• Aucun résultat trouvé

Reducing Communication Overhead for Average Consensus

N/A
N/A
Protected

Academic year: 2023

Partager "Reducing Communication Overhead for Average Consensus"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: hal-00720687

https://hal.inria.fr/hal-00720687v2

Submitted on 1 Aug 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

Consensus

Mahmoud El Chamie, Giovanni Neglia, Konstantin Avrachenkov

To cite this version:

Mahmoud El Chamie, Giovanni Neglia, Konstantin Avrachenkov. Reducing Communication Overhead

for Average Consensus. [Research Report] RR-8025, INRIA. 2012, pp.22. �hal-00720687v2�

(2)

0 2 4 9 -6 3 9 9 IS R N IN R IA /R R -- 8 0 2 5 -- F R + E N G

RESEARCH REPORT N° 8025

July 2012

Reducing

Communication

Overhead for Average Consensus

Mahmoud El Chamie, Giovanni Neglia, Konstantin Avrachenkov

(3)
(4)

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

MahmoudEl Chamie

, Giovanni Neglia

, Konstantin

Avrahenkov

Projet-Teams Maestro

Researh Report n°8025July201222pages

Abstrat: Averageonsensus isaniterativeprotoolwhere nodesina network, eah havingan

initialsalar valuealled estimate,performa distributedalgorithm toalulatetheaverageofall

estimatespresentedinthenetworkbyusingonlyloalommuniation. Witheveryiteration,nodes

reeive theestimates from theirneighbors, and theyupdate their own estimateby theweighted

average of the reeived ones. Whilethe average onsensus protool onverges asymptotially to

onsensus,implementingaterminationalgorithmishallengingwhennodesarenotawareofsome

globalinformation (e.g. thediameter ofthe network or the number ofnodes presented). Inthis

report,weareinterestedindereasingtherateofthemessagessentinthenetworkastheestimates

areloser to onsensus. Wepropose a totally distributed algorithm foraverageonsensus where

nodessendmoremessageswhenthenodeshavelargedierenesintheirestimates,andreduetheir

rateof sending messages when theonsensus is almost reahed. The onvergene of the system

is guaranteed to be within a predened margin

ǫ

from the trueaverage and theommuniation overheadislargelyredued.

Key-words: averageonsensus, energyredution,termination protool,distributed algorithms

InriaSophiaAntipolis,Frane,Mahmoud.El_Chamieinria.fr

InriaSophiaAntipolis,Frane,Giovanni.Negliainria.fr

InriaSophiaAntipolis,Frane,K.Avrahenkovsophia.inria.fr

(5)

Résumé : Le onsensus de moyenne est un protoole itératif où les n÷uds d'un réseau,

ayanthaununeestimationinitiale,exéutentunalgorithmedistribuépouralulerlamoyenne

de es estimations en utilisant uniquement les ommuniation loales. A haque itération, les

n÷udséhangent leursestimationsaveleursvoisins. Ces estimationsserontremplaéesparla

moyennepondéréede ellesreçues. Laonvergeneduonsensusdemoyenneest asymptotique

etlamiseen÷uvre d'unprotooledeterminaison estdiile lorsquelesn÷udsneonnaissent

pas l'estimation global (par exemple, le diamètre du réseau ou le nombre de n÷uds). Dans

e rapport, nous intéressons à larédution du taux de messages envoyés dansle réseau quand

lesestimations deviennent prohe du onsensus. Nous présentons un algorithmede onsensus

demoyenne totalementdistribué, oùlesn÷uds envoientplusde messages lorsque ladiérene

entre leurs estimationsest grande et moins demessages lorsque lesystème est à peuprèson-

vergeant. La onvergene dusystèmeest garantied'être prohedela vraiemoyenneet le oût

desommuniations estfortementréduit.

Mots-lés: onsensusdemoyenne,rédutiondel'énergie,protooledeterminaison,algorithme

distribué

(6)

1 Introdution

Average onsensusprotools areusedto ndtheaverageaross initialmeasurementspresented

at nodesin a network ina distributed manner havingno entralentity toontrol and monitor

thenetwork. Thisproblem isgaining interestnowadaysdueto itswidedomain ofappliations

as in ooperative robot motions [1 ℄, resoure alloation [2 ℄, and environmental monitoring [3℄,

in addition to the existeneof large networks suh as wireless sensor networks for whih suh

onsensusalgorithmsareneessary[4 ℄. Underthisdeentralizedapproah,nodesseletaweight

fortheestimate ofevery neighbor andperforma weightedaverageofthevaluesin theirlosed

neighborhood. Byonsideringspeialonditionsontheseletedweights,theprotoolisguaran-

teedtoonvergeasymptotiallytotheaverageonsensus. Aftereverylineariteration,eahnode

must send its newvalueto its neighbors so that theyan use it in the next iteration. For an

extensiveliteratureonaverageonsensus protool andits appliations,hekthesurveys[5 , 6 ℄

andthereferenestherein.

To speed up the onvergene, some approahes have foused on seleting the weights so

that theonvergene beomesfaster. Xiao and Boyd in [7 ℄ have formulated theproblem as a

SemiDenite Program that an beeientlyand globally solved. However,speeding upthe

onvergene does not redue the number of messages that are sent in the network even when

usingtheoptimalweights. Thereasonisthattheonvergeneisreahedonlyasymptotially,and

even ifnodes' estimatesare very lose tothe average, nodes keep onperformingtheaveraging

andsendingmessages totheirneighbors.

Thereportisorganizedasfollows: Setion2givesthenotationusedandaformulationofthe

problem. Setion3givesthepreviousworkontheterminationoftheaverageonsensusprotool.

Setion4motivatestheworkbyanimpossibilityresultfornitetimetermination. Setion5gives

theproposedalgorithm, itsanalysis, andthesimulationsofthe algorithm. Setion 6 onludes

thereport.

2 Problem Formulation

Consider a network of

n

nodes that an exhange messages betweeneah other through om-

muniation links. Every node in this network has a ertain measurement (e.g. pressure or

temperature),andweneedeahnodetoknowtheaverageoftheinitialmeasurementsbyfollow-

ing a distributed linear iterationapproah. The networkof nodes an bemodelledas a graph

G = (V, E)

where

V

isthesetofverties(

|V | = n

)and

E

istheset ofedgessuhthe

{i, j} ∈ E

if nodes

i

and

j

are onnetedand an ommuniate (they are neighbors). Letalso

N i

bethe

neighborhood set of node

i

. Let

x i (0) ∈ R

be the initial value at node

i

. We are interested

in omputing theaverage

x ave = (1/n) P n

i=1 x i (0)

, in a deentralized manner with nodesonly ommuniatingwiththeirneighbors. Ournetworkmodelwillbetheaveragingdoneona xed

networkwithasynhronizationlok. Whentheloktiks,allnodesinthesystemperformthe

iterationoftheaveragingprotoolatthesametime(thisisthesynhronousupdateassumption).

