• Aucun résultat trouvé

A century of wind tunnels since Eiffel

N/A
N/A
Protected

Academic year: 2021

Partager "A century of wind tunnels since Eiffel"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-01570740

https://hal.archives-ouvertes.fr/hal-01570740

Submitted on 31 Jul 2017

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bruno Chanetz. A century of wind tunnels since Eiffel. Comptes Rendus Mécanique, Elsevier, 2017,

345 (8), pp.581-594. �10.1016/j.crme.2017.05.012�. �hal-01570740�

(2)

A century of wind tunnels since Eiffel

Bruno Chanetz

ONERA,ChemindelaHunière,BP80100,91123Palaiseaucedex,France

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received15November2016 Accepted8March2017 Availableonline13July2017

Keywords:

Windtunnels Laminar Turbulent Subsonic Supersonic Hypersonic

Flyhigher,faster,preservethelifeoftestpilotsandpassengers,manychallengesfacedby mansincethedawnofthetwentiethcentury,withaviationpioneers.Contemporaryofthe firstaerialexploits,windtunnels,artificiallyrecreatingconditionsencounteredduringthe flight,havepowerfullycontributedtotheprogressofaeronautics.

Buttheuseofwindtunnelsisnotlimitedtoaviation.Theresearchforbetterperformance, coupledwithconcernforenergysaving,encouragesmanufacturers ofgroundvehiclesto performaerodynamictests.Buildingsandbridgestructuresarealsoconcerned.

ThisarticledealsprincipallywiththewindtunnelsbuiltatONERAduringthelastcentury.

Somme windtunnelsoutsideONERA,even outsideFrance,are alsoevocatedwhentheir characteristicsdonotexistatONERA.

©2017Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Frombirthtofirstevolutions

1.1. Windtunneldefinition

Wind tunnels are facilities (circular, elliptical or rectangular tunnels) in which the wind is produced by fans or by compressedairto studyandmeasure theactionofthe airflowaround asolid. Thetest sectionis thepartofthecircuit where thesolid is studied. Invented inthe late nineteenth century,these aerodynamic laboratoriestook off inthe early twentieth century. The method is based on the principle of relativity enunciated by Isaac Newton in 1687: the forces exertedonasolidimmersedinafluidandthefluidarethesameeitherthesolidmoveswithacertainspeedthroughthe fluidatrest,orthefluidmoves,withthesamerelativevelocitytothesolidthatitisimmobile.

InFrench,windtunnelisstilldesignatedbytheterm“soufflerie”,whichwascorrectforthefirstfacilities,sinceafanwas blowingairupstream(relativetothedirectionofflow)ofthetest-section. Thefirstevolutionwastosuckairdownstream ofthetestsection.Theprecursorsoftheothercountriesinthescienceofflightusetermsthatdonotprejudgewhetherthe directionoftheairis movingin thecircuit:windtunnelinEnglish, WindkanalinGerman,galleriaaerodinamicain Italian, andaerodinamicheskayatrubainRussian[1].Anyway,windtunnelshavelargelycontributedtothedevelopmentofaviation, reducingthenumberofaccidents,thussavingthelivesofpilotsandmaintainingtheequipment.Theyalsoallowedreplacing the“flair”ofthepioneersbythe“art”oftheengineers,accordingtothebeautifulsentencebyGustaveEiffel.

E-mailaddress:chanetz@onera.fr.

http://dx.doi.org/10.1016/j.crme.2017.05.012

1631-0721/©2017Académiedessciences.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

Fig. 1.Aérodromeof Captain Ferdinand Ferber in Chalais–Meudon (© ONERA).

