• Aucun résultat trouvé

Dictionary learning via regression: vascular MRI application

N/A
N/A
Protected

Academic year: 2022

Partager "Dictionary learning via regression: vascular MRI application"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-02428647

https://hal.archives-ouvertes.fr/hal-02428647

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dictionary learning via regression: vascular MRI application

Fabien Boux, Florence Forbes, Julyan Arbel, Emmanuel Barbier

To cite this version:

Fabien Boux, Florence Forbes, Julyan Arbel, Emmanuel Barbier. Dictionary learning via regression:

vascular MRI application. CNIV 2019 - 3e Congrès National d’Imagerie du Vivant, Feb 2019, Paris, France. pp.1-12. �hal-02428647�

(2)

Dictionary learning via regression:

vascular MRI application

Fabien Boux 1,2 , Florence Forbes 1 , Julyan Arbel 1 and Emmanuel Barbier 2

1

INRIA Grenoble Rhône­Alpes / LJK Laboratoire Jean Kuntzmann

2

Grenoble Institut des Neurosciences (GIN)

Congrès National d’Imagerie du Vivant (CNIV)   ­ 4 th February 2019  

(3)

Magnetic Resonance Fingerprinting (MRF)

Idea in the context of microvascularization

Simulation tool Estimation ?

MR signal Tissue characterization

Ma, Dan, et al., Magnetic resonance fingerprinting, Nature (2013)

Simulated MR signal Modeled tissue

2

MRF

(4)

Ma, Dan, et al., Magnetic resonance fingerprinting, Nature (2013)

Magnetic Resonance Fingerprinting (MRF)

Principle 2­step procedure:

1. Dictionary design

Grid formation

MR signal simulations

2. Matching procedure

Distance computations Estimation

1

st

par am et er

2

nd

parameter 3

rd

n

th

1

st

par am et er

2

nd

parameter 3

rd

n

th

Simulation tool Estimation

Observed signal: Parameters?

3

Appeal of the MRF method: fast, robust, accurate and flexible

(5)

Limitations

Complex model and time-consuming simulation The denser the grid, the more accurate the estimates

1

st

parameter 1

st

parameter 2

nd

par amet er

Sparse grid Dense grid

Error

Error

Real parameter values of  observed signal

4 How to limit the growth of the dictionary while increasing the number of parameters ?

Typical dictionary size order:

≈ 100 Nber of parameters

(6)

Solve the inverse problem

High-to-low regression context

• Nearest­neighbor methods →  [D. Ma, MRF (2013)]

Dictionary learning = regression, characteristics:

• Nonlinear

• From high­dimensional space to low­dimensional space Find a way to reduce the

dictionary sizes (keeping the estimation accuracy of MRF)

5

(7)

• Kernel methods and local regression →  [G. Nataraj, PERK (2017)]

• Neural Networks  → [O. Cohen, DRONE (2018)]

• Model inference →  Proposed approach

Gaussian locally­linear mapping (GLLiM)

• Solves nonlinear mapping problem automatically

• Solves the inverse problem, then derives the forward model parameters

Proposed solution: regression

High-to-low regression context

Deleforge, Antoine, Florence Forbes, and Radu Horaud, High­dimensional regression with gaussian mixtures and partially­latent response variables, 

Statistics and Computing (2015)

6

(8)

Signal Noise Ratio

A ver ag e NRM SE rr or A ver ag e NRM SE rr or

Signal Noise Ratio

Classic MRF Regression MRF 729

Results

Synthetic data

7

729 signals in dictionary 4096 signals in dictionary 15625 signals in dictionary 46656 signals in dictionary

Extremely fast and accurate estimation of 6 parameters while reducing the

dictionary size by a factor > 60

(9)

Results

Real data

TODO: image

8

Anatomical image Classic MRF estimates (10

5

signals) Regression MRF estimates (10

4

)

Analytical approach Relative differences (%) Relative differences (%)

Blood   V olum e   faction   map s (% )

(10)

Results

Confidence index

GLLiM has the advantage to provide a full posterior distribution, from this  distribution we compute:

• the mean to obtain the parameter estimation

• the standard deviation to obtain a confidence index related to

Parameter space

Pr obability density TODO: image

9

(11)

Summary

Previous and future works

­ Very fast computation of estimates

­ Important dictionary size reduction factor

­ Accurate estimates (both on synthetical and real data) Work not presented:

• Dictionary conception 

Future work:

• Compare with neural network regressions

• Validate results with histology

10

(12)

References

MRF methods:

• Ma, Dan, et al., Magnetic resonance fingerprinting, Nature (2013)

• Nataraj, Gopal, Jon­Fredrik Nielsen, and Jeffrey A. Fessler, Dictionary­free mri parameter estimation via kernel ridge regression, ISBI (2017)

• Cohen, Ouri, Bo Zhu, and Matthew S. Rosen, MR fingerprinting Deep RecOnstruction NEtwork (DRONE), MRM (2018)

Simulation tool:

• Pannetier, Nicolas Adrien, et al., A simulation tool for dynamic contrast enhanced MRI, PloS one (2013)

Regression:

• Deleforge, Antoine, Florence Forbes, and Radu Horaud, High­dimensional regression with gaussian mixtures and partially­latent response variables, Statistics and Computing (2015)

Data:

• Lemasson, B., et al., MR vascular fingerprinting in stroke and brain tumors models, Scientific reports (2016)

11

(13)

Thank you for listening

fabien.boux@univ­grenoble­alpes.fr

12

Références

Documents relatifs

Figure 1: Flow chart of labeling one target voxel by three different methods: Patch- based Labeling, Sparse Representation Classification (SRC) and Discriminative Dictionary

‫ﺍﻟﻔﺼﻞ ﺍﻷﻭﻝ‪ :‬ﺍﻷﺣﻜﺎﻡ ﺍﻟﻘﺎﻧﻮﻧﻴﺔ ﳉﻨﺤﺔ ﺇﺧﻔﺎﺀ ﺍﻷﺷﻴﺎﺀ‪.‬‬ ‫ﺇﻋﻤﺎﻻ ﺑﺎﳌﺒﺎﺩﺉ ﺍﻟﺪﺳﺘﻮﺭﻳﺔ ﻭ ﻛﺬﺍ ﺗﻄﺒﻴﻘﺎ‪‬ﺎ ﺍﻟﻌﺎﻣﺔ ﻓﻴﻤﺎ ﳜﺺ ﲡﺮﱘ ﺍﻷﻓﻌﺎﻝ‪ ،1‬ﻭ ﺑﺎﻋﺘﺒﺎﺭ ﺃﻥ ﺟﻨﺤﺔ ﺇﺧﻔﺎﺀ

In this paper, we propose Tensorial SPFI which generalizes SPFI [6] by considering a general adaptive tensor setting instead of using just a simple scalar value, and we also

Alternatively, Alaoui and Mahoney [1] showed that sampling columns according to their ridge leverage scores (RLS) (i.e., a measure of the influence of a point on the

The framework we present in this paper extends these approaches by learning si- multaneously a single shared dictionary as well as multiple decision functions for different

Il me faudra généralement évoquer l'état actuel de la pensée du neutre, ses limites évidentes à cause de l'impossibilité pour elle de se concrétiser en l'esprit de

To deal with the problem, a two-step alternating method is used: sparse coding by solving a problem of mixed-integer programming and dictionary updating by the hybrid method

The most studied techniques for high-dimensional regression under the sparsity scenario are the Lasso, the Dantzig selector, see, e.g., Cand`es and Tao (2007), Bickel, Ritov