Atiteration

k + 1

,node

i

updatesitsstatevalue

x i

:

x i (k + 1) = w ii x i (k) + X

j ∈ N i

w ij x j (k)

(1)

where

w ij

is the weight seleted by node

i

for the value sent by its neighbor

j

and

w ii

is the

weightseletedbynode

i

foritownvalue. Thematrixformequationis:

x (k + 1) = W x (k)

(2)

(7)

where

x (k)

isthestatevetorofthesystemand

W

istheweightmatrix.

Under some onditions on the weight matrix

W

given in [8 ℄, the system is guaranteed to

onverge to theaverage. Inthis report, we onsider

W

to bea doubly stohasti matrixthat

satises these onditions and is onstruted loally, some methods foronstruting theweight

W

using onlyloal information an befound is[9 ℄. Let

1

bethe vetor havingthe value

1

in

everyentry,theonvergene oftheaverageonsensusgivenaboveis ingeneralasymptoti:

k lim →∞

x (k) = x ave 1 .

(3)

Theaveragingworksasfollows: afterseletingtheweightsfortheirneighbors, alineariteration

phasestarts. Eah nodealulates its newvalue depending on theweightsand theneighbors'

values,andthenitbroadaststhenewvaluetoallitsneighbors beforethegloballoktiksfor

thenextiteration. Sinethelimitin(3 )istypiallyreahedatinnity,thenodeswillbealways

busysendingmessages. Let

M (k)

bethenumberofnodestransmittingatiteration

k

,sowithout

a termination protool all nodesare transmitting at iteration

k

,

M (k) = M = n

, independent from theonvergene of estimates. So how an nodes knowthat theyare lose enough to the

averageandthusstop sendingmessagestotheirneighborsandsavebandwidthandenergy? We

propose in this report an algorithm that redues ommuniation overhead aused by sending

messagesatevery iteration.

3 Related Work

Somework onsiders protools foraverageonsensus protoolto terminate in nite time. One

approah is that estimates of nodes performing suh a protool reahes the exat average, as

in [10 ℄, their solution is based on the onept of the minimal polynomial of the matrix

W

,

wheretheyshowedthatanodeusingoeientsofthispolynomial anuseitsestimateover

K

suessiveiterationstoalulatetheaverage,butnodesmustalsohavehighmemoryapabilities

to storethe

n × n

matrix, andhigh proessing apabilities to solvethe

n

linearlyindependent equationsto nd the oeientsof theminimal polynomial. Anotherapproah for nite time

termination,isgivenin [11 ℄,but insteadof exataverage,guaranteed tobewithin apredened

thresholdfromtheaverage. Thisapproahrunsthreeonsensusprotoolsatthesametime: the

maximumandtheminimumonsensusrestartedevery

U

iterationswhere

U

isanupper bound

of thediameter of the network, and average onsensus. The dierene betweenthe maximum

andminimumonsensusprovidesastoppingriteriafornodes.

Inadierenttimesettingforaverageonsensus,usingtheasynhronousrandomizedgossip-

ing,theauthorsin[12 ℄proposedanalgorithmthatleadstotheterminationofaverageonsensus

in nite timewith high probability. In theirapproah, eah nodehas a ounter

c i

that ounts

howmanytimesthedierenebetweenthenewestimateandtheoldonewaslessthanaertain

threshold

τ

, when the ounter reahes a ertainvalue, say

C

, the nodewill stop initiatingthe

algorithm. They proved that by a orret hoie of

C

and

τ

(depending on some parameters

as the maximum degree in the network, the number of nodes, and the number of edges) the

terminationiswithhighprobability.

However,amajordrawbakofthesealgorithms(withouttakingintoonsiderationthemem-

oryapabilitiestheyassumednodestohaveor therobustness ofthesystem)theassumptionof

knowledge of some global variables at eah nodes whih violates the deentralized senario of

averageonsensus. Designingadeentralizedalgorithmforaverageonsensusthatterminatesin

nitetimewithoutusing anyglobalestimate(as thediameterofthenetwork orthenumber of

nodes)inthealgorithmisstillanopenproblem.

(8)

Figure1: Line graph

G

with

3

nodes.

4 Motivation

Weaddresstheproblemoftermination ofaverageonsensus inthisreport. Wewill startbyan

impossibilityresultforterminationoftheaverageonsensusprotoolinnitetimewithoutusing

of a global estimate (mainly an upper bound on the diameter) and by only using the history

estimatesofthenode.

Theorem 1. In the average onsensus protool on axedgraph(no link failure), wherenodes

perform synhronous iterations as in (1 ) to onverge to the average of initial estimates, it is

impossible to reate a deterministi distributed algorithm that terminates in nite time to give

theaverage ofinitialestimatesoranyboundedapproximateoftheaverage usingonlythe history

of the node'sestimate.

Proof. Consider aline graph

G

ofthree nodes,

a

,

b

,and

c

as inFig.1,wheretheweightmatrix

is real doubly stohasti matrix that satises the onvergene onditions (as a result we an

assume

w aa , w cc > 0

). Suppose thereexists atermination algorithmforaverageonsensus that terminates in nite time, then applying this algorithm on this graph implies that their exists

an iteration

K > 0

and

ǫ > 0

where node

a

deides to terminate and this algorithm uses

only the history of estimates of node

a

:

x a (0), x a (1), x a (2), ..., x a (K)

, to deide to stop and

|x a (K) − x ave | < ǫ

, where

x ave = α = x a (0)+x b 3 (0)+x c (0)

. We will dene the extended mirror

graphof

G

tobealine graphof

6

nodes

a 1 , a 2 , b 1 , b 2 , c 1 ,

and

c 2

,formedbytwoidentialgraphs

as

G

butadding a

{c 1 , c 2 }

edge. Theinitial estimatesarethesame forallnodes(e.g. fornode

a

wehave

x a 1 (0) = x a 2 (0) = x a (0)

),weightmatrixisalso thesame exeptfor

c 1

and

c 2

,where

w c 1 c 1 = w c 2 c 2 = w c 1 c 2 = w 2 cc

(see Fig. 2). Notie that on the new generated graph and the

old one,

x a 1 (k) = x a (k) ∀k ≤ K

, so node

a 1

on thenew graph will deideto terminate after

exatly

K

iterations. Notie now that we an ontinue doing this proedure of graph mirror extension till wehave a line graph where

n > K

, all this graph

H

.

a 1

in graph

H

still have

thesame estimatesduring theiterations

k ≤ K

, so itwill alwaysterminateafter

K

iterations.

