ce saut de tension sert à la régulation lambda.

L’électrode externe de la sonde lambda pénètre dans le flux des gaz d’échappement, l’électrode interne est reliée à l’air atmosphérique.

0,5

V

0,1 0,9

Electrode interne

Air atmosphérique 20,8 %

Mélange riche (manque d'air)

Mélange pauvre (excédent d'air)

Electrode externe Gaz d’échappement

Teneur résiduelle en oxygène, 2 % env.

Exemple : taux résiduel d’O2= 2%

Electrode externe de la sonde baignant dans le flux de gaz d’échappement (teneur résiduelle d’O2= 2 %)

Electrode interne de la sonde baignant dans l’air atmosphérique (O2= 20,8 %)

Lambda < 1 = mélange riche Tension lambda : 0,9 volt environ Lambda > 1 = mélange pauvre Tension lambda : env. 0,1 volt

mV 1.000

800

600

475

200

0,01

0,80 0,90 1,00 1,10 1,20 Coefficient d'airλ

(5)

5

Chauffage et câblage de la sonde

Pour amener rapidement la sonde à température après le démarrage du moteur, les constructeurs automobiles emploient des sondes chauffées. Ces sondes présentent non pas un, mais trois ou quatre fils électriques.

Les sondes à trois fils électriques comportent un fil de raccordement à la masse de la résistance chauffante.

Les sondes à quatre fils séparent celui de raccordement du signal voltmétrique à la masse et celui de raccorde- ment du chauffage à la masse, dans le but de

contourner les perturbations que peuvent provoquer la corrosion et les joints au niveau des jonctions à la masse.

Sonde lambda à un fil Couleur du fil :

noir = signal envoyé à l'appareil de commande

Sonde lambda à 3 fils Couleurs des fils :

noir = signal envoyé à l'appareil de commande 2 fils blancs = alimentation électrique de la résistance chauffante

Sonde lambda à 4 fils Couleurs des fils

noir = signal envoyé à l'appareil de commande 2 fils blancs = alimentation électrique de la résistance chauffante

1 fil gris = masse

Principe général de la régulation par sonde lambda

Afin que la composition du mélange se tienne dans le

"créneau lambda" (c.-à-d. dans la plage requise pour que le pot catalytique fonctionne de façon optimale), la sonde lambda se monte dans le conduit d'échappement en amont du pot catalytique. La sonde indique à l'appareil de com- mande si l'indice lambda, l'indice d'air, est supérieur ou inférieur à 1. Par le biais du système d’injection, elle influe sur la composition du mélange, donc sur l'indice lambda.

Lorsque la sonde lambda signale un "mélange pauvre" à l'appareil de commande, ce dernier ordonne d'enrichir le mélange.

Lorsqu'elle signale un "mélange riche", l'appareil de commande ordonne d'appauvrir le mélange.

Appareil de commande

K

Carburateur Sonde lambda

Air

Pot catalytique Flux des gaz

d'échappement

(6)

6

Contrôle de la sonde lambda

Le débit d'injection

augmente

Mélange riche

peu de O2dans les gaz d'échappe-

ment L'appareil enri-

chit le mélange

Sonde l ≈0,9 V Boucle de régulation

Sonde l ≈0,1 V

L'appareil de commande appauvrit le

mélange beaucoup de O2

dans les gaz d'échappement

Le débit d'injection

diminue Mélange pauvre

La boucle de régulation

Afin que la sonde lambda atteigne sa température de fonctionnement comprise entre 250 et 300 °C environ, il faut que le moteur et la sonde aient atteint la bonne température. Ensuite, il faut débrancher le connecteur reliant la sonde et l'appareil de commande, intercaler l'adaptateur approprié puis rebrancher la sonde à l'appareil de commande.

Le fonctionnement de la sonde lambda se mesure à l'aide d'un voltmètre. Nous recommandons d'employer un voltmètre à affichage analogique qui facilite la lecture des sauts de tension.

Une fois le moteur et la sonde parvenus à leur température de fonctionnement, l'aiguille du voltmètre doit faire la navette entre 0,1 et 0,9 volt.

Ce va-et-vient rend visible la boucle de régulation : si la tension indiquée par le voltmètre est de 0,1 volt, c'est le signe qu'un mélange pauvre traverse le conduit d'échappement, la sonde demande alors à l'appareil de commande de l'enrichir.

