• Aucun résultat trouvé

Mechanical characterisation of banana fruits

N/A
N/A
Protected

Academic year: 2021

Partager "Mechanical characterisation of banana fruits"

Copied!
2
0
0

Texte intégral

(1)

Banana protocol

Fruits, vol. 63 (1) 51 Mechanical characterisation of banana fruits.

Abstract –– Introduction. This protocol aims at measuring the mechanical characteristics of

bananas, especially peel and fruit hardness, and pulp firmness; it can also allow the mechani-cal characterisation of green or ripening fruit of different pedo-climatic origins and/or varie-ties. Materials and methods. This part describes the required laboratory materials and the three steps necessary for the measurement of the mechanical characteristics of bananas.

Results. The data allow the drawing of a curve characterising the firmness of the fruit (slope),

hardness of the peel (peak) and hardness of the pulp (plateau).

France / Musa sp. / methods / fruits / measurement / firmness / maturity Caractérisation mécanique de bananes.

Résumé –– Introduction. Ce protocole vise à mesurer les caractéristiques mécaniques des

bananes, en particulier la dureté de la peau et du fruit, et la fermeté de la pulpe ; il peut per-mettre également la caractérisation mécanique du fruit au stade vert ou du fruit en cours de maturation, de différentes origines pédo-climatiques et/ou variétés. Matériel et méthodes. Cette partie présente le matériel de laboratoire nécessaire et les trois étapes indispensables pour la mesure des caractéristiques mécaniques des bananes. Résultats. Les données permet-tent de tracer une courbe caractérisant la fermeté du fruit (pente), la résistance de la peau (pic), et la dureté de la pulpe (plateau).

France / Musa sp. / méthode / fruits / mesure / maturité / fermeté

1. Introduction

Application

This protocol aims at measuring the mechanical characteristics of bananas, especially peel and fruit hardness, and pulp firmness; it can also allow the mechanical characterisation of green or ripening fruit of different origins and/or varieties.

Principle

This method was previously described by Chillet and de Lapeyre de Bellaire [1]. Meas-urements are made with a penetrometer (or texture analyser) connected to an analytical software program. The penetrometer probe is plunged at constant velocity until it punc-tures the peel and pulp. The analyser and analytical software package record the force

applied over a time course to enable the probe to plunge at constant velocity.

Key advantages

A penetrometer connected to an analytical software program makes it possible to obtain:

– a more accurate measurement of mechanical characteristics of the fruit than that given by a manual penetrometer, which can also be used to characterise fruit, but with less accurate measurement;

– a very rapid measurement.

Starting material

This protocol uses:

– freshly harvested green bananas, – ripening bananas, at different ripeness stages.

1CIRAD, UMR Qualisud, Faculdade de Farmacia, Universidade de Sao Paulo, avenida Lineu Prestes, 580, Bloco 14 05508-900 Sao Paulo – SP, Brasil

marc.chillet@cirad.fr 2CIRAD, UPR Systèmes bananes et ananas, CARBAP, BP 832, Douala, Cameroon luc.de_lapeyre@cirad.fr 3CIRAD, UMR Qualisud, Station de Neufchâteau, Sainte-Marie, 97130 Capesterre-Belle-Eau, Guadeloupe olivier.hubert@cirad.fr, didier.mbeguie-a-mbeguie@cirad.fr

Mechanical characterisation of banana fruits

Marc CHILLET1*, Luc DE LAPEYREDE BELLAIRE2, Olivier HUBERT3, Didier MBÉGUIÉ-A-MBÉGUIÉ3

* Correspondence and reprints

Fruits, 2008, vol. 63, p. 51–52 © 2008 Cirad/EDP Sciences All rights reserved

DOI: 10.1051/fruits:2007045 www.fruits-journal.org

(2)

52 Fruits, vol. 63 (1) M. Chillet et al.

Time required

About 10 min are necessary from fruit prep-aration to data reading.