However,if weadd a newnodeto

H

at theend of theline, havingan estimate

β >> nα

,the

eet would only reah

a 1

after a number of iterations

k > K

. Therefore, on this graph (the

graphwhereweaddedonenodeattheendofthelinegraph

H

),thenode

a 1

willterminatewith

|x a 1 (K) − α| < ǫ

,but itis notpossible toguaranteeit islose totheaverage beausethenew

averagenowis

x ave = α + β n α >> x a 1 (K)

.

Theaboveproofanbeextendedtoinlude anygraph

G

, notjustlinegraphs, byusingthe

same tehniqueof generatingtheextendedmirrors graphs of

G

to showthat weannotsimply

applytheterminationprotoolonanykindof networksnotjustthelinegraph.

Thetermtermination in this deentralized senario must referto themessages sentbythe

nodes in the network but not to the exeution of the algorithm at the level of nodes. The

algorithms touse mustallownodes torefrain fromsending theirestimateas messages in some

iterations and send it in another. The termination ours when the number of messages sent

in thenetwork disappears, even if thenodesare still running the algorithm internally, but no

(9)

Figure2: Extendedmirrorgraphof

G

with

6

nodes.

more messages are sent in the network. In a less restritive objetive, we an also dene the

asymptotiterminationwhentherateofsending messagesinthenetworkisvanishing,i.e.:

t lim →∞

P t

k=1 M (k)

t = 0.

(4)

Inotherwords,therateofmessagesinthenetworkmustgiveusanideaabouttheonvergeneof

nodes,soifwemonitorthenetworkforanintervalofiterationsandsawthatnotmanymessages

are generated, we should beableto onlude that the nodesare almost onvergedto thetrue

averageor toanapproximatewhih isbounded byathresholdfromthetrueaverage.

5 Our Approah

5.1 Centralized Termination

5.1.1 Introdution

Even if thenodeswill not terminate in nite time, we areinterested in dereasing the rate of

themessages sentinthenetworkin suha waytoberelatedtotheamountofimprovementwe

aregaining in terms ofthe onsensus. For example, ifthe nodeshavewide rangeof dierene

in their estimates, sending messages an beeient to derease the error in the network and

reah onsensus. However, when the nodes are almost onverged, sending a lot of messages

will not be eient, as the improvement is just a user perspetive. So from an engineering

perspetive, our network must send more messages when the nodes have large dierenes in

their estimates, and lessmessages when the system is almost onverging. This subsetion on

entralized termination just provides basis and intuition for the more pratial deentralized

terminationalgorithmproposedinthisreport.

5.1.2 Overview

Inthis setion, wedisuss a simpleentralizedalgorithm for termination of averageonsensus

protools. Weallitaentralizedprotoolsineinthisprotool,eahnodeansendabroadast

signaltothenetworktoperformaniteration. Atanyiteration,ifanyofthenodesinthenetwork

sent this signal, all the nodes will respond by sending the new estimates to their neighbors

aordingtotheaveraging equation:

x (t + 1) = W x (t),

(5)

(10)

where

t

isthetimewhenabroadastsignalissentinthenetwork. Ontheontrary,weseethat

ifnosignalissent,thenodeswillpreservethesame estimate:

x (t + 1) = x (t),

(6)

where

t

is the iterationwhere nobroadast message was sent. In thefollowing,wewill give a

simplealgorithmwherethefrequenyofsendingabroadastsignalwillbedereasing(onverging

tozeroi.e. nonodeina networkwillbesendingsuhamessage), sothemessages foraveraging

will alsobesentlessoftenas nodes onverges tothe average. This algorithmisan intuitionto

howthedeentralizedterminationprotoolworks.

5.1.3 Analysisand Convergene

Let us deneformally the method. Let

e(t)

bean inreasingsalar visible by all thenodes in

the network suh that

e(0) = 0

and

0 ≤ e(t) < ǫ(t)

, where

ǫ(t)

is a boundarythresholdwhih

is alsoan inreasingsalar suhthat

ǫ(0) = ǫ = constant

. Let

W

bethe weight matrixofthe

network satisfyingonvergene onditions of averageonsensus and

x (t)

bethestate vetor of

thesystematiteration

t

. Wedenea logialexpression

L t

asaBooleanvariable(eithertrueor

false)denedatevery iteration

t

ofthefollowingexpression:

L t : e(t − 1) + ||W x (t − 1) − x (t − 1)|| ∞ < ǫ(t − 1),

(7)

with

L 0 = F alse

. Aordingto thisondition,ationsaretakeniniteration

t

. Ifthis ondition

wasfalse, a broadast signal issentin thenetwork andall nodeswill performan iteration;we

have

x (t −1)

hanges,

ǫ(t −1)

alsoisinreasedbyavalueof

ǫ/m 2

,where

m

isaounterindiating

howmanytimesthevalueof

ǫ

hasinrementedin thepast,buttheothersalar

e(t − 1)

iskept

thesame. On theontrary, if

L t

is true,then there isnosignal in the network, and thenodes

keepthesameestimateas theprevious iteration,theboundarythresholdisalsokeptthesame,

but

e(t − 1)

is inreasedby

y(t − 1) = ||W x (t − 1) − x (t − 1)|| ∞

. Inpartiular,thehangesto

thenetworkvariablesdueto

L t

aregiveninthefollowingequation:

e(t) =

( e(t − 1) + y(t − 1)

if

L t = T rue,

e(t − 1)

if

L t = F alse,

(8)

x (t) =

( x (t − 1)

if

L t = T rue,

W x (t − 1)

if

L t = F alse,

(9)

ǫ(t) =

( ǫ(t − 1)

if

L t = T rue,

ǫ(t − 1) + ǫ/k 2

if

L t = F alse,

(10)

where

k

isaounter indiatinghowmanytimesthevalueof

ǫ(t)

hasinrementedin thepast.