Si le voltmètre indique 0,9 volt, le mélange qui traverse le conduit est riche et la sonde demande à l'appareil de commande de l'appauvrir.

(7)

7

Contrôle de la sonde lambda

Le kilométrage du véhicule augmentant, la couche de platine sur la sonde se désactive progressivement par usure chimique et thermique. La tension débitée tend alors à diminuer. Une fois que la tension émise par la sonde ne dépasse plus 0,5 volt, elle n'envoie plus l'information "mélange riche" à l'appareil de com- mande, et ce dernier enrichit constamment le mélange.

De même, le chauffage de la sonde peut défaillir. Conséquence : la sonde atteint sa température de fonctionnement avec beau- coup de retard. Il n'y a donc plus de régulation sur de vaste pans du domaine d'utilisation du véhicule, à savoir lorsque le moteur tourne au ralenti et sur les trajets courts.

0,1 0,9

0,5

0,5

V

0,1 0,9

V

1 2 3 4 sec

Appareil de commande

La tension émise par la sonde oscille entre 0,1 et 0,9 volt ? C'est le signe qu'elle fonctionne normalement.

Détection des défaillances de la régulation par sonde lambda

La vérification électrique de la régulation lambda s'effectue à l'aide de la boucle de régulation. Préalables à cette vérification :

Le moteur doit avoir atteint sa température de fonctionnement

La sonde lambda doit elle aussi avoir atteint la bonne température (environ 250 °C) et l'appareil de com- mande doit avoir reçu l'information correspondante.

(Attention : un défaut du capteur thermométrique du liquide de refroidissement peut, en cas d'interruption du circuit, faire que l'appareil de commande reçoive

des informations erronées, comme par ex. "Température moteur inférieure à 70 °C".)

Si la sonde comporte un chauffage, il faut que ce dernier soit branché et opérationnel.

Vous aurez besoin d'un voltmètre analogique.

Procédure :

Faites tourner le moteur jusqu'à la température de fonc- tionnement, débranchez le connecteur entre la sonde lambda et l'appareil de commande, intercalez l'adaptateur.

(Un conseil : si vous ne disposez pas d'adaptateur, vous pouvez en confectionner un à l'aide de connecteurs en vente habituelle dans le commerce.)

(8)

8

Vérification de la régulation par sonde lambda dans un circuit de régulation ouvert

Si vous avez constaté un défaut lors de la vérification de la boucle de régulation lambda, vous devrez d'abord vérifier que tous les paramètres (telles que la température du moteur, celle de la sonde, du capteur thermométrique, etc.) se tiennent dans les plages requises. Si c'est le cas, vous pouvez utiliser la méthode d'ajout d'un paramètre perturbateur.

Cette méthode consiste à envoyer une tension d'origine extérieure à l'appareil de commande, pour lui faire croire qu'il y a présence d'un mélange pauvre ou riche. Si l'appareil de commande et son câblage fonctionnent normalement, il tentera de corriger le mélange conformé- ment au signal reçu.

Il est facile de suivre ce processus à l'aide d'un appareil de mesure des gaz d'échappement ou par "couplage" acoustique : lors de l'enrichissement du mélange, le moteur tourne "plus rond", et lors d'un appauvrissement, il tend à tourner "carré". Une sonde lambda en bon état modifiera en conséquence la tension de son signal.

0,5

V

0,1 0,9

0,5

V

0,1 0,9

Simulation d'un mélange pauvre : L'appareil de commande tente de l'appauvrir. Le moteur tourne "plus rond". La tension de la sonde doit venir se stabiliser autour de 0,9 volt.

Le régime du moteur ne change pas ?

Vérifiez le capteur thermométrique, le faisceau de câbles et l'appareil de commande. Changez les pièces défectueuses.

La tension émise par la sonde ne change pas ? Peut-être est-elle trop froide. Faites-lui atteindre la bonne température de fonctionne- ment.

Le défaut persiste-t-il une fois la sonde à température ? Cela signifie que la sonde est défectueuse, soit son chauffage ne marche plus, soit il y a un défaut à la masse.

Dans les deux cas, changez impérativement la sonde !

La sonde n'atteint-elle plus que 0,7 volt ? Si c'est le cas, elle présente des signes de vieillissement et devra être remplacée.

Présence d'air perturbateur ? Cela signifie que le circuit d'échap- pement n'est pas hermétique.

