• Aucun résultat trouvé

Dynamic modeling of hydrogen desorption from a metal hydride tank using the electrical fluidic analogy

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamic modeling of hydrogen desorption from a metal hydride tank using the electrical fluidic analogy"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01366243

https://hal.archives-ouvertes.fr/hal-01366243

Submitted on 14 Sep 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Dynamic modeling of hydrogen desorption from a metal

hydride tank using the electrical fluidic analogy

Djafar Chabane, Fabien Harel, Abdesslem Djerdir, Denis Candusso, Omar

Elkedim, Nouredine Fenineche

To cite this version:

Djafar Chabane, Fabien Harel, Abdesslem Djerdir, Denis Candusso, Omar Elkedim, et al.. Dynamic

modeling of hydrogen desorption from a metal hydride tank using the electrical fluidic analogy. WHEC

2016, Jun 2016, Saragosse, Spain. 1 p. �hal-01366243�

(2)

Dynamic modeling of hydrogen desorption from

a metal hydride tank using the electrical

fluidic analogy

1 FCLAB Fédération de recherche (FR CNRS 3539), 90010 Belfort Cedex 2IRTES-SET, UTBM, 90000 Belfort CEDEX

The current work presents a modeling study of the thermal behavior during discharge of a hydride hydrogen tank. In a thermal coupling between a fuel cell and its associated hydride hydrogen tank, the hydrogen desorption kinetics depends on temperature, nature of the hydride, the tank design, but also on the hydrogen demand from the fuel cell in terms of mass flow and pressure. The objective of the study is to demonstrate the dynamic response of hydrogen discharge from a metal hydride tank by using the fluidic electrical analogy.

The future work will demonstrate more characteristics of hydrogen supply for various operational demands of a fuel cell system with an enhanced simulation accuracy using higher- dimensional models. Also, the dynamics of fuel cell system performances will be explored with the goal of enhancing the control strategies of hydrogen supply with optimizing control parameters

djafar.chabane@utbm.fr

3IRTES-LERMPS, UTBM, 90010 Belfort cedex, France

4FEMTO-ST, MN2S department, UTBM, 90010 Belfort cedex, France

5Université de Lyon, IFSTTAR / AME / LTE, 25 avenue François Mitterrand, Case 24, Cité des mobilités,

F-69675 Bron cedex, France.

6IFSTTAR / COSYS / SATIE (UMR CNRS 8029), 25 allée des marronniers, 78000 Versailles Satory, France.

Fig2: Electrical fluidic analogy

Fig3: Electrical model equivalent

Fig1: Schematic of the model

Fig4: Flow demanded by fuel cell

Fig5: Pressure composition temperature (PCT)

Fig6: Hydrogen desorption kinetic curves ( ) = Δ + = − 1 − = = exp − ( − )( − ) = !",$ %&' ( ,)*&')(1 − +,-) . = /01 2⁄ !",$ ,456= &'+ ( ,78− &')+

,-D. CHABANE1,2, F. HAREL1,6 , A. DJERDIR1,2, D. CANDUSSO1,5, O. EL-KEDIM1,4, N. FENINECHE 1,3

Results

Fig7: Heat transfer rate

Fig8: Temperature variation

Model

Supply line Control element

10000 2000300040005000 600070008000900010000 0.5 1 1.5 2 2.5 3 3.5 4 Time [s] M as s fl o w [ N l/ m in ] 10002000300040005000 6000700080009000100005.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 [H / M ] 0 2 4 6 8 10 x 104 0 0.5 1 1.5 2 2.5 3 3.5 4 M as s fl o w [ N l/ m in ] 0 2 4 6 8 10 x 104 0 1 2 3 4 5 6 7 Time [s] [H / M ] 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ratio [H/M] P re ss u re [ b a r] 0 1 2 3 4 5 6 7 8 9 10 x 104 0 20 40 60 80 100 120 140 160 180 200 Time [s] H ea t fl o w [J / s] 0 1 2 3 4 5 6 7 8 9 10 x 104 300 302 304 306 308 310 312 314 Time [s] T e m p e ra tu re [ °K ] 0 1 2 3 4 5 6 7 8 9 10 x 104 312.94 312.95 312.96 312.97 312.98 312.99 313 313.01 T e m p e ra tu re [ °K ] Water channel T tank

Références

Documents relatifs

La comparaison des distributions énergétiques d'ions Ne obtenus par dêsorption de champ électroniquement stimulée et d'ions H, obtenus par description de champ, suggère la pré-

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

In [14], we selected three AB 2 materials from a database containing more than 200 compounds obtained from literature and by using a MATLAB code, we simulated the behavior of a

Therefore, it is tried to find a multiple model composed by a minimal number of submodels. This number is related to the number of premise variables, so that a quasi-LPV.. form which

Fur- thermore, the presence of a magnetic interaction in the intermedcare concentration hydride would perhaps destroy the superconducting state in Th7Fe3 as is postulated for

Ethylene was desorbed from a silver surface in the presence of a field i n a one- photon process (21, and enhanced field evaporation of silicon was observed in what appeared to

The aim of our work is to investigate the electronic properties of SrAl 2 H 2 and its precursor SrAl 2 by calculating the heat formation and the bonding

The polycrystalline elastic moduli (namely: the shear modulus, Young's modulus, Poisson's ratio, Lamé's coefficients, sound velocities and the Debye temperature)