1.2. Competitorsforgroundinvestigation

The wind tunnel is avery convenient experimental investigation mean,which hassurpassed the alternative methods based onthe directmovement of thesolid inthe air.However, atthe beginning ofthetwentieth century,there was no consensus.IndeedArmanddeGramont,DukeofGuiche,whowasmeasuringthedistributionofpressureonawingfixedon amovingcar,wasadetractorofEiffel,whowasusingawindtunnel.HeevenchallengestheworkofEiffelanddisapproves the transposition ofthe resultsobtained inhis wind tunnel tothe reality of airplanes inflight. Todefinitively closethe controversyabouttheequivalencebetweenrealandrelativemovementsalthoughthequestionhadbeenalreadysolved inthemiddleofthe19thcenturythroughtheexperiencesofDuchemin,solvingtheparadoxofduBuat[1]Eiffelrequests theintervention ofthegreatmathematicianHenriPoincaré.Shortlybeforethedeath ofPoincaréin1912, Eiffelreceiveda noteinlinewithhisexpectations:“Thereisnoreasonthattheforcesexertedontheplatebyauniformairflowdifferfrom thosethatwouldoccurifthisplateismovinginacalmair”.Poincaréadds:“itisclearthatonlytherelativemovementis significant”[2].

Belowaredescribedthesealternativeprocessesexistingatthebeginningofthe20thcentury:

– Horizontal rectilinear motion

in1901,aflighttestingwasperformedbytheGermancompanySiemensonatraintravelingat160km/h,

in1909,thankstoa1.4-kmprivaterailwaytrack,theAeroTechnicalengineeringInstitute(IAT)ofSaint-Cyr-l’Écoletested wings;

duringthefirstdecadeofthetwentiethcentury,ArmanddeGramont,dukeofGuiche,testedwingsinhiscar[2].

– Vertical rectilinear motion

in 1908, before thebuilding ofits first windtunnel, GustaveEiffel conceived avery ingeniousdrop test machine to study the drag of solids [2,3]. He installed the device on the eponymous tower’s second floor, takingadvantage of its 115 m in height. His first studies, awarded by the French Academy of Sciences in 1908, allowed him to found the fundamental lawsof airresistance.In thisperiod,with thegrowth ofaviation, Eiffelbrought newideas andhis knowledgeofaerodynamicsledhimtounderstandtheeffortsoftheaironasolid.

– Combination of the horizontal and vertical motions

In1904,FerdinandFerberinMeudonperformedadevicebytakingadvantageoftheeffectsofgravitytomoveaplane alongacable.Hisplane,suspendedfromaslidingcarriagealongatensionedcablebetweenpylons(seeFig. 1).Gustave Eiffel hadalsoconsidered suchadevice,calledaérodrome,fromthefirst floorofthetower, priortotherealizationof itswindtunnel.

– Circular motion:

In 1906, the AeroTechnical engineering Institute (IAT)of Saint-Cyr-l’École testedsolids attachedto the endsof rotary arms.Thiswayallowsaccesstotangentialspeedsallthemoreimportantthatthearmislongandthespeedgreat.

1.3. Theblowingwindtunnelsandtheintroductionofthecollector

EvenifthefirstwindtunnelknowninGreatBritainoperatedbycompressedairejector(VenhamFrancis,1871,thenthat Horatio Phillips, 1884),thefollowing wind tunnelsused theairmoved by a fan disposedupstream ofthe windtunnel’s testsection(seeFig. 2a):CharlesRenard(France,1896),HiramMaxim(GreatBritain,1896),KonstantinTsiolkovsky(Russia,

(4)

Fig. 2.a: Fan upstream of the model. b: Fan downstream of the model.

1897),OrvilleandWilburWright(USA,1901),andAugusteRateau(France,1909).Weshouldalsomentionthewindtunnel, smoke machinebuilt byÉtienne-Jules Marey(France, 1899),which permitted therealizationofthe first visualizations of fluidflows[4].

Afirstdevelopmentconsistsintheintroductionofthecollector.Disposedupstreamofthetestsection, theconvergent part increasesthe velocity in the test section under the mass conservationlaw for the flow, which is expressed for an incompressibleflow,by:

V·S=constant

whereV representsthevelocityoftheflowandS thesurfaceintheconsideredsection.