Localisez le point de pénétration de cet air.

Simulation d'un mélange riche : L'appareil de commande tente de l'appauvrir. Le moteur tourne

"moins rond". La tension de la sonde doit venir se stabiliser autour de 0,1 volt.

Le régime du moteur ne change pas?

Vérifiez le capteur thermométrique, le faisceau de câbles et l'appareil de commande. Changez les pièces défectueuses.

La tension émise par la sonde ne change pas ? Peut-être est-elle trop froide. Faites-lui atteindre la bonne température de fonctionne- ment.

Le défaut persiste-t-il une fois la sonde à température ? Si oui, cela signifie que la sonde est défectu- euse, soit son chauffage ne marche plus, soit il y a un défaut à la masse.

Dans les deux cas, changez impérativement la sonde!

Appareil de commande

Appareil de commande

Débranchez le connec- teur entre la sonde et l'appareil de commande.

Envoyez du 0,9 volt à l'appareil de commande (pour simuler un mélange riche).

Envoyez du 0,1 volt à l'appareil de commande (pour simuler un mélange pauvre.)

0,9 V

0,1 V

(9)

9

Comparaison d'une sonde lambda neuve avec une sonde usagée : détection du mélange, délai de réaction et fréquence de régulation

Le signal n'atteint plus le maximum 0,9 V et minimum 0,1 V, la détection d'un mélange riche / pauvre n'est plus possible.

La sonde réagit avec trop de retard aux variations de richesse ou pauvreté du mélange, et n'indique plus l'état du mélange en temps réel.

La fréquence de la sonde est trop lente, une régulation optimale n'est plus possible.

Amplitude:

V

t

t

t V

V Délai de réaction:

Durée des périodes:

Sonde usagée

Sonde usagée Sonde

neuve

Sonde neuve

Sonde usagée

Sonde neuve

(10)

Surveillance et analyse de l'état du pot catalytique Conversion des substances nocives

10

La conversion des substances nocives a lieu dans le pot catalytique. Un catalyseur est un réacteur qui provo- que une réaction chimique et/ou l'accélère sans parti- ciper lui-même à cette réaction.

Oxydation = liaison avec l'oxygène Réduction = retrait d'oxygène

CO (monoxyde de carbone) s'oxyde pour donner du CO2(gazcarbonique)

HC (hydrocarbure) s'oxyde pour donner du H2O et du CO2

(eau et gaz carbonique)

NOx (oxydes d'azote) ces oxydes se réduisent en N2 et O2

(azote et oxygène)

Afin que les "bouffées" d'oxygène aient lieu, la sonde lambda doit

appauvrir

enrichir le mélange

Sur les pots catalytiques modernes, le taux de conversion, c.-à-d. le taux de substances nocives converties atteint 90 à 95 %.

En aval du pot catalytique se trouve une seconde sonde lambda (ou sonde de surveillance). De par sa composition et son fonctionnement, cette sonde de surveillance ne se distingue pas de la sonde lambda régulatrice montée en amont du pot. Cela signifie que les deux sondes émettent une tension fonction de la teneur résiduelle du flux en oxygène. Vu que pendant le fonctionnement d'un moteur régulé par sonde lambda l'appareil de commande corrige en permanence le mélange en direction de l'enrichissement et de l'appauvrissement, la teneur résiduelle des gaz en oxygène change en conséquence ("bouffées" d'oxygène), ce qui génère continuellement des "rafales" de tension dans la sonde. Un pot catalytique neuf, ayant un pouvoir élevé d'accumulation de l'oxygène, il amortit

presque entièrement les variations de teneur en oxygène en aval de lui-même. Conséquence : la sonde régulatrice signale les variations d'oxygène par des sauts de tension correspondants, tandis que la tension de la sonde de surveillance reste pratiquement constante.

Le pot catalytique vieillissant, son pouvoir d'accumulation de l'oxygène diminue et avec lui son pouvoir d'atténuer les

"bouffées" d'oxygène. Cette situation devient visible grâce à la sonde de surveillance située en aval du pot.