When

L t

istrue,weall

t

asilentiterationbeausethenodeshavethesame estimateasthe

previous iteration (i.e.

x i (t) = x i (t − 1)

) and there is no need to exhange messages of these

estimates in the network. On the other hand, when

L t

is false, we all

t

as a busy iteration

beause nodes will perform an averaging (i.e.

x (t) = W x (t − 1)

) and the estimates must be

exhangedin thenetwork. Letusdene

T

astheset ofbusyperiod:

T = {t | L t = F alse}.

(11)

(11)

Let

t k

where

k = 1, 2, ...

betheinreasingsequeneoftheelementsoftheset

T

. Let

α k

bethe

numberofsilentiterationsbetween

t k

and

t k+1

. Weanseethat

t k+1 = α k +t k + 1

. Wesaythat

thealgorithm isterminatingasymptotiallyifthesilentperiodisdiverging,i.e. wehavethat:

t→∞ lim α k = ∞.

(12)

First,it is not diultto see that if

t → ∞

, then

k → ∞

too,beause anupper bound on

k

impliesanupperboundon

t

. Therefore,itissuienttoprovethat

lim k →∞ α k = ∞

.

Let

z (k) = W x (t k ) − x (t k )

,weanseethat aordingtothisalgorithm,

α k = ⌊ ǫ(t k ) − e(t k )

|| z (k)|| ∞

≥ ǫ(t k − 1) + ǫ/k 2 − e(t k − 1)

|| z (k)|| ∞

− 1

≥ ǫ

k 2 || z (k)|| 2

− 1.

(13)

Moreover,

z (k)

evolveaording tothefollowingequation:

z (k) = (W − G) z (k − 1) = (W − G) k z (0),

(14)

where

G = 1/n 11 T

. Finally,

|| z (k)|| 2 ≤ Cρ k (W − G),

(15)

where

C = || z (0)||

and

ρ(W − G)

isthespetralradiusofthematrix

W − G

,so

0 < ρ < 1

sine

W

satises theondition ofa onvergingmatrix(see [8 ℄). Puttingeverything together, weget

nallythat:

α k ≥ ǫ

Ck 2 ρ k − 1,

(16)

and hene

α k → ∞

as

k → ∞

. Consequently, the rate of messages sent in the network is vanishing,namely

t lim →∞

P t i=1 M (i)

t = lim

t →∞

M k t = lim

t →∞

M k k + P k −1

i=1 α i

= 0.

(17)

5.2 Deentralized Environment

5.2.1 Introdution

Inadeentralizedalgorithm,eahnodeworksindependently,thenodesonlyagreeonsynhronous

timestepstodotheiteration. Thesilentperiodona nodeisjustloal, soanodean besilent,

whileits neighbor is not. In thissenario, we seethat within aniteration, some nodes willbe

transmitting and others will be silent. This an ause instability in the network beause the

average with every iterationis not now onserved, and the salar

e(k)

dened in theprevious

subsetionisnowavetor

e (k)

where

e i (k)

isloaltoeverynode. Toonservetheaverageinthe

deentralized setting, this salar must take part in the stateequation as wewill showin what

follows.

(12)

5.2.2 System Equation

In ourapproah, weonsider a more generalframework foraverageonsensus where westudy

theonvergene ofthefollowingequation:

x (k + 1) + e (k + 1) = W x (k) + e (k).

(18)

Someworkhavestudied,thefollowingequationasaperturbedaverageonsensusandonsidered

e (k)

to bezero mean noise with vanishing variane (see [13 , 14℄). However, in ourmodel, we

onsider

e

as a deterministi part of the state of the system and not a random variable. We onsidersuientonditions forthesystemtoonverge,andweusetheseonditionsto givean

algorithmthat anreduethenumber ofmessagessentinthenetwork.

Inthestandardonsensus algorithms, thestateofthesystemisdened bythestatevetor

x

,but inthemodiedsystem,thestateequationisdenedbytheouple

{ x , e }

.

Theorem 2. Let

e (k + 1) = e (k) − F(k) x (k)

, and

A(k) = W + F (k)

. Assume the following

onditions onthe matrix

A(k)

:

(a)

a ij (k) ≥ 0

forall

i

,

j

,and

k

,and

P n

j=1 a ij (k) = 1

forall

i

and

k

.

(b) Lowerboundon positiveoeients: thereexistssome

α > 0

suhthat if

a ij (k) > 0

,then

a ij (k) ≥ α

,forall

i

,

j

,and

k

.

() Positivediagonaloeients:

a ii (k) ≥ α

,forall

i

,

k

.

(d) Cut-balane: forany

i

with

a ij (k) > 0

,wehave

j

with

a ji (k) > 0

.

(e)

lim k →∞ x (k) = x ⇒ lim k →∞ F (k) x (k) = 0

.

Then

lim k →∞ x (k) = x ave 1

,wherewehavethat

x ave ∈ [min j x j (0), max j x j (0)]

iffurthermore wehave

e (0) = 0

and

e i (k) < ǫ

,then

|x ave − x ave | < ǫ

.

Proof. Letus rstprovethat

x (k)

onverges. Bysubstituting theequationof

e (k + 1)

in(18 ) ,

weobtain:

x (k + 1) = A(k) x (k),

(19)

where

A(k) = W + F (k)

. From theonditions (a),(b),(), and(d) on

A(k)

, wehavefrom [ 15 ℄

that

x

onverges, i.e.

lim k →∞ x (k) = x

. Sine the systemis onverging, then from equation (18 ) ,weanseethat:

x + lim

k→∞ ( e (k + 1) − e (k)) = W x ,

so,

x = W x .

(20)

Therefore,

x

isan eigenvetor orresponding to the highesteigenvalue(

λ 1 = 1

) of

W

. Sowe

an onludethat

x = x ave 1

where

x ave

isasalar(Perron-Frobeniustheorem).

Theondition

1 T W = 1 T

onthe matrix

W

in equation(2 ) leads tothepreservation ofthe averagein the network,

1 T x (k) = nx ave ∀k

. This onditionis notneessary satised by

A(k)

,

soletusprovenowthatthesystempreservestheaverage

x ave

:

1 ( x (k + 1) + e (k + 1)) = 1 (W x (k) + e (k))

(21)

= 1 ( x (k) + e (k)).

(22)

Thelastequalityomesfromthefat that

W

issumpreservingsine

1 W = 1

.