1.4. Theintroductionofsuction

Thepassagetosuctionisalsoanimportantstepintheartofwindtunnels.Thefanisnowdisposeddownstreamofthe testsection (seeFig. 2b)andtherebynolongerinterfereswiththemodel,whichisagreatimprovementtoguaranteethe quality offlow. Accordingto thisprinciplethe followingwind tunnels wereconceived: NikolaiZhukovsky (Russia,1902), Thomas Stanton(Britain, 1903), DimitriRiabouchinsky (Russia,1905), GustaveEiffel(France, 1909).Suction wind tunnels havebeendevelopedveryquickly.Therearecurrentlyseveralhundredmajorfacilitiesofthiskindintheworld,whileonly lessthanadozenwereactivebefore1914.

1.5. Eiffel’swindtunnelsandtheintroductionofthediffuser

In1909,EiffelbuiltitsfirstwindtunnelatthefootoftheEiffelTowerintheChampdeMars.Thisfacilitywasoperational till 1911to studyaerodynamics.The airwas moved by a fan driventhanks to a 50-horsepower electricmotor.The first testswere tocheckthattheprincipleofwindtunnelsimulationwheretheaircraftoritsmodellyinginairinmotion isconsistentwiththereality wheretheaircraftismovingintheairconsidered asnon-movingasafirstapproximation.

To this aim, Eiffel compares the wind tunnel results with those previously obtained with the drop test machine. This comparison being successful, Eiffel’s wind tunnel was then available for the pioneers in their conquest of air: Farman, Bleriot,Voisin,Bréguet[5].

In1911, themunicipalityofPariswantingto recovertheareaonwhichthewind tunnelislocated,Eiffelhadtoleave the Champde Mars. In thebeginning of 1912, heinstalled in the district ofAuteuil a newwind tunnel withincreased performance, this new laboratory being inaugurated on 19 March. The originality of the wind tunnel at Auteuil is the presenceofthefollowingsuccessiveelements,fromupstreamtodownstream:

– a collectororconvergent,whereair isacceleratedfroman entrancesection, fourmeters indiameter,to anoutletof twometers;

– aclosed experimentalchamber wherethefree streamflow isproduced (i.e.withoutwalls); whereasatthe timethe otherwindtunnelshadaguidedtestsection;

– a recoveryattheexitof thetest chamber, madeofa smallcollectorwhosesection is largerthan thesection ofthe convergentatthetestchamberentrance;

– adiffusermadeofdivergingtubeinordertorecoverpressureinfrontofthefan(seeFig. 3).Thesame50-horsepower engineasthatalreadyusedintheChampdeMars,wasusedagain.ThewindtunneloftheChampdeMarsreacheda speedof18m/sina1.5-m-in-diametertestsection.Withthesameengine,thenewwindtunnel,thankstothediffuser, reached32m/s(anincreaseof78%speed)inasectionof2metersindiameter(anincreaseof78%also),henceamass flowgainofmorethan200%.

– Ahelicalfanwithadiameterof3.80mandaweightof8.500kgwasspeciallypurchasedforthewindtunnelofAuteuil, thefan oftheChampde Marswindtunnelbeingused forasecond smallwindwitha collectoroutletone meterin diameter.

(5)

Fig. 3.Introduction of the diffuser between the test section and the fan.

Fig. 4.Watercolor drawing of the Eiffel wind tunnel located in the rue Boileau (© Aérodynamique Eiffel).

The diffuser,which was aninnovation ofEiffel (see Fig. 4), was thesubjectofa patentdated 28November 281911:

