• Aucun résultat trouvé

SUPERCONDUCTORS OUT OF THERMAL EQUILIBRIUM

N/A
N/A
Protected

Academic year: 2021

Partager "SUPERCONDUCTORS OUT OF THERMAL EQUILIBRIUM"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00218063

https://hal.archives-ouvertes.fr/jpa-00218063

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SUPERCONDUCTORS OUT OF THERMAL EQUILIBRIUM

A. Schmid

To cite this version:

A. Schmid. SUPERCONDUCTORS OUT OF THERMAL EQUILIBRIUM. Journal de Physique

Colloques, 1978, 39 (C6), pp.C6-1360-C6-1367. �10.1051/jphyscol:19786572�. �jpa-00218063�

(2)

JOURNAL DE PHYSIQUE

Colloq~e C6, supplkment au no 8, Tome 39, aotit 1978, page ~ 6 - 1 3 6 0

SUPERCONDUCTORS OUT O F THERMAL E Q U I L I B R I U M

A. Schmid

I n s t i t u t fiir Theorie der Kondensierten Materie, University o f KarEsruhe, F. R. G.

R6sumd.- 1 . Les v a r i a b l e s fondamentales d ' u n d t a t supraconducteur s o n t l e p a r a m s t r e d ' o r d r e e t l a f o n c t i o n d e d i s t r i b u t i o n d e q u a s i - p a r t i c u l e s . En g d n d r a l , c e s v a r i a b l e s d o i v e n t S t r e ddtermin6es c o m e s o l u t i o n s d e l ' d q u a t i o n BCS de "gap" e t d e l ' b q u a t i o n de Boltzmann. 2. Des p r o c e s s u s d e r e l a - x a t i o n QlCmentaires s o n t e x p l i q u d s e t i l l u s t r d s e n d i s c u t a n t d e s e x p 6 r i e n c e s c r u c i a l e s avec d e s su- p r a c o n d u c t e u r s , a u s s i b i e n q u ' a v e c l V 3 H e s u p e r f l u i d e . 3 . MGme dans d e s c a s oii d e s d t a t s 21 quasi-par- c i t u l e s s o n t ma1 d d f i n i s l ' d q u a t i o n de Boltzmann p e u t i t r e c o n s t r u i t e , a v e c , cependant, une s i g n i - f i c a t i o n d i f f 6 r e n t e d e s q u a s i - p a r t i c u l e s . On montre comment l ' d q u a t i o n d e Ginzburg-Landau ddpendant du temps e s t a f f e c t d e p a r l a f o n c t i o n d e d i s t r i b u t i o n d e s q u a s i - p a r t i c u l e s . 4. On e x p l i q u e l e s pro- p r i d t 6 s d e s c e n t r e s d e g l i s s e m e n t d e p h a s e . On p r d s e n t e une t h e o r i e ddmontrant q u ' u n f i l a m e n t porteur d e c o u r a n t p e u t s u b i r d e s t r a n s i t i o n s d e phase d i s s i p a t i v e s , p l u s p a r t i c u l i s r e m e n t dans un S t a t os- c i l l a t o i r e s t a b l e . 5. La s u p r a c o n d u c t i v i t d s t i m u l g e p a r r a d i a t i o n e s t examinde e t l ' o n a j o u t e r a une d i s c u s s i o n s u r l a ~ o s s i b i l i t d de t r a n s i t i o n s d e phase d i s s i p a t i v e s .