(13)

Finally by a simple reursion we have that

1 ( x (k) + e (k)) = 1 x (0) = nx ave

, and the

averageisonserved. Moreover,sine

|e i (k)| ≤ ǫ ∀k

,so wehave:

|(1/n) 1 x (k) − x ave | ≤ ǫ ∀k.

(23)

Butwe justproved that

lim k →∞ x (k) = x ave 1

, so this onsensus is within

ǫ

from the desired

x ave

:

|x ave − x ave | ≤ ǫ.

(24)

Thisendstheproof.

5.3 Message Reduing Algorithm

Wetry to solve the termination problem through a fully deentralized approah. We onsider

large-sale networks where nodes have limited resoures (in terms of power, proessing, and

memory), do notuse any global estimate(e.g. diameter of the network or number of nodes),

keeponlyoneiterationhistory,andanonlyommuniatewiththeirneighbors. Ourmaingoalis

thatthenumberofmessagesin thenetworkisaetedbyhowlosethenodesaretoonsensus.

Namely, the loser they are to onsensus, the less nodes transmit messages at eah iteration.

Thealgorithmmust guaranteethat thesystemreahesa onsensus within aertainpredened

marginfrom theaverage.

Themain ideais thata node,say

i

forexample,willompareitsnewalulatedvaluewith

theoldone. Aordingto the hange in theestimate,

i

will deideeither to broadast itsnew

valueor not to doso. Wedivide an iterationinto two parts, in the rstpart ofthe iteration,

onlynodeswithsignianthangein theirestimatesareallowedto sendmessages. However,in

theseondpart of theiteration,onlynodespolledbytheirneighbors from phase1are allowed

to send an update. As a node approahes the onsensus, the hange in its estimate beomes

smaller, and more nodes will stop sending messages during an iterationof the algorithm, and

themessagesinthesystemwilldisappearasymptotially. Duringthesilentperiodofeahnode,

itaumulates anerrorausedbytheabseneof itsmessages. Whenthesilentnodetransmits

again,it an alwaysredue theaumulatederror by redistributingit in thenetworkand thus

savingmessages whilepreservingtheaverage.

Before starting the linear iterative equation, nodes will selet weights as in the standard

onsensus algorithm. The weight matrixonsidered here must be doubly stohasti with

0 <

α < w ii < 1 − α < 1

forsome onstant

α

. Eah node

i

inthenetworkkeepstwostatevaluesat

iteration

k

:

ˆ

x i (k)

: theestimateofnode

i

usedin theiterativeequationsbytheothernodes.

ˆ

e i (k)

: a real value that monitors the shift from the average due to the iterations where

node

i

didnotsendamessage toitsneighbors. Itisinitiallyset tozero,

e i (0) = 0

.

Eahnodealsokeeps itsownboundarythreshold

ǫ i (k)

where

ǫ i (1) = ǫ 2 = constant ∀i

. Note

thatthisepsilonisinreasedaftereverytransmissionasintheentralizedase,butthedierene

hereisthat itisloaltoevery node.

Eahiterationisdividedintotwophases:

Intherstphase,anode

i

an bein oneofthetwo followingstates:

ˆ Transmit: Theset ofnodesorrespondingtothisstateis

T k

,wherethesubindex

k

orre-

spondsto the fat that theset an hangewith every iteration

k

. Thenodes in

T k

send

theirnewalulatedestimatetotheirneighbors. Theyalsopollthenodeshavingmaximum

andminimumestimatesintheirneighborhood totransmitinphase2.

(14)

Algorithm 1TerminationAlgorithm-node

i

-Phase1

1:

{x i (k), e i (k)}

are the state values of node

i

at iteration

k

,

0 < α < w ii < 1 − α < 1

,

counter i = 1

istheounterforthenumberoftransmissionssofar.

ǫ i (1) = ǫ/2 ∈ R

,

T k

isset

of

T ransmit

state.

W k

set orrespondingto

W ait

state. Initially we have

T k = W k = ∅

. Every node

i

followsthefollowingalgorithmatiteration

k

.

2:

y i (k + 1) ← w ii x i (k) + P

j∈N i w ij x j (k)

3:

d i ← y i (k + 1) − x i (k) + e i (k)

4: if

|d i | < ǫ i (counter i )

then

5:

i

hangestoa Wait state.

\ \ i ∈ W k

6: else

7:

counter i = counter i + 1

8:

ǫ i (counter i ) = ǫ i (counter i − 1) + ǫ i (1)/counter i 2

9:

c i ← (1 α w

ii )

³ y i (k + 1) − x i (k) ´

10: if

|c i | ≤ |e i (k)|

then

11:

x i (k + 1) ← y i (k + 1) +

sign

(c i .e i (k))c i

12:

e i (k + 1) ← e i (k) −

sign

(c i .e i (k))c i

13: else

14:

x i (k + 1) ← y i (k + 1) + e i (k)

15:

e i (k + 1) ← 0

16: endif

17:

i

hangestoa Transmit state.

\ \ i ∈ T k

18: Notify theneighbors havingmaximumand minimumvalues.

19: endif

20: GotoPhase2

ˆ Wait: Thesetofnodesorrespondingtothisstateis

W k

. Thenode'sdeisionwillbetaken

in the seond phaseof theiteration based on the ation of nodes in the Transmit state

(dependingiftheywerepolledbyanyoftheirneighbors).

Intheseondpartoftheiteration,nodesthatarein

W k

willbelassied asfollows:

ˆ Silent: Theset of nodesorresponding to this stateis

S k

. Theseare thenodesthat will

remainsilentwith nomessagesentfromtheirpart in thenetwork. Thenodesin

S k

have

thatnonoftheirneighborssendingthemanypollmessage.

ˆ Cut-Balane: Theset of nodesorrespondingto this stateis

B k

. They arealled

Cut − Balance

beause they insure the ut-balane ondition (d) of theorem

2

. They are the

nodesin

W k

that havebeenpolledbyatleastoneneighbor in

T k

.

The two phases of the termination protool implemented at eah node are desribed by

pseudoodeinAlgorithm1and2. Nodesinthe

T k

set(thesetofnodesthatareina

T ransmit

state)willbroadasttheirestimatetotheirneighborsattheendoftherstphase,whilenodesin

W k

set(or

W ait

state)willpostponetheirdeisiontosendornottillthenextphase. Nodesthat

donotreeiveamessage fromtheirneighbors ata ertainiteration,usesthelast seenestimate

fromthespeiedneighbors(note: abseneofmessagesfromaneighborduringaniterationdoes

not meanthe failureof link,it meansthat theneighbor is broadasting thesame oldestimate

as before, so we may dierentiate the link failure by a keep alive message sentfrequently to

maintainonnetivityand set ofneighbors). Theinput forthealgorithm are theestimatesof

the neighbor of

i

, the weights seleted forthese neighbors, and thestate values

{x i (k), e i (k)}

.