“Theadditionofadiffusertoimprovetheperformanceofamachinetoproduceartificialairflow”.Thisinventionwasrich in consequences,asitallowed Eiffel todrasticallyreduce theelectricpower requiredforsucha facility.The efficiencyof thedevicecomesfromtheBernoullilaw,statingthatpressureandvelocityvaryinversely.Indeed,byreducingvelocity,the diffuser increasedthepressureoftheairexitingthetestsection. Thepressuredifferenceoneithersideofthefan isthen much lessthantheone thatwouldexistifthefan werelocated directlyjustdownstreamofthetest-section. Thisdevice leadstoareductionintheelectricpowerrequiredtoextracttheair.“Thusthediffusersavesmoneysincepowerisreduced byafactorof3.Theadvantageofthisrecoverydeviceisclear,whichallowedustorealizethepresentlargefacility”(Eiffel [5]).From thatdate allwindtunnels havebeenequippedwithadiffuser.GustaveEiffel(see EiffelinFig. 5) willaskthat theofficialdesignation,“Aerodynamicdevice systemEiffelParis”shouldbeengravedona1-m-by-0.5-mmarbleplaqueon allfacilitiesusinghistechnique,withoutaskingforroyalties.

1.6. ThePrandtlwindtunnelinGöttingen

Another major innovation consisted in making air circulate in a closed circuit. The first installation of this kindwas built atthe University ofGöttingen,in Germany, by LudwigPrandtl in1909. Afterbeing suckeddownstream of thetest section, theairisguidedthroughfoursuccessivebends,andthenreadmittedupstreamofthecollector.Thistype ofwind tunnel, calledPrandtlwind tunnelorGöttingen windtunnel leads toa betterfuel efficiencyandprovidescontrolled test conditions(pressure, temperature, humidity).Modernwind tunnelscombinePrandtl’s innovation(closed circuit) and Eiffel’sone(diffuser).

1.7. ThecontroversybetweenEiffelandPrandtlconcerningthedragofspheresandtheirruptionoftheReynoldsnumberin aerodynamics

At the Auteuillaboratory, Eiffel continuedthe activities undertaken atthe Champ de MarsLaboratory concerning the aerodynamics ofthe drag ofa sphere. The measurements carriedout at theChamp de Mars’ windtunnel ata speed of 15 m/srevealed values ofthe drag coefficient less thanhalf those found forlower speeds by Professor AugustFöppl in theGöttingenLaboratory,headedbythefamousLudwigPrandtl.Föppldidnothesitatetowritethat theFrenchcolleague hadcommittedanerror,butaforgivablemistakewithrespecttoits age.Therefore,Eiffel decidedtoundertake newtests

(6)

Fig. 5.Eiffel in the vacuum chamber of its wind tunnel in the Boileau street (© Aérodynamique Eiffel).

withspheres ofdifferent diameters.He discovered that,for eachsphere, there aretwo flow regimes: oneat low speeds correspondingtothecoefficientfoundinGöttingen(withboundarylayerseparationinlaminarflow)andtheother,athigher speeds,correspondingtothecoefficientfoundintheChampsdeMarsfacility(withboundarylayerseparationinturbulent flow).Thetransitionbetweenthetworegimesalwaysoccursforthesamevalueoftheproductvelocity× diameter.

Iftheviscosityisconstant,whichisthecaseatlowvelocities,thisproductvelocity×diameterissimilartotheReynolds number:

Re=ρ·V·L

where ρisthedensityoftheactualflow, V itsvelocity, μtheairdynamic viscosity,andLthecharacteristiclengthofthe studiedsolid.

Thus,theexperimentalstudiescarriedoutinhislaboratoryofAuteuilhavefirstdemonstratedtheimportantroleofthe Reynoldsnumberinaerodynamics.

Theexampleofthesphererevealsthecomplexityoftheboundary-layerbehavior,whichsometimesleadstoparadoxical laws.The laminarboundary layer generatesa lower friction drag than theturbulent one, butits earlierseparation leads to amore disturbed wake,whichis theorigin ofa form(pressure)drag largerthan inthe turbulent case. Therefore,by triggering transition, one reduces more the drag due to the wake than one increases the friction drag due to a more importantturbulentboundarylayeronthesphere.Theturbulentregimeismorefavorabletotheglobaldragbalance,which isthe sumofthefriction andformdrags.This phenomenonisillustrated by an oldexperimentcarried outatONERA in a watertunnelby Werlé[6].Fig. 6ais relativeto thecaseobtainedfora Reynoldsnumberbasedon thediameterequal to200,000,andFig. 6bisrelativetothecaseofa Reynoldsnumberequalto300,000.Onesees clearlythelessperturbing wakeinthesecondcase(withaturbulentseparation)thaninthefirstcase(withanearlierlaminarseparation)[7,8].