A b s t r a c t . - 1 . The r e l e v a n t v a r i a b l e s of a s u p e r c o n d u c t i n g s t a t e a r e t h e o r d e r parameter and t h e qua- s i p a r t i c l e d i s t r i b u t i o n f u n c t i o n . I n g e n e r a l , t h e s e v a r i a b l e s have t o b e determined a s s o l u t i o n s of t h e BCS gap e q u a t i o n and a Boltzmann e q u a t i o n . 2 . B a s i c r e l a x a t i o n p r o c e s s e s a r e e x p l a i n e d and il- l u s t r a t e d by d i s c u s s i n g b a s i c e x p e r i m e n t s w i t h s u p e r c o n d u c t o r s a s w e l l a s w i t h s u p e r f l u i d 3 ~ e . 3 . Even i n c a s e s where q u a s i p a r t i c l e s t a t e s a r e i l l - d e f i n e d , a Boltzmann e q u a t i o n can b e c o n s t r u c t e d , however, w i t h a d i f f e r e n t meaning of t h e q u a s i p a r t i c l e s . I t i s shown how t h e time dependentGinzburg- Landau e q u a t i o n i s a f f e c t e d by t h e q u a s i p a r t i c l e d i s t r i b u t i o n f u n c t i o n . 4. The p r o p e r t i e s of phase s l i p c e n t e r s a r e e x p l a i n e d phenomenologically. A t h e o r y i s p r e s e n t e d which shows t h a t a c u r r e n t - c a r r y i n g f i l a m e n t may undergo d i s s i p a t i v e phase t r a n s i t i o n s , p a r t i c u l a r l y i n t o a s t a b l e o s c i l l a t o r y state. 5 . The b a s i c f a c t s of r a d i a t i o n s t i m u l a t e d s u p e r c o n d u c t i v i t y a r e examined and a d i s c u s s i o n i s added on t h e p o s s i b i l i t y of d i s s i p a t i v e phase t r a n s i t i o n .

It might p e r h a p s b e n e c e s s a r y t o e x p l a i n why some p e o p l e

-

i n c l u d i n g myself

-

t h i n k t h a t i t i s a n i n t e r e s t i n g s u b j e c t t o s t u d y t h e b e h a v i o u r of super- c o n d u c t o r s o u t of t h e r m a l e q u i l i b r i u m . I t i s c e r t a i n - l y t r u e t h a t , s i n c e t h e d i s c o v e r y of t h e t h e o r y of s u p e r c o n d u c t i v i t y twenty y e a r s ago, t h e r e have been so many i n v e s t i g a t i o n s on t h e r e s p o n s e of a super- conductor t o p e r t u r b a t i o n s which means n o t h i n g more t h a n i n v e s t i g a t i o n s on i t s b e h a v i o u r when d r i v e n out of thermal e q u i l i b r i u m . I s h a l l mention o n l y a few t h i n g s s u c h a s e l e c t r o m a g n e t i c r e s p o n s e , a t t e n u a t i o n of u l t r a s o u n d and n u c l e a r s p i n r e l a x a t i o n . You may remember t h a t t h e q u a n t i t a t i v e e x p l a n a t i o n of t h e s e phenomena had been a major s u c c e s s a t t h e b e g i n n i n g of t h e epoch of t h e BCS t h e o r y . A s h o r t t i m e l a t e r , a g r e a t i n t e r e s t i n t h e Ginzburg-Landau t h e o r y a r o s e , s i n c e t h i s t h e o r y was a b l e t o e x p l a i n , f o r i n s t a n c e , t h e r a t h e r i n v o l v e d magnetic s t r u c t u r e of supercon- d u c t o r s . ~ £ t h e second t y p e . At t h a t t i m e , Gorkov was a b l e t o show t h a t t h e Ginzburg-Landau e q u a t i o n s were a consequence of t h e BCS t h e o r y . Almost every- one seemed t o be convinced t h e n , t h a t t h e t h e o r y of s u p e r c o n d u c t i v i t y could b e e x p r e s s e d i n r e l a t i o n s i n v o l v i n g o n l y t h e o r d e r p a r a m e t e r .

The r a t h e r l a r g e a c t i v i t y of r e s e a r c h / I / i n

t h e f i e l d of what i s nowadays c a l l e d "nonequilibrium s u p e r c o n d u c t i v i t y " h a s shown t h a t t h i s c o n v i c t i o n h a s been premature.