(15)

Algorithm 2TerminationAlgorithm-Phase 2

1:

{x i (k), e i (k)}

arethestatevalues ofnode

i

atiteration

k

.

2: for allnodes

i

havingWait statedo

3:

y i (k + 1) ← w ii x i (k) + P

j ∈ N i w ij x j (k)

4: if

i

reeiveda pollmessagefrom anyneighborthen

5:

z i (k + 1) ← (w ii + P

j∈N i ∩W k w ij )x i (k) + P

j∈N i ∩T k w ij x j (k)

6:

x i (k + 1) ← z i (k + 1)

7:

e i (k + 1) ← y i (k + 1) − z i (k + 1) + e i (k)

8:

i

hangesto a

Cut − Balance

state.

\ \ i ∈ B k

9: else

10:

x i (k + 1) ← x i (k)

11:

e i (k + 1) ← y i (k + 1) − x i (k) + e i (k)

12:

i

hangesto aSilent state.

\ \ i ∈ S k

13: endif

14: endfor

15:

k + 1 ← k

Theoutputoftherstphaseisthenewstatevalues

{x i (k + 1), e i (k + 1)}

fornodesin

T k

and

theoutput of theseond phase is thenew statevalues

{x i (k + 1), e i (k + 1)}

for nodes in

W k

.

Let us go through the lines of the algorithm. In phase 1,

y i (k + 1)

of line

2

is the weighted

average oftheestimates reeivedby node

i

; withoutthe terminationprotoolthis valuewould be sent to all itsneighbors. The protool evaluateshowmuh

y i (k + 1)

diersfrom thestate

value

x i (k)

. Thisdiereneaumulatesin

d i

inline

3

. Ifthisshiftislessthanagiventhreshold

ǫ i

,the nodewill wait fornextphaseto take deision. Ifthe onditionin line

4

isnotsatised,

thatmeansthenodewillsenda newvalueto itsneighbors. Lines

7 − 8

onernstheextending

ofthe boundarythreshold

ǫ i (k)

after every transmission. Note that bythis extensionmethod, wehave

ǫ i (k) < ǫ ∀i, k

sine

k lim →∞ ǫ i (k) = ǫ i (1)(

X

i=1

1/k 2 )

< ǫ i (1) × 2

= ǫ.

(25)

Weintrodueinline

9

anewsalar

c i

usedfordeidingwhihportionof

e i (k)

thenodewillsend

inthenetwork. Inlines

11 − 12

and

14 − 15

,thealgorithmsatisestheequation(18 ). Thenthe

newstatevalue

x i (k + 1)

issenttotheneighborsand

e i (k + 1)

isupdatedaordingly. InPhase

2

of the algorithm (Algorithm2), nodes initially in the wait statewill deide either to send a

ut-balanemassageortoremainsilent,theutbalanemessagesaresentwhenanodereeives

apollmessagefromanyofitsneighbors.

5.4 Convergene study

Theonvergeneofthepreviousalgorithmismainlyduetothefatthattheproposedalgorithm

satisestheonditionsofonvergenegivenin5.2.2. Infat,thealgorithmisdesignedtosatisfy

alltheseonditions thatguaranteeonvergene. Startingwiththestateequation,weannotie

fromthealgorithm1giventhatwhatevertheonditionthenodesfae,itisalwaystruethatthe

sumofthenewgeneratedstatevalues

{x i (k + 1), e i (k + 1)}

isas follows:

x i (k + 1) + e i (k + 1) = y i (k + 1) + e i (k),

(16)

where

y i (k + 1) = w ii x i (k) + P

j ∈ N i w ij x j (k)

. Asaresultthesystemequationistheonestudied

in setion5.2.2(equation(18)).

Before going through the dierent onditions in the theorem

2

, we should also show that

e (k + 1) = e (k) − F(k) x (k)

for some matrix

F (k)

suh that

F(k) 1 = 0

. Aording to the algorithmwean write,

e i (k + 1) = e i (k) − v i (k),

(26)

where

v i (k)

diersaording to thestateofthe node

i

, but itonlydepends ontheestimateof

node

i

anditsneighbors:

v i (k) =

 

 

 

 

± (1 α w

ii )

³ y i (k + 1) − x i (k) ´

if

i ∈ T k − (1),

± (1 αγ w

ii )

³ y i (k + 1) − x i (k) ´

if

i ∈ T k − (2), x i (k) − y i (k + 1)

if

i ∈ S k , z i (k + 1) − y i (k + 1)

if

i ∈ B k ,

(27)

where

T k − (1)

is theset of nodes subset in

T k

where

|c i | ≤ |e i (k)|

, and

T k − (2)

set of nodes

where

|c i | > |e i (k)|

. In thelatterase,

e i (k + 1) = 0

, but wean always nd

γ < 1

suh that

e i (k + 1) = e i (k) − γ(

sign

(c i .e i (k)c i ) = 0

where

c i = (1 α w

ii ) (y i (k + 1) − x i (k))

.

y i (k + 1)

and

z i (k + 1)

areas indiatedinthealgorithmandarea linearombinationoftheelementsof

x (k)

.

From theequation of

v i (k)

, wean also see that it is a linear ombination of the elements of

x (k)

,suhthattheoeientssumto

0

. Arow

i

in

F (k)

willbetheoeientsoftheestimates

x (k)

in

v i (k)

,so

F (k) 1 = 0

.

Nowweanstudytheonditionsmentionedinthetheorem

2

onthematrix

A(k) = W +F (k)

.

Lemma 1.

A(k)

isastohastimatrixthat satisesonditions(a),(b),and() ofTheorem

2

.

Proof. First,weanseethat

A(k) 1 = 1

sine

W 1 = 1

and

F(k) 1 = 0

. Itremainstoprovethat allentries inthematrix

A(k)

arenonnegative.