Anemblematicapplicationofthephenomenonisgivenbythegolfballwithdimplesthattriggertransitionandpostpone more downstream theseparation of theboundary layer. The reducedwake resulting fromthis turbulent boundarylayer promotes thepenetration intheairby reductionofthe globaldrag,which leadsto an increaseinthe golfballrange.At theorigin, theinventorsofgolfmanufacturedleatherballs, takingcare toplacetheseamson thebackto havea smooth envelope favorable to penetration into the air. Theylater discovered that the best golfballs were damaged balls whose roughenvelopetriggersatransitionoftheboundarylayer[8,9].

ThecontroversybetweenPrandtlandEiffelaboutthedragofthespherehighlightstheessentialroleplayedbyexchanges betweenresearchersfortheadvancementofknowledge.Thankstotheseconfrontations,scienceprogressesandthatwasthe goalpursuedbyGustaveEiffel:“ItismainlytheprogressinaviationthatIwantedbycreatingthislaboratorywherethetests

(7)

Fig. 6.a: Laminar regime at the boundary layer separation. b: Turbulent regime at the boundary layer separation (© ONERA).

are absolutelyfree, butwheretheresultswouldbepublished, inthegeneralinterest,throughreportsorcommunications to scientific societies”.GustaveEiffel wasa greatresearcherwho hasnot playedthe roleofa suspiciousinventor against potential competitors.He offeredall manufacturers themeansto testtheir modelsfree ofcharge,iftheir resultswere to be published andaccessibletoall. Itwas truly thewind ofresearch thatwas blowingatthelaboratory ofAuteuilunder the leadershipof Eiffel.He publishesTheFrictionoftheAirandAviation, a booktranslated into both German andEnglish.

Furthermore,itscontributiontothisemergingscienceofaerodynamicswas recognizedintheUSA,wherehereceived the goldmedalofLangleyin1913,whichhadonlybeenawardedtoWilburandOrvilleWrightbefore.

2. Facilitiesfromthebeginningofthe20thcenturytomodernwindtunnels 2.1. Therulesofsimilarity

Duringthetwentiethcentury,thedevelopmentofwindtunnelshascontinued,drivenbytheurgentneedtorespectthe similarityrulestoensurethevalidityofthetests.Afirstevidentrequirementwastohaveamodelwiththesamegeometric shapeastheoriginalobject.

Asecondconditionwasrequiredtomeetthecharacteristicsoftheflow:theMachnumberMhastoberespected:

M=V/c

where V representsthevelocityoftheflowandcthecelerityofsound.

ThethirdsimilarityruleistoperformtestsmaintainingasfarasitmightbetheReynoldsnumber(Re)oftheflow.

Iftheairinthewindtunnelhasthesamecharacteristicsastherealone(densityandviscosity)andthesamevelocity, theReynoldsnumberisautomaticallyrespectedinamodelattherealscale.Sinceatthebeginningoftheepicofaviation, the sizeofaircrafts wassmall, thefirst meantoreachthe convenientReynoldsnumberbeingtoincrease thesize ofthe windtunnels.ThelargeChalais–MeudonS1Chwindtunnelmeetsthesespecifications.

Duetotherapidincreaseinaircraftsize,itwasnotsuitabletoincreasetoomuchthesizeofthefacilities.Thus,nowadays the experiments areagain performedwithreducedmodels. Torespectthe convenient Reynoldsnumber,we play on the other parametersoftheformula:densitybypressurizingthefluidandviscositybycoolingthefluid.TheF1windtunnelis apressurizedwindfacilityandtheEuropeanWindTunnel(ETW)isacryogenicwindtunnel.