Expected results

The results are variable according to the tis-sues and their development stage. For green bananas, peel hardness should range from (20 to 80) N. Fruit firmness will range from (30 to 70) N·s–1, while pulp hardness is gen-erally between (15 and 30) N. Values for these parameters will drop sharply as the bananas ripen.

2. Materials and methods

Laboratory materials

The protocol requires a penetrometer (TA-XT2) with a cylindrical metal 20-mm2 probe; a computer or a calculator; an analytical soft-ware package (X-Trad).

Measurement of the mechanical characteristics of bananas

• Step 1

Prepare fruit material:

– choose a representative hand on a bunch to analyse (the middle hand is generally selected),

– cut off one fruit from the outer rows of the hand.

• Step 2

Determine mechanical characteristics:

– set the penetrometer parameters (probe plunging velocity, maximum probe depth), – place one of the two test fruits under the penetrometer probe,

– lower the probe to within a few mm of the peel,

– begin measurement. • Step 3

Analyse the data:

– the maximum force recorded by the ana-lyser corresponds to the peel hardness (maximum force required to puncture the peel),

– the slope prior to peel rupture corre-sponds to the fruit firmness [2],

– the plateau after the peak corresponds to the pulp hardness (figure 1).

Troubleshooting

Two main problems can occur:

(a) Additional reading peaks are detected due to inaccurate positioning of the fruit under the probe.

Solution: the fruit has to be repositioned under the probe so that the probe base and the fruit peel are as parallel as possible. (b) No reading peaks are detected due to the threshold reading being undetected by the analyser because overripe bananas are tested.

Solution: the maximum banana ripeness stage that the analyser is able to detect must be determined before the test.

3. Typical results obtained

The data allow the drawing of a curve char-acterising the firmness of the fruits (slope), hardness of the peel (peak) and hardness of the pulp (plateau) (figure 1).

References

[1] Chillet M., de Lapeyre de Bellaire L. Élabora-tion de la qualité de la banane. Détermina-tion de critères de mesures, Fruits 51 (1996) 317–326.

[2] Breene W.M., Application of texture profile analysis to instrumental food texture evalua-tion, J. Texture Stud. 6 (1975) 53–82. 0 10 20 30 40 50 60 70 80 0 4 8 Force (N) Time (s) Peak Slope Plateau Figure 1. Mechanical characterisation of a banana fruit: hardness of the peel (peak), firmness of the fruit (slope), and hardness of the pulp (plateau).

Références

Documents relatifs

Figure 5.31: (a) Comparison of the experimental normalized critical times with the predicted ones; (b) Comparison of the experimental normalized critical pres- sures with the

دقتني رصانع اشقانم يسورلا عمتلمجا عاضوأ بتاكلا ةيناسنإ هتاقلاع في رثؤت و عمتلمجا في شيعت ةلعاف و ةيح.. يرصم ةرارمو هيبأ عبط نم ترذغت ةبيرغ ةيناسنإ ةيجس نع

In the present work, the hydro-mechanical behaviour of Boom clay samples from the borehole Essen-1 at a depth of 220 - 260 m and from HADES that is the underground rock

(2015) et des résultats de l'Étude nationale de la santé des populations relative aux maladies neurologiques (Bancej et al. 2015), et en se fondant sur l'Étude nationale de la

For both experiments, the stress ( for the tensile test or for the shear test) was deduced, by convention [1], from the force (F) applied to the specimen by dividing it by

Then a sensitivity analysis was performed on the set of curves obtained for each loading condition in order to determine an optimal number of experimental

• β=0 there is no heat dissipation, inelastic energy is stored in changes in microstructure only. In consequence, the energy equation can be rewritten as Eq. As a first step,

Figure 6.24 shows the evolution of modulus and hardness (of the titanium carbide sample deposited with 5 SCCM of methane) as a function of the maximum penetration depth..