• Aucun résultat trouvé

DROITES REMARQUABLES DANS UN TRIANGLE : Bissectrices -Médianes

N/A
N/A
Protected

Academic year: 2022

Partager "DROITES REMARQUABLES DANS UN TRIANGLE : Bissectrices -Médianes"

Copied!
4
0
0
En savoir plus ( Page)

Texte intégral

(1)

DROITES REMARQUABLES DANS UN TRIANGLE : Bissectrices -Médianes

Matériels et supports didactiques :

§ Elèves : règle graduée, équerre, crayon, compas.

§ Professeur : règle graduée, équerre, crayon, compas Pré requis :

Bissectrice d’un angle, Propriété de la bissectrice d’un angle et sa réciproque.

Sources :

• Programme de mathématique de la classe de quatrième octobre 200

• Livre de mathématique (collection excellence de la classe de quatrième)

Objectifs spécifiques : A la fin de cette séquence, l‘élève doit être capable d’utiliser la propriété pour montrer qu’un point appartenant à deux bissectrices d’un triangle, appartient à la troisième

bissectrice.

M.D.S D

ur ée

ACTIVITES PROFESSEUR ACTIVITES

ELEVES

(2)

Verificatio n des prerequis par un jeu de

questions- réponses

Découvert e de la propriété par activité

5 m i n

4 0 m

i n

Le professeur pose les questions : Qu’est ce que la bissectrice d’un angle ? Que dit sa propriété ?

Que dit sa réciproque ?

Je donne une activité (Voir trace écrite).

Je demande aux élèves de réfléchir pendant 10 minutes.

Je fais l’appel. Après, je circule entre les rangées pour vérifier le travail des

élèves.

Les élèves répondent : La bissectrice d’un angle est la droite qui passe par le sommet de cet angle et le divise en deux adjacent de même mesure.

Elle dit que tout point appartenant à la bissectrice d’un angle est équidistant au support des cotés de cet angle.

Elle dit que tout point équidistant des support des cotés d’un angle appartient à la bissectrice de cet angle.

L’élève fait l’activité.

Le professeur interroge les élèves à tour de rôle pour la correction de cette

dernière.

L’élève prend la correction de l’activité

J’institionnalise et e je donne la propriété.

L’élève prend la propriété

(3)

Phase d’évaluatio

n

1 0 m i n

Le professeur donne un exercice d’application (Voir trace écrite).

Il corrige l’exercice avec les élèves.

L’élève traite l’exercice d’application.

Ils prennent la correction.

TRACE ECRITE

I .Bissectrices 1. Définition 2. Propriété

a. ACTIVITE :

1) Trace un triangle quelconque ABC puis les bissectrices des angles respectifs ABC et ACB. Elles se coupent en I.

2) Trace les droites (D

1

) ; (D

2

) et (D

3

) passant par I et

perpendiculaires à (AB) ; (AC) et (BC) respectivement en J ; K et L.

3) Montre que IJ ═ IK et IJ ═ IL ; en déduire que I est un point de la bissectrice de BAC et trace la bissectrice de BAC.

SOLUTION

1-Je trace un triangle ABC quelconque et les bissectrices de ABC et ACB : A

(4)

(D1) K (D2) J

I

B C L

(D3) 3) Montons que IJ ═ IK et IJ ═ IL

I est sur la bissectrice de ACB et sur celle de ABC

Or si un point est sur la bissectrice d’un angle, alors il est équidistant des cotés de cet angle.

Donc IJ ═ IK et IJ ═ IL

On a IJ ═ IK et IJ ═ IL, on en déduit que IK ═ IL, alors I est sur la bissectrice de BAC car si un point est équidistant des cotés d’un angle, il appartient à la

bissectrice de cet angle.

b) Enoncé de la propriété :

Les trois bissectrices d’un triangle se coupent en un point :on dit qu’elles sont concourantes.

c) Exercice d’application :

Soit MPQ un triangle, (d1) et (d2) les bissectrices angles respectifs MPQ et QMP.

Elles se coupent en J.

Montre que J appartient à la bissectrice (d3) de MQP.

SOLUTION

Dans le triangle MPQ on a les bissectrices des angles MPQ et QMP se coupent en J or dans un triangle les tois bissectrices se coupent en un point, donc la

bissectrice de MQP passe par J :d’où J appartient à d bissectrice de MQP

Références

Documents relatifs

Les médiatrices des côtés d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit à ce triangle. La médiatrice du triangle

Les trois bissectrices d’un triangle sont concourantes en un point O’ qui est le centre du cercle inscrit dans le triangle. Les trois points G,O,H sont alignés sur la

La bissectrice d’un angle est la demi-droite ayant pour origine le sommet et partageant l’angle en deux

On parle de médiane issue de A pour nommer la médiane qui passe par le sommet A dans le triangle ABC par exemple. Triangles et droites remarquables

Tracé des droites remarquables dans un triangle : médianes, hauteurs,

On peut changer d'écartement de compas si on le souhaite. Avec cet écartement, tracer un arc de cercle de centre A et un autre de centre B. On trace la demi-droite [OC). [OC) est

Pour ce faire, on applique la même technique que celle étudiée pour la création des angles droits entre les médiatrices et les côtés du triangle, et on crée également un

Dans tout triangle, le produit de deux cotés est égal au produit des deux bissectrices intérieures de Vangle compris, ainsi quau produit des deux bissectrices exté- rieures du

Les médiatrices des cotés d’un triangle sont concourantes : Leur point de concours s’appelle le centre du cercle circonscrit au triangle.. La hauteur issue d’un sommet du

[r]

Définition : La bissectrice d'un angle est la demi-droite qui partage cet angle en deux angles égaux.

Médiatrices et cercle circonscrit à un triangle II.. Médiatrices et cercle circonscrit à un

Propriété et définition: Les bissectrices des angles d’un triangle sont concourantes : elles ont un point en commun appelé centre du cercle inscrit au triangle. Ce point est

Un angle est composé de deux demi-droites et

Série 3 : Bissectrice d'un angle Série 3 : Bissectrice d'un angle Le cours avec les aides animées?. Le cours avec les aides

• La droite passant par le point A 1 , milieu du segment [BC] et perpendiculaire à la droite (BC) s’appelle la médiatrice du segment [BC]. Remarques : Cette médiatrice coupe

Dans le triangle ABC, tout point P de la médiane [AM] détermine deux triangles APB et APC dont les aires sont égales. 1) Démontrer que les triangles ABM et ACM ont la même aire..

Une médiatrice d'un triangle est une médiatrice d'un côté du triangle (c'est-à-dire la droite perpendiculaire à un côté du triangle et passant par son

Téléchargé sur https://maths-pdf.fr - Maths Pdf sur Youtube Exercice de maths en sixieme. La bissectrice

Téléchargé sur https://maths-pdf.fr - Maths Pdf sur Youtube Exercice de maths en sixieme. La bissectrice

Téléchargé sur https://maths-pdf.fr - Maths Pdf sur Youtube Exercice de maths en sixieme. La bissectrice

Téléchargé sur https://maths-pdf.fr - Maths Pdf sur Youtube Exercice de maths en sixieme. La bissectrice

Téléchargé sur https://maths-pdf.fr - Maths Pdf sur Youtube Exercice de maths en sixieme. La bissectrice