0,1 0,9

1 3 5 sec

0,5

0,1 0,9

1 3 5 sec

0,5

U/V U/V

0,1 0,9

1 3 5 sec

0,5

0,1 0,9

1 3 5 sec

0,5

U/V U/V

Catalyseur en céramique

Sonde lambda Sonde lambda

Sonde de surveillance

"Bouffées" d'oxygène "Bouffées" d'oxygène Sonde de surveillance Sonde lambda

CO HC NOx

H2O N2 CO2

Catalyseur en bon état Pot catalytique défectueux

En présence d'un pot catalytique usagé, la courbe du signal émis par la sonde de surveillance devient pratiquement identique à celle du signal émis par la sonde régulatrice.

Flux de gaz

d'échappement

Flux de gaz

d'échappement

(11)

11

Défauts typiques des sondes Lambda

Incorporation inadaptée Dépôts clairs

Tube de protection fortement garni de suie

Causes les plus fréquentes des défaillances des sondes lambda

Comment interpréter l'état du tube de protection

Outre les fils de branchement, les connecteurs et le corps de la sonde, il faut aussi vérifier le tube protégeant l'élément de la sonde pour voir si des dépôts s'y sont formés. Principaux symptômes:

Symptôme

Tube de protection fortement garni de suie

Dépôts brillants sur le tube de protection

Dépôts clairs sur le tube de protection

Cause

Mélange air / carburant trop riche, résistance chauffante de la sonde lambda défectueuse

Utilisation de carburant au plomb, lequel a attaqué et détruit les revêtements en platine de la sonde lambda et éventuellement du pot catalytique.

Présence d'huile dans la chambre de combustion ou utilisation de certains additifs pour carburant

Remède

Changez la sonde sinon elle risque de se colmater donc de ralentir la vitesse de réaction.

Changez impérativement la sonde, vérifiez le pot catalytique.

Changez impérativement la sonde, vérifiez le pot catalytique, vérifiez si le moteur perd de l'huile.

Diagnostic Surchauffe

Vieillissement chimique Aspiration d'air perturbateur Mauvaises jonctions à la masse Mauvais contacts de jonction Céramique et métal vaporisé détruits Dépôts de plomb

Jonction par câble de la sonde lambda interrompue Colmatage du corps de la sonde par des résidus d'huile

Cause

Températures supérieures à 950 °C dues à une perturbation de la combustion, à un instant d'allumage incorrect ou à des temps incorrects de réaction des soupapes

Le véhicule accomplit trop de trajets courts Sonde incorporée avec insuffisamment de précision Oxydation dans le tuyau d'échappement

Oxydation des jonctions enfichées Couple de vissage de la sonde excessif

Utilisation, par inadvertance, d'un carburant au plomb Morsures de rongeurs

Huile imbrûlée dans le moteur, en raison par ex. d'une usure des segments ou des joints étanchant les queues de soupape

Pour éviter un endommagement de la sonde lors de son incorpora- tion, veuillez respecter les couples de serrage indiqués et utilisez le cas échéant un outil spécial.

(12)

Testez vos connaissances

12

Enregistrez les courbes d'un pot catalytique intact (la sonde et le pot doivent avoir atteint leur température de fonctionnement !)

Comment appelle-t-on les deux sondes lambda…

… en amont du pot catalytique? Sonde ...

… en aval du pot catalytique? Sonde ...

1

2

0,1 0,9

1 3 5 sec

0,5

0,1 0,9

1 3 5 sec

0,5

U/V U/V

Désignez les noms des composants d'un circuit de régulation à sonde lambda et reliez-les entre eux.

3

Flux de gaz

d'échappement

(13)

13

Si la sonde émet une tension de 0,1 volt, cela signifie que le mélange est …

4

Si la sonde émet une tension de 0,9 volt, cela signifie que le mélange est …

5

6

Quels gaz le pot catalytique à 3 voies convertit-il en substances non toxiques?

et

Dans quelle fourchette se situe le taux de conversion de ces substances sur les véhicules équipés d'un traitement régulé du mélange et d'un pot catalytique?

10–50 % 90–95 %

60–70 % 100 %

7

Via le signal reçu de la sonde lambda la commande du moteur détermine …

… en permanence la composition des gaz d'échappement.

… si la combustion fait "cogner"

le moteur.

… s'il faut enrichir ou appauvrir le mélange carburant / air.

9

A partir de quelle température la sonde lambda garantit-elle une régulation sûre du mélange?

env. 10 °C env. 250 °C

env. 800 °C plus de 900 °C

8

10

Quelle est la couleur du fil par lequel transite le signal de la sonde lambda?