1 . BCS GAP EQUATION AND BOLTZMANN EQUATION.- An im-

p o r t a n t l e s s o n t h a t should b e l e a r n t from t h e r e - s u l t s of t h e c u r r e n t r e s e a r c h i s , t h a t t h e BCS theo- r y

-

and I wish t o i n c l u d e under t h i s name a l l t h e subsequent r e f i n e m e n t s

-

p r o v i d e s u s w i t h t h e p r o p e r t o o l f o r t h e d e s c r i p t i o n of t h e s u p e r c o n d u c t i n g s t a - t e even i f i t i s f a r away from thermal e q u i l i b r i u m . There i s a s e t of r e l e v a n t v a r i a b l e s , which i n c l u d e s t h e o r d e r parameter (wave f u n c t i o n of t h e Cooper p a i r s a l i a s energy gap) on t h e one s i d e and t h e q u a s i p a r t i c l e s and t h e i r d i s t r i b u t i o n f u n c t i o n n on

P t h e o t h e r . There i s a c o n n e c t i o n between b o t h t y p e s of v a r i a b l e s which i s t h e BCS gap e q u a t i o n (A =

1 ~ 1 )

It i s i m p o r t a n t now t o r e a l i z e t h a t t h e r a t e 1 / . r E , a t which t h e q u a s i p a r t i c l e s approach t h e r m a l e q u i I i - brium w i t h r e s p e c t t o e n e r g y , i s r a t h e r slow a s com- pared w i t h t h e gap f r e q u e n c y

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19786572

(3)

(One might s a y , t o some e x t e n t , t h a t t h i s i n e q u a l i t y j u s t means t h a t t h e BCS t h e o r y i s a q u a n t i t a t i v e the- o r y f o r superconductors though s t r i c t l y s p e a k i n g , i t i s t h e i n e q u a l i t y k T << EF). We observe t h a t a t

B c

t h e t r a n s i t i o n temperature t h e r e i s t h e following o r d e r of magnitudes :

Metal A 1 Sn Pb

P l e a s e n o t e t h a t t h e r e l a x a t i o n r a t e 1/.rE ( T ~ : i n e - l a s t i c c o l l i s i o n time) depends on t h e gap a s w e l l a s on t h e energy and temperature i n t h e s e n s e t h a t t h e l a r g e r t h e former, and t h e s m a l l e r t h e l a t t e r quan- t i t i e s , t h e s m a l l e r t h e r e l a x a t i o n r a t e . As a r u l e electron-phonon c o l l i s i o n s c o n t r i b u t e e x c l u s i v e l y t o t h i s r e l a x a t i o n process.

I n thermal e q u i l i b r i u m , t h e q u a s i p a r t i c l e d i s t r i b u t i o n f u n c t i o n n i s equal t o a u n i v e r s a l

P

f u n c t i o n , namely t h e Fermi f u n c t i o n

no(E) = [ e x p ( ~ / k B ~ )

+ g-l.

I n a l l o t h e r c a s e s , t h e d i s t r i b u t i o n f u n c t i o n has t o be found by s o l v i n g a Boltzmann e q u a t i o n of t h e form

where ($,A) a r e t h e e l e c t r o m a g n e t i c p o t e n t i a l s . Sin- +

1 .

ce - fi0 = pS may be c a l l e d t h e e l e c t r o c h e m i c a l po- 2

t e n t i a l (per article) of t h e p a i r s , @ h a s t h e mea- n i n g o f a p a i r chemical p o t e n t i a l .

Concluding t h e d i s c u s s i o n of t h e f i r s t p a r t of t h e t h e o r y , I should mention t h a t one h a s t o s o l - ve, i n a d d i t i o n t o t h e BCS gap e q u a t i o n and t h e Boltzmann e q u a t i o n , a l s o Maxwell's e q u a t i o n , which, i n p a r t i c u l a r , a l s o i m p l i e s charge c o n s e r v a t i o n .

2. TWO BASIC RELAXATION PROCESSES.- For i l l u s t r a t i o n , l e t me f i r s t mention t h e i n v e s t i g a t i o n s of C l a r k e 1 3 1 and Tinkham 141 (1972) on a phenomenon f r e q u e n t l y r e f e r r e d t o a s t h e appearance of branch imbalance.