Wewillprovethisby onsideringeah row

i

of

A(k)

aording to theationtakenbynode

i

. Weandistinguishfourases:

1. Node

i ∈ T k

-ondition1:

|c i | ≤ |e i (k)|

a ii = w ii − 1 α w

ii × (1 − w ii ) = w ii − α > 0

sine

w ii > α

and

a ij = w ij + 1 α w

ii × w ij ≥ w ij > 0 ∀j ∈ N i

.

or

a ii = w ii + 1 α w

ii × (1 − w ii ) > α

sine

w ii > α

and

a ij = w ij − 1 α w

ii × w ij > 0 ∀j ∈ N i

sine

α < w ii < 1 − α

.

2. Node

i ∈ T k

-ondition2:

|c i | > |e i (k)|

sine

|c i | > |e i (k)|

,weanalwaysndpositive

γ < 1

,suhthat

a ii = w ii − 1 γα w

ii × (1 − w ii ) = w ii − γα > 0

sine

w ii > α

and

a ij = w ij + 1− γα w

ii × w ij ≥ w ij > 0 ∀j ∈ N i

.

or

a ii = w ii + (1− γα w ii ) × (1 − w ii ) > α

sine

w ii > α

and

a ij = w ij − 1 γα w

ii × w ij > (1 − α α )w ij > 0 ∀j ∈ N i

.

3. Node

i ∈ S k

:

then

a ii = w ii + (1 − w ii ) = 1

and

a ij = 0 ∀j 6= i

.

(17)

4. Node

i ∈ B k

:

then

a ii ≥ w ii > 0

and

a ij ∈ {w ij , 0} ∀j 6= i

.

Therefore,

A(k)

isstohastiateveryiteration

k

.

Denition1. Twomatries,AandB,aresaidtobeequivalentwithrespettoavetor

v

ifand onlyif

A v = B v

.

Notiethat

A(k)

satisesonditions(a),(b), and()of Theorem

2

,but possiblynottheut

balaneondition(d)beausefor anode

i ∈ T k

that transmits,

a ij (k) > 0 ∀ j ∈ N i

, butitan

bethat

∃j ∈ N i

suh that

a ji = 0

if

j

was silentatthat iteration(

j ∈ S k

). However,thenext

theoremshowsthatthereisamatrix

B(k)

equivalentto

A(k)

withrespetto

x (k)

thatsatises

alltheonditions.

Lemma 2. For all

k

, there exists amatrix

B(k)

equivalent to

A(k)

with respet to

x (k)

suh

that

B(k)

satisesthe onditions(a),(b),(),and(d)of Theorem

2

.

Proof. Let

m(k) = argmin j ∈ N i x j (k)

and

M (k) = argmax j ∈ N i x j (k)

,wewillprooftheexistene

of

B(k)

bymodifying

A(k)

insuhawaytopreservetheproperties(a)to()andtoaddthenew

property(d). For simpliity ofnotationwewill drop

k

from thevariablessine thisis truefor

every

k

. Noterstthat theondition(d)isnotsatisedin

A

onlyfortherowswhere

i

belongs

to

T k

, let

a i

denotethe row

i

of

A

and

b i

denotetherow

i

of

B

. Sine anynode

i

in

T k

must

pollthenodes

m

and

M

totransmitinPhase 2,thenwearesurethattheolumn

i

hasatleast

threenonzeroelements(

a ii , a mi ,

and

a M i

). Let

C i = {j | a ji > 0 , i 6= j}

, soweare surethat

C i

ontainsatleasttwo elements

m

and

M

. Theutbalaneonditionrequiresthat therowof

i

mustonlyhavepositivevalues attheindexwheretheolumnispositive. Wean writethat

a i x (k) = a ii x i (k) + X

j ∈ N i

a ij x j (k)

= a ii x i (k) + X

j ∈ C i

a ij x j (k) + X

j ∈ N i − C i

a ij x j (k)

= a ii x i (k) + X

j∈C i

a ij x j (k) + hx M (k) + f x m (k),

(28)

where

h =

P

j∈ Ni − Ci a ij (x j − x m ) x M − x m

,

f =

P

j∈ Ni − Ci a ij (x M − x j ) x M − x m

. Sine

h ≥ 0

,

f ≥ 0

and

f + h = P

j ∈ N i − C i a ij

,weandenetherowvetor

b i

tobe:

b i :=

 

 

 

 

 

 

b ij = a ij

if

j = i, b ij = a ij + f

if

j = m, b ij = a ij + h

if

j = M,

b ij = a ij

if

j ∈ C i − m − M, b ij = 0

if

j ∈ N i − C i .

(29)

Finally,

b i x (k) = a i x (k)

and itsatises theonditions (a) to (), so

∀i ∈ T k

, wereplae

a i

by

b i

andwegetthenewmatrix

B

whihisequivalentto

A

withrespetto

x (k)

.

Lemma3. Themessageredutionalgorithm(Phases1,2)satisesondition(e)ofTheorem

2

.

(18)

Proof. Wewill proveit byontradition. Suppose

lim k →∞ x (k) = x

, but

lim k →∞ F (k) x (k) 6=

0

, then there exists a node

i

suh that

lim k →∞ x i (k) = x i

and

lim k →∞ y i (k + 1) = w ii x i + P

j ∈ N i w ij x j = y i

, but

y i − x i = δ > 0

. From Algorithm 1 , we an see that the node will

enteratransmitstateinnitelyoften(beause

d i

inreases linearlywith

δ

anditwillreahthe

threshold

ǫ i

). Then, thenode

i

willupdateitsestimateaordingtotheequation

x i (k + 1) = y i (k + 1) + α

1 − w ii

(y i (k + 1) − x i (k)).

Letting

k → ∞

yields

(1 + α

1 − w ii = 0.

Thus,

δ = 0

whihisaontradition,andthealgorithmsatisesondition(e)ofTheorem2.

Thealgorithmalsoprovidesthat

|e i (k)| ≤ ǫ i (k) ∀k, i

and

ǫ i (k) < ǫ ∀i, k

,as intherstphase

thisonditionissatisedbyonstrution,andfortheseond phaseoftheiteration,nodesfrom

Phase

1

an hek forworst aseanalysis and theyonly enter into Wait stateifthey aresure

that theonditionanbesatisedinthenextphaseiteration.

Nowwearereadytostatethemain Theoreminthissetion:

Theorem 3. The nodes applying the message reduing algorithm given in pseudoode by Al-

gorithm 1 and 2, have estimates onverging to a onsensus within a margin

ǫ

from

x ave

, i.e.

lim k →∞ x (k) = x ave 1

and

|x ave − x ave | ≤ ǫ.

