• Aucun résultat trouvé

Modelling of the production kinetics of the main fermentative aromas in winemaking fermentation

N/A
N/A
Protected

Academic year: 2022

Partager "Modelling of the production kinetics of the main fermentative aromas in winemaking fermentation"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01837787

https://hal.archives-ouvertes.fr/hal-01837787

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modelling of the production kinetics of the main fermentative aromas in winemaking fermentation

Jean-Roch Mouret, Vincent Farines, Jean-Marie Sablayrolles, Ioan-Cristian Trelea

To cite this version:

Jean-Roch Mouret, Vincent Farines, Jean-Marie Sablayrolles, Ioan-Cristian Trelea. Modelling of the production kinetics of the main fermentative aromas in winemaking fermentation. 2. Euro Mediter- ranean Symposium for Fruit and Vegetable Processing, Apr 2016, Avignon, France. 2016. �hal- 01837787�

(2)

Modeling of the production kinetics of the fermentative aromas in winemaking

conditions

2nd Euro-Mediterranean Symposium on Fruit and

(3)

Introduction

 Objective: better control of this major step of the winemaking process to act on the wine characteristics

 Possibility to on-line monitor and control the main reaction

(bioconversion of sugar into ethanol and CO2) by using current devices based on the measurement of density, CO2 production…

 Dynamic models available to predict the main reaction … but no consideration of fermentative aromas

→ Needs for new approaches :

Alcoholic fermentation in winemaking

Online monitoring of higher alcohols and esters

Dynamic modeling of the synthesis of these volatile compounds

(4)

Online monitoring of fermentative aromas

Heated transfer lines

Valve selector

Cold trap - GC

16 carbon compounds analysed

Maximum analysis frequency: 1h (with 1 tank)

(Mouret et al., 2012, 2014) (Morakul et al., 2011, 2013)

(5)

Online monitoring of fermentative aromas

Compounds measured online (once hourly):

Higher alcohols: propanol, isobutanol, isoamyl alcohol, phenyl ethanol

Acetate esters: ethyl acetate, isoamyl acetate, isobutyl acetate, phenyl ethyl acetate

Ethyl esters: ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl dodecanoate

H2S

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 5 10 15

0 50 100 150

Isoamyl alcohol (mg/L)

Production rate (mg/L.h)

Time (h)

Isoamyl acetate

Production rate Production

(6)

Experimental plan

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 Focus on 5 volatile compounds, in synthetic medium:

2 higher alcohols: propanol, isobutanol, isoamyl alcohol

1 acetate ester: isoamyl acetate

2 ethyl esters: ethyl hexanoate, ethyl octanoate

Impact of T° and initial nitrogen content

(7)

Yields of production from sugar

 2 successive production phases from sugar for the 5 aromas

Transition when nitrogen = 0 for higher alcohols and acetate ester

Transition at fixed consumed sugar C° for ethyl esters

 Yield = f(T°, initial nitrogen)

(Mouret et al., 2014)

(8)

Modeling of the production yields

𝐼𝑠𝑜𝑎𝑚𝑦𝑙𝑒𝑎𝑐𝑙 = 𝑌

𝐼𝑠𝑜𝑎𝑚𝑦𝑙𝑒𝑎𝑙𝑐 1

× 𝑆

𝑐𝑜𝑛𝑠𝑜 1

+ 𝑌

𝐼𝑠𝑜𝑎𝑚𝑦𝑙𝑒𝑎𝑙𝑐 2

(𝑁0, 𝑇) × 𝑆

𝑐𝑜𝑛𝑠𝑜 2

Phase 1 Phase 2

Isoamyl alcohol Isoamyl alcohol

𝑌

1

= 𝑒𝑥𝑝 𝑝

1

+ 𝑝

2

𝑁

0

+ 𝑝

3

𝑇 + 𝑝

4

𝑁

02

+ 𝑝

5

𝑇

2

+ 𝑝

6

𝑁

0

𝑇 𝑌

2

= 𝑒𝑥𝑝 𝑝

7

+ 𝑝

8

𝑁

0

+ 𝑝

9

𝑇 + 𝑝

10

𝑁

02

+ 𝑝

11

𝑇

2

+ 𝑝

12

𝑁

0

𝑇

(Mouret et al., 2015)

(9)

Modeling of the kinetic of the main reaction of the fermentation: MOMAF

 MOMAF (MOdeling of the Main reaction of Alcoholic Fermentation)

 Input values

Initial sugar and nitrogen content

T° profile (including anisotherm)