I n t h e experiment (Clarke) a normal c u r r e n t i s i n - j e c t e d ( v i a a t u n n e l i n g j u n c t i o n ) i n t o a supercon- d u c t o r and charge b a l a n c e i s maintained by a super- c u r r e n t outflow. The f i n i t e r a t e of conversion of normal c u r r e n t JN i n t o s u p e r c u r r e n t JS must produce a f i n i t e d i f f e r e n c e i n t h e e l e c t r o c h e m i c a l poten- t i a l s pN and pS of t h e normal and of t h e s u p e r f l u i d components, ( i . e . Cooper p a i r s and q u a s i p a r t i c l e s ) r e s p e c t i v e l y . The measured d i f f e r e n c e i s p r o p o r t i o -

aE a n a E a n

I

P n a l t o a r e l a x a t i o n time T d e f i n e d a s f o l l o w s

"

a t "p

+[$$-ss

+ I { ~ > = P .

Q

Js

1

The e x p r e s s i o n i n t h e s q u a r e b r a c k e t i s of t h e form ' p - ' ~ = ~ ' 2 e N ( 0 ) ' T ~

'

of a Poisson b r a c k e t and r e p r e s e n t s t h e d r i f t of t h e

and t h i s r e l a x a t i o n time i s found t o a g r e e w e l l with q u a s i p a r t i c l e i n ( r ,p) space. The c o l l i s i o n i n t e g r a l

Tinkham's t h e o r e t i c a l r e s u l t I{n

1

i n c l u d e s i n e l a s t i c c o l l i s i o n s w i t h phonons a s

P

w e l l a s e l a s t i c s c a t t e r i n g a t i m p u r i t i e s . I t can b e A (0)

T~ =

h ( ~ ) .

T ~ ( T ~ )

.

o b t a i n e d by c a l c u l a t i n g t r a n s i t i o n p r o b a b i l i t i e s according t o t h e Golden Rule. P a r t i c l e i n j e c t i o n by

This means, i n p a r t i c u l a r , t h a t T~ d i v e r g e s means of a t u n n e l c o n t a c t and quantum t r a n s i t i o n s

(Tc- T ) - ~ / ~ a t t h e t r a n s i t i o n temperature ( c r i t i c a l induced by r a d i a t i o n g i v e r i s e t o a nonvanishing

slowing down).

source term P.

The d e f i n i t i o n of pS g i v e n p r e v i o u s l y implies A most important p o i n t i s an adequate parame-

t h a t t h e r e is a s t e a d y s u p e r c u r r e n t only between re- t r i z a t i o n of t h e q u a s i p a r t i c l e e n e r g i e s E I t i s

P ' gions having t h e same

is.

I n nonthermal s t a t e s , t h e n e c e s s a r y , f o r i n s t a n c e , t h a t t h e f r e e p a r t i c l e

e l e c t r o c h e m i c a l p o t e n t i a l pN of t h e q u a s i p a r t i c l e s e n e r g i e s E be reckoned from the energy l e v e l o f t h e

P can be d e f i n e d by means of a d i f f u s i v e e q u i l i b r i u m .

Cooper p a i r s which may be d i f f e r e n t from t h e (un-

However. one h a s t o k e e ~ i n mind t h a t i n c o n t r a s t t o p e r t u r b e d ) Fermi l e v e l EF. Hence (Aronov, Gurevich

thermal e q u i l i b r i u m , t h e r e s u l t depends on t h e na- /2/ 1974)

t u r e of t h e d i f f u s i v e process.

2 The d i s c u s s i o n of conversion o f f e r s an op-

E = J E 2 + &,2 ; E

= L -

P P Zm ( E F - +)

.

p o r t u n i t y t o b r i d g e a gap between s u p e r c o n d u c t i v i t y and s u p e r f l u i d i t y 151. I remind you of Khalatnikov's The p a i r energy

+

i s r e l a t e d t o t h e phase O of t h e

two f l u i d hydrodynamics where f o u r c o e f f i c i e n t s of o r d e r parameter

4

= A exp(-ia) a s f o l l o w s :

v i s c o s i t y appear t o account f o r d i s s i p a t i o n . There

(4)

C6-1362

JOURNAL D E PHYSIQUE

is one, called c3, which shows up in a relation of the form

Obviously, we have

In principle, -rQ should control the absorption of the fourth sound in 3 ~ e . There is not yet agreement between experiment and theory.