Blanche Grise Noire

Que faut-il entendre par créneau λ?

Le pot catalytique ne peut fonctionner que dans ce créneau.

C'est dans ce créneau que la conversion des 3 substances nocives en substances moins nocives, présentes dans les gaz d'échappement, est la plus efficace.

12

Lesquels des gaz suivants sont définis comme toxiques?

CO CO2

CH NOX

N2O

11

(14)

Réponses au test

14

1

0,1 0,9

1 3 5 sec

0,5

0,1 0,9

1 3 5 sec

0,5

U/V U/V

Sonde lambda (sonde régulatrice) Sonde de surveillance

2 3

K

Carburateur

Appareil de commande

Sonde lambda

Enregistrez les courbes d'un pot catalytique intact (la sonde et le pot doivent avoir atteint leur température de fonctionnement !)

Comment appelle-t-on les deux sondes lambda…

Désignez les noms des composants d'un circuit de régulation à sonde lambda et reliez-les entre eux.

(15)

15

4

... riche car la teneur des gaz en oxygène est moins élevée.

5

6 Monoxyde de carbone (CO), hydrocarbures (HC) et oxydes d'azote (NOX).

Dans quelle fourchette se situe le taux de conversion de ces substances sur les véhicules équipés d'un traitement régulé du mélange et d'un pot catalytique?

10–50 % 90–95 %

60–70 % 100 %

7

Via le signal reçu de la sonde lambda la commande du moteur détermine …

… en permanence la composition des gaz d'échappement.

… si la combustion fait "cogner"

le moteur.

… s'il faut enrichir ou appauvrir le mélange carburant / air.

9

A partir de quelle température la sonde lambda garantit-elle une régulation sûre du mélange?

env. 10 °C env. 250 °C

env. 800 °C plus de 900 °C

8

10

Quelle est la couleur du fil par lequel transite le signal de la sonde lambda?

Blanche Grise Noire

Que faut-il entendre par créneau λ?

Le pot catalytique ne peut fonctionner que dans ce créneau.

C'est dans ce créneau que la conversion des 3 substances nocives en substances moins nocives, présentes dans les gaz d'échappement, est la plus efficace.

12

Lesquels des gaz suivants sont définis comme toxiques?

CO CO2

CH NOX

N2O

11

X

X

X

X

X

X

X X

Si la sonde émet une tension de 0,1 volt, cela signifie que le mélange est …

... pauvre car la teneur des gaz en oxygène est plus élevée.

Si la sonde émet une tension de 0,9 volt, cela signifie que le mélange est …

Quels gaz le pot catalytique à 3 voies convertit-il en substances non toxiques?

(16)

Printed in Germany XX.XX.02 Bestell-Nr. X XXX XXX XXX

BERU Aktiengesellschaft Mörikestraße 155 D-71636 Ludwigsburg Téléfon: ++49-7141-132-366 Téléfax: ++49-7141-132-760 www.beru.com

Références

Documents relatifs

115VAC,60Hzi MAX. RATED VOLTAGE NO LOAD. INDICATED VOLTAGES ARE TYPICAL VALUES AND ARE DC UNLESS OTHERWISE NOTED. SEE TABLE I FOR COMPONENT VALUES. SEE TABLE I

Il n'y a pas beaucoup de diversité ethniques, mais il y a de plus en plus d'étrangers qui sont intéressés par Séoul.... Les Langues La langue dominante est la langue Coréenne, mais il

Nous la (re)démontrerons pour la distance d’un point à un plan.. Equation

▪ Le tissu spongieux (il ressemble effectivement à une éponge) : moins dense que le tissu compact, il est composé de lamelles osseuses et d’aréoles (des cavités) remplies de

Pour préparer une boisson isotonique, il vous faudra de l’eau, éventuellement du thé (pour l’arôme), du sucre blanc ou roux (simple saccharose ou fructose) et, pour les efforts

Cela dit, l’usage avec pertinence des termes de sa langue maternelle agni et d’autres langues africaines dans son œuvre : Silence, on développe, dévoile la

Les stratégies internes de réduction faible sont utilisées par les langages de programmation comme C ou OCaml, puisque les fonctions évaluent leurs arguments avant de

Sous ce régime, les biens des conjoints mariés sont divisés en deux catégories : ceux qui sont propres à chacun et ceux acquis par chaque conjoint pendant le mariage ou