• Aucun résultat trouvé

High order stabilized finite element method for MHD plasma modeling

N/A
N/A
Protected

Academic year: 2021

Partager "High order stabilized finite element method for MHD plasma modeling"

Copied!
28
0
0

Texte intégral

(1)

HAL Id: hal-01426950

https://hal.inria.fr/hal-01426950

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High order stabilized finite element method for MHD

plasma modeling

J Tarcisio-Costa, Boniface Nkonga

To cite this version:

J Tarcisio-Costa, Boniface Nkonga. High order stabilized finite element method for MHD plasma modeling . ICOSAHOM 2016 - International Conference On Spectral and High Order Methods, Jun 2016, Rio de Janeiro, Brazil. �hal-01426950�

(2)

High order stabilized finite element method for MHD

plasma modeling

J. Tarcisio-Costa, B.Nkonga jose.costa@inria.fr

(3)

Outline

1 Introduction

2 Stabilization for Full MHD

3 Applications: Internal kink, Bohm B.C.

(4)

Motivation and goal

Motivations

Go from Reduced to the full MHD model

Ensure stability of flows dominated by convection Boundary conditions

Main goal: use JOREK to simulate Edge-localized modes (ELMS)

(5)

Tokamaks

Tokamak stands for: Toroidal chamber with magnetic coils (From Russian: Toroidal’naya Kamera s Magnitnymi Katushhami).

Principal tokamaks at present: JET (UK), Asdex-Upgrade (Germany), Tore-Supra (France) and DIIID (USA)

Drifts → Nested magnetic field lines → Confinement is improved The amplification factor of a

fusion reactor is defined as

Q = Pfus

Pinj

JET: Q ≈ 1 - ITER: Q = 10 Economically exploitable Q = 50

(6)

Tokamak configurations

There are two main configurations for tokamaks

Limiter

Material structure into the plasma

Divertor

X-point configuration Material structure placed outside

(7)

Jorek overview

Nonlinear reduced MHD and full MHD under implementation Cubic C1 finite elements (quadrangles)/Fourier (modal) Galerkin formulation

Linearized Crank-Nicholson and Gear: Implicit scheme GMRES solver, Hybrid paralelization (MPI/OpenMPI)

(8)

Jorek: Numerical method

Spatial discretization: 4th-order accurate Galerkin method based

on Bézier Formalism

An arbitrary quantity is expanded on a unit square as

P(s, t) = 4 X i=1 4 X j=1 pijσijbij(s, t) (s, t) ∈ [0, 1], σ assure continuity of P

Basis functions bij: Bernstein polynomials

b11 = (1 − s)2(1 − t)2(1 + 2s)(1 + 2t),

b12 = 3(1 − s)2(1 − t)2(1 + 2t)s,

b13 = 3(1 − s)2(1 − t)2(1 + 2s)t,

(9)

Meshes

(10)

System of equations: Full MHD

The single-fluid full MHD system in consideration is

                           ∂ρ ∂t + ∇ ·m = ∇ · (D∇ρ 0 ), ∂m ∂t + ∇ ·  m ⊗ m ρ −BB  + ∇  p +B·B 2  = ∇ · τ , ∂E ∂t + ∇ ·  E + p +B·B 2  m ρ − B· m ρ B  = ∇ · q + ∇ ·  τm ρ  , ∂B ∂t + ∇ ·  m ⊗BB⊗ m ρ  = −∇ × (E+v ×B) withm ≡ ρv , E = ρε +1m · m + B2·B, p = (γ − 1)ρε = ρT , E+v ×B = ηJ, J ≡ ∇ ×B.

(11)

Full MHD

The ideal MHD system driving the previous system can be written in the following compact form

w ∂t + ∇ ·f = 0, where w =     ρ m E B     , f =     mT v ⊗ m + PI −BB HmT − (B· v )BT v ⊗BB⊗ v     P = p + B2·B, H = E+Pρ

(12)

Full MHD

Quasi-linear form ∂w ∂t +L(w , ∂)w = 0 The operatorL(w , ∂) L(w , ∂) =                0 ∂T 0 0T −m ρ2m · ∂ +∂P∂ρ∂ 1 ρ(m ⊗ ∂ + m · ∂) ∂P ∂E∂ (B⊗ ∂)T−B· ∂ + ∂Pm⊗ mT + ∂PB⊗ mT ∂H ∂ρm · ∂ + B·m ρ2 B· ∂ ∂H∂m T m · ∂ + H∂T ∂H ∂Em · ∂ ∂H ∂B T m · ∂ −B·mρ ∂T −BT ρB· ∂ − mTB·∂ ρ −Bm·∂−mB·∂ ρ2 B⊗∂−B·∂ ρ 0 m·∂−m∂T ρ               

Seven eigenvalues: 2 slow and 2 fast accoustic waves, 2 Alfven

(13)