 Prediction of

Sugar and nitrogen consumption

Biomass, ethanol and CO2 production

CO2 production rate

Fermentation duration

(Malherbe et al., 2004)

(10)

Modeling of the kinetics of production of fermentative aromas

 To predict the kinetics of production of volatile compounds, modeling of the production yields from sugar must be coupled to the MOMAF model

 To use the production yields, the key point is to determine the consumed sugar C° corresponding to the transition between the 2 phases of linear production: ‘S_transition’

𝐼𝑠𝑜𝑎𝑚𝑦𝑙𝑒𝑎𝑐𝑙 = 𝑌

𝐼𝑠𝑜𝑎𝑚𝑦𝑙𝑒𝑎𝑙𝑐 1

× 𝑆

𝑐𝑜𝑛𝑠𝑜 1

+ 𝑌

𝐼𝑠𝑜𝑎𝑚𝑦𝑙𝑒𝑎𝑙𝑐 2

(𝑁0, 𝑇) × 𝑆

𝑐𝑜𝑛𝑠𝑜 2

 S_transition is

constant in all conditions for ethyl esters

dependent on the initial nitrogen C° for the higher alcohols and the acetate ester

Independent of T° for all compounds

(11)

Modeling of the kinetics of production of fermentative aromas

 MODAPEC (MODeling of Aroma Production in Enological Conditions)

Fermentation model MOMAF

Yield model Isobutanol

Yield model Ethyl octanoate

Aroma compound production

model S(t), dS(t)/dt Stransition

Y1, Y2

Stransition Y1, Y2

Isobutanol (t)

Ethyl octanoate (t)

Initial YAN (N0)

Temperature (T)

MODAPEC

E(t), N(t), X(t), dCO2(t)/dt

0 50 100

0 200 400

S N

dCO2/dt (g/L, mg/L, cg/Lh) A: Bioconversion

0 50 100

0 20 40 60

(mg/L)

B: Isobutanol

0 50 100

0 100 200

(mg/L)

C: Isoamyl alcohol

0 50 100

0 1 2

(mg/L)

D: Isoamyl acetate

0 50 100

0 0.5 1

(mg/L)

E: Ethyl hexanoate

0 50 100

0 0.5 1 1.5

(mg/L)

F: Ethyl octanoate

 Deviation less than 7%between experimental and calculated

values ​for both the fermentations used to build the model and those used for validation

(Mouret et al., 2014)

(12)

Conclusions and perspectives

 Main results:

 Identification of two linear production phases from sugar for the 5 studied fermentative aromas

 Possibility to simulate, for the first time, the production kinetics of these fermentative aromas from the 2 main factors affecting the fermentation process: nitrogen content and T°

 Next steps:

 Modeling of the production kinetics of other aromas

 Effects of other parameters : lipids, O2 and nitrogen addition

 Genericity of the results: natural must, other strains ?

 Development of innovative strategies aiming to maximize or minimize the synthesis of fermentative aromas, by controlling fermentation parameters

(13)

Thank you for your attention

Many thanks to :

- UMR SPO – INRA Montpellier - INRA Pech Rouge

- UMR GMPA – AgroParisTech, INRA Grignon

Financial support :

- European CAFE project from the 7th PCRD (KBBE – 212754)

- BIOFLAVOUR COST Action FA0907

It’s not so simple !!!

Références

Documents relatifs

Comme pour la masse conforme d’une structure de Weyl asymptotiquement plate, voir [12], la masse conforme d’une structure de Weyl ALF sera ´evalu´ee en une m´etrique adapt´ee g.

(brain tissue oxygen saturation) map. b) Volume of the cerebral hemispheres: Ipsilateral (HIpsi) and contralateral to the lesion (HContra) at D0 and D21, and volume of

Furthermore, a separable bipartite mixed state can always be modeled by classical correlations between local hidden variables [Wer89]. We might imagine a

Although the synthesis process depends strongly on the raw material, the production of bioethanol generally includes the following steps: (i) preparation of the feedstock to

Ganz im Sinne auch solcher Ansätze folgert Jarren: „Da die gesellschaftli- che Kommunikation in der modernen Gesellschaft sich weitgehend über Medien voll- zieht, kommt den

The chemical analyses and fermentation time of the samples collected at the end of the alcoholic fermentation of the six modalities (four barrels fermented with the PdC, plus

Snowpack temperature, UV radiation intensity, and chloride concentration have all been proposed to directly influence the kinetics of Hg photochemical reactions in Arctic