2.2. ThelargeChalais–MeudonS1Chwindtunnel(France)

Antonin Lapresle, collaborator and successorof Eiffel at the Auteuil wind tunnel, designed, at the requestof the Air Ministry, thelargeChalais–Meudonwind tunnel(Hauts-de-Seine)thathadbeenbuiltbetween1932and1934fortesting full-scale airplanes (see Figs. 7 and 8). It was equippedwith a collectorwith a reduction ratio of3.5, witha mouth of 350 m2 thatcapturestheoutsideairandallowsittoreachavelocityof180km/hintheinlettestsectionof100m2.The diffuser,agianttubeshapedlikeatruncatedcone(ellipticalsection,10mofverticalaxisandhorizontalaxisof18m),is madeofreinforcedconcretewithathicknessof70mmandalengthof38meters.Downstreamofthediffuser,thesuction chamber,withsixfansof1,000horsepowereach,allowstheairextraction.Theinstallation,whichhadbecomeobsolete,has beendisusedin1977. Classifiedonthelistofthehistoricalmonumentsin2000,thisfacilityhastested, inmanynational programs,aircraft,automobilesandbuildingsaerodynamics[10].

2.3. TheF1windtunnelofLeFauga–Mauzac(France)

ToreplacethelargeS1ChwindtunnelofChalais–Meudon,other facilitieswere emerging.Foraerospacetesting,apres- surized F1windtunnelwasbuiltnearToulouse,atLeFauga-Mauzac.Operationalsince1974, thistunnelclosedcircuithas

(8)

Fig. 7.View of the large S1Ch wind tunnel in Meudon (© ONERA).

Fig. 8.Bréguet 940 airplane in the S1Ch Meudon test section (© ONERA).

arectangulartestsection(4.5 m×3.5 m)wheretheflowspeedreaches430km/h.Pressurizingthefacility(upto3.85bar) increasesthedensityoftheflow,hencemaintainingahighReynoldsnumbercompensatingthereducedsizeofthemodel imposedbytherelativelysmallwindtunnelsize.Ithasnotbeen,however,possibletosavemorethanafactorof4onthe Reynoldsnumberbypressurizing,sincethenverylargedynamicloadswillappearonthestructures(walls,floors).

2.4. TheEuropeanTransonicWindTunnel(ETW)inCologne(Germany)

ToobtainhighernumberofReynolds,closetotheonethatcharacterizesthecurrentlargecivilaircraft,wechosetoplay ontheair’sdynamicviscosity μ,whichisproportionaltothesquarerootoftemperature.Bycoolingthecircuit,acryogenic windtunnelisobtained. Insucha facility,theReynoldsnumberincreasesnotonlyduetothedecreaseinviscosity,since itisincludedinthe denominatorintheformulagivingtheReynoldsnumber,butcoolingalsoinduces an increaseinthe densityviatheidealgaslaw:

ρ=p/r·T

where ρ is thedensity inkg m3, p the pressure inPa,r the universal gas constantequal to 287J kg1K1 and T the temperatureexpressedinK.

Références

Documents relatifs

C’était le moment choisi par l’aïeul, […] pour réaliser le vœu si longtemps caressé d’ accroître son troupeau que les sècheresses, les épizoodies et la rouerie de

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Lastly Figure 13 shows the optimized deformations of the walls obtained with the current linearized potential flow approach (using the experimental pressure set for the flow past

In these models, the VDF generally have (1) an isotropic Maxwellian core around the origin in the velocity space and (2) a highly asym- metrical halo population of suprathermal

Although, the inflammatory process mediated by mono- cytes and lymphocytes recruitment is correlated with the severity of ischemic injuries induced by warm and cold ischemia and

Mais si cette inventivité est nécessaire et souhaitable pour ces plombiers que sont les praticiens, il n’en serait a priori pas de même pour cette autre catégorie de juristes que

There are five main subsystems of the microcalorimeter: the novel heat sensor, posi- tion sensor, temperature controlled vacuum chamber, software, and the syringe

Nakagawa and Trehan (1968) seek steady state, axisymmetric, toroidal velocity and poloidal magnetic field solutions in an inviscid, perfectly conducting fluid. Thus