Weak formulation

Rewriting the system asR(w ) = 0, in which

R(w ) :=w ∂t + ∇ ·f − ∇ · g, g : Transport process Weak formulation Z Ωx,h R(w ) ·w? =0, ∀w? ∈−W→h(Ωx ,h)

Divergence free constraint

Vector potential formulation

(14)

VMS-stabilization

It comes to add a contribution Z Ωx,h R(w ) ·w?+ Z Ωx,h w0 · (LT(w , ∂))w?) =0, ∀w? ∈−W→h(Ωx ,h)

wherew0 is vector of subscales andLT(w , ∂) is the adjoint of L(w , ∂)

w0 can be approximated by

w0 ≈T(L(w , ∂)δw)

Several options forT, choice based on heuristic arguments

T = α he

2||a|| ⇒

||∂x

∂ζ||2

(15)

Stabilized weak formulation

Set of interpolated variables

w =     ρ m = ρv E = γ−1ρT +12v · v +12B·B B     ⇒ Y =     ρ v T A    

Stabilized weak formulation

Z Ωx,h (M(Y )∂tY ) ·w˜?− Z Ωx,h F : (w?) + Z Ωx,h D : (w?) −1  Z Ωx,h (∇ ·A)(∇ ·A?) + Z ∂Ωx,h F : (n w?) − Z ∂Ωx,h D : (n w?) −1  Z ∂Ωx,h (n × ∂tA) ·B?+ 1  Z ∂Ωx,h S(w , wb,w?)

(16)

Stabilized weak form

In the previous equation

F =     ρv ρv ⊗ v + PI −BB ρHv −B· vB −v ×B     , D =     D∂ρ0 τ τv −(E+v ×B)    

and the boundary conditions

S(w , wb,w?) =        (ρ − ρb)ρ?χρ ρ(v − vb) ·m?χ v + (ρv − mb) ·mm ρ(T − Tb)E?χT + (p − pb)E?χp (AAb) ·JA+ (BBb) ·BB       

(17)

Resistive internal kink

Numerical viscosity

VMS-Stabilization

(18)

Resistive internal kink dynamics

Structure layer: S = 105≈ 10−1and S = 108≈ 2.10−2

(19)

Resistive internal kink: growth rate

10-5 10-4 10-3 10-2 103 104 105 106 107 108 109 1010

Normalized Growth Rate (

γ

/ωA

)

Magnetic Reynolds Number (S)

S-1/3 S-3/5

Semi-linear MHD Non-linear MHD

(20)

Resistive internal kink: magnetic reconnection

(21)

Resistive internal kink: magnetic reconnection

(22)

Resistive internal kink: magnetic reconnection

(23)

Boundary Conditions: Bohm

We need to compute the following integrals at the boundary

− Z ∂Ωx ,h ±ρ √ γT ||B||B·nρ ?, − Z ∂Ωx ,h  ±ρv √ γT ||B||B· n  ·m?, − Z ∂Ωx ,h ±(pn+πn−B(B·n))·m? − Z ∂Ωx ,h ±p √ γT ||B||B·nE ?

Wheren is the outward normal

and

± ≡ B· n

|B· n|

so thatvb· n is always positive

Also, a penalization term

1  Z ∂Ωx ,h  ρv ∓ ρpγT B ||B||  ·m?

(24)

X-point results: Initial density and velocity

(25)

X-point results: Initial density and velocity

(26)

X-point results: Velocity field

(27)

X-point results: Quasi-steady state

Evolution of the Kinetic Energy: n = 0

10-6 10-5

(28)

Conclusions and perspectives

Conclusions

Full MHD equations successfully implemented for simulating

circular plasmas

Stabilization scheme has improved the quality of the results Quasi-steady state for X-point geometry with Bohm B.C.

Perspectives

Références

Documents relatifs

Agricultural co-conception in Guadeloupe promises and vicissi- tudes of an ongoing research-action project. Caribbean Science and Innovation Meeting, Oct 2019, Le Gosier,

Pour ce qui concerne Laminaria digitata les prix japonais sont plus élevés que les prix français et la France paraît relalivement bien.. placée sur le marché

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

(a) Isostatic Moho depth computed from regional compensation of topographic and intracrustal loads with an effective elastic thickness (EET) of 0 (left) and 15 km (right);

7: Servoing results for Case III-B - Photometric target (a) Errors in visual features, (b) Camera velocities for the par- allel desired configuration, (c) Errors in visual features,

Here, we evaluate the power of GWAS in the presence of two linked and potentially associated causal loci for several models of interaction between them and find that interacting

We investigate the performance of our method through different quantitative and qualitative aspects of the Cahn-Hilliard equation: comparison to explicit profile- solution in 1D

Octree (3D) and quadtree (2D) representations of computational geometry are particularly well suited to modelling domains that are defined implicitly, such as those generated by