Proof. Thetheorem isdue to thefat that theLemmasgiven in thissubsetion show thatthe

algorithmsatisesalltheonvergeneonditions ofTheorem

2

.

5.5 Asymptoti Termination

Wehaveprovedintheprevioussetionthatthealgorithmproposedisonvergingtoaonsensus.

We will usethis to show that any node

i

an inreasetheboundarythreshold

ǫ i (k)

at ertain

times

k s , s = 0, 1, 2, ...

(i.e.

ǫ i (k s ) = ǫ i (k s −1 ) + ǫ(0)/s 2

)suhthat thesilentperiod ofthisnode

(

α i (s)

,theonseutivenumberofiterationsthatanode

i

didnotsendanymessage)isgrowing

toinnity. Thesystemequationwehadfollowingourmessage savingalgorithmisasfollows:

x (k + 1) = A(k) x (k),

(30)

whereA(k)was astohastimatrix.

LetusdeneforamatrixAtheproperoeientofergodiity

τ(A)

tostudytheonvergene

rateofthesystem(formoreinformationonproper oeientsofergodiitysee[16 ℄),

τ(A) = 1 2 max

i,j n

X

s=1

|a is − a js |.

(31)

Letalso

U p,r

bethe

r

-stepbakwardprodutofthematrixA(k):

U p,r = A(p + r)...A(p + 2)A(p + 1).

(32)

Theorem 4. Ergodiity of bakwards produts

U p,r

formedfrom agiven sequene

A(k), k ≥ 1

,

obtainsifandonlyifthereisastritlyinreasingsequeneofpositiveintegers

{k s }, s = 0, 1, 2, ...

suhthat

X

s=0

{1 − τ (U k s ,k s+1 − k s )} = ∞.

(33)

(19)

Proof. [16 ,p.155℄.

Sineoursystemisergodi(onverges)asweprovedinprevioussetion,thistheoremimplies

that foranypositiveonstant

δ < 1

wehave a stritly inreasingsequene ofpositiveintegers

{k s }, s = 0, 1, 2, ...

suhthat

τ(U k s ,k s+1 − k s ) ≤ δ.

(34)

By theinrementofthethreshold

ǫ i (k)

atinstanes

k s

,wehavethat thesilentperiod

α i (s)

ofa node

i

isthe number ofiterationsnode

i

is silent after itslast inrement at time

k s

. The

silentperiod satisesthefollowingequation:

α i (s) ≥ ǫ

s 2 ¡

W x (k s ) − x (k s ) ¢

i

,

(35)

let

α(s)

betheminimumaross allloal

α i (s)

,wehave:

α(s) ≥ ǫ

s 2 ||W x (k s ) − x (k s )|| ∞

.

(36)

Sine

W

isastohastimatrix,thenallthevaluesofthevetor

W x (k s )

belongtotheinterval

[min i x i (k s ), max i x i (k s )]

,sowehave,

||W x (k s ) − x (k s )|| ∞ ≤ max

i,j |x i (k s ) − x j (k s )|,

(37)

butfromthedenition oftheoeientofergodiitywehavethat

max i,j |x i (k s ) − x j (k s )| ≤ τ(U k s−1 ,k s − k s−1 )×

{max i,j |x i (k s − 1 ) − x j (k s − 1 )|},

(38)

andweanonlude thatthesilentperiod isgrowingexponentiallyin

s

:

α(s) ≥ ǫ

Cs 2 δ s ,

(39)

where

C

isjusta onstantdependsontheinitialstatevetor

x (0)

.

Andtheasymptotiterminationisobtained:

s lim →∞ α(s) = ∞.

(40)

Eventhoughnodesarenotawareofthesetime

k s

wheretheyhavetoinrementthethreshold,

withaninrementation

ǫ i (m)

attimes

m

,the systemisvery robustis thesense that nodesdo

nothavetobesynhronizedanderrorsin wrongtimeinrementation analsobetolerated and

donotaet theonvergeneas longas

m 2 = o(δ s )

,where

o(.)

isthesmall-ohnotation(inthe

studyofonvergene

m

wasequalto

s

). Inthesimulationsandasshowninthealgorithm1,we inremented

m

(

counter i

in thealgorithm)whenever anodeis goingto transmitat phaseone,

andtheresultsaresatisfatory.

5.6 Simulations

To simulate the asymptoti termination of the algorithm desribed above, we onsidered two

typesof graphs with

n = 50

, the Random Geometri Graphs(RGG) with onnetivity radius

r = 0.234

, and the Erdos Renyi (ER) with average degree

4

. All the graphs onsidered are

(20)

0 1000 2000 3000 4000 5000

−6

−5

−4

−3

−2

−1 0

iteration number

log(normalized error)

RGG n=50 r=0.234

0 1000 2000 3000 4000 5000

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5 0

iteration number

log(normalized error)

ER n=50 average degree=4

Figure3: Normalized erroronRGG andERgraphs.

(21)

0 1000 2000 3000 4000 5000 0

5 10 15 20 25 30 35 40 45 50

iteration number

number of nodes transmiting

RGG n=50 r=0.234

0 1000 2000 3000 4000 5000

0 5 10 15 20 25 30 35 40 45 50

iteration number

number of nodes transmitting

ER n=50 average degree=4

Figure4: Messagessentwithevery iteration.

Références

Documents relatifs

Average consensus update rules for dynamic networks were notably studied by Olshevsky and Tsitsiklis [27] – which defined the convergence time and convergence rate of an algorithm –

In order to apply the results of [8,4] in the context of approximation it is important to assess the gap between the performance of the sparsest approximation model under the

Experimental (full symbols), best simulated (open symbols) and bad simu- lated (line, see text) centre of mass average velocity of fragments as a function of the final fragment

where data specifies the data set, y the outcome variable, w the binary variable treatment indicator, x the list of covariates to be used in the matching, and M the number of

Traffic state estimation (TSE) is important in modern Intelligent Trans- portation Systems (ITS) and refers to the process of observation of traffic state variables (not

Finally, as far as we know, the analysis proposed in Nonlinear approximation does not permit (today) to clearly assess the differences between (P d ) and its heuristics (in

There exists a positive real constant C such that for any positive integer n and any deterministic and complete transition structure T of size n over a k-letter alphabet, for

To summarize, this study shows that, when dealing with large sensor networks, iterative local average decisions play an important role on the achieved global performances, namely