The finite rate of conversion is responsible for the line width Aw of the nuclear magnetic reso- nance in superf luid 3 ~ e . In the longitudinal

NMR

of 3 ~ e - A, for instance, one finds

TQis result compares favourably with expe- rimental results

;

it is difficult, however, to prove experimentally the divergence

As a second example of a relaxation process, I wish to mention the condensation or the relaxation of the sagnitude of the order parameter. One finds that a deviation from equilibrium decays in time as

-t/TR 6A

a

e

9

where

for ideal conditions near Tc. One should note, howe- ver, that these relaxation times suffer different modifications if pair-breaking, insufficient energy transfer to phonons, etc. have to be taken into ac- count.

Peter and Meissner

/ 6 /

(1973) have investi- gated this relaxation process by measuring the high frequency impedance of a superconductor. In their experiments, the pair breaking effect of a supercur- rent was utilized to manipulate the magnitude of the order parameter. Recently, Schuller and Gray /7/

(1977) observed this relaxation process after having driven the order parameter out of thermal equili- brium by a short laser pulse. It was found in both cases that rR diverges

a

( T c T)-~'~ in the vicinity of the transition temperature.

Due to the anisotropy of the order parameter in 3 ~ e - A, local changes in its magnitude occur at

a

given direction, if the orbital vector +

9,

changes

in time.

On account of the finite relaxation time

T ~ ,

a vis-

cous drag accompanies this orbital motion

:

where the right side is the torque on

+ 9,

represented

by the derivative of the free energy. Specifically,

a result which one has been able to confirm by ex- periments

/8/.

Summarizing the discussion of the collective relaxation processes, I recall that there are two distinct modes

:

(i) Conversion of normal into supercurrent (and vice versa) which is accompanied by the appearance of differences in the two electro- chemical potentials and by density fluctuations.

From a formal point of view, this mode is characte- rized by changes of the phase of the complex order parameter and by the fact, that the non-equilibrium increment 6n of the quasiparticle distribution

P

function changes sign under a particle-hole trans- formation (branch imbalance). (ii) A mode where the magnitude of the order parameter changes and which

I wish to call condensation. It is accompanied with local changes in the superfluid and in the energy density. In this mode, the non-equilibrium increment 6n is invariant under a particle-hole transforma-

P

tion (e.g. recombination and generation of quasi- particles).

3. TIME DEPENDENT GINZBURG-LANDAU EQUATION.- The theory presented above may provide us with a direct understanding of the two basic processes. From this theory we may learn (i) that the properties of the qhasiparticles depend, through the BCS coherence factors, strongly on the energy

;

and hence (ii) that the inelastic collisions, which change the energy of the quasiparticles, play an important role in the Boltzmann equation.

There are, however, limitations to a quan- titative application of this theory to superconduc- tors. We encounter frequently, materials of short mean free path (impurity collisions)

II <<

c0 (dirty

limit). Furthermore, the pair-braking energy rwhich is caused by magnetic fields, spacial gradients of

4, spin flip scattering, etc., is not always small as compared with A. If this is the case, there no longer exists a definite relation between momentum and energy of the quasiparticles and the quasipar- ticle picture in its naive sense breaks down.

Even if this were true, Prange and Kadanoff

(5)

/ 9 / (1964) have shown i n t h e c a s e of a normal m e t a l , t h a t i t i s p o s s i b l e t o c o n s t r u c t a Boltzmann equa- t i o n . I n terms of t h e Green f u n c t i o n s t h e s t a n d a r d c o n s t r u c t i o n of a Boltzmann e q u a t i o n r e l i e s on t h e i d e n t i f i c a t i o n

(which r e q u i r e s w e l l d e f i n e d q u a s i p a r t i c l e s ) whereas a l t e r n a t i v e l y , t h e d i s t r i b u t i o n f u n c t i o n f E ,

(5

:

rP d i r e c t i o n of t h e momentum), s p e c i f i c f o r d e g e n e r a t e Fermi systems, i s d e f i n e d a s f o l l o w s :

Such a program can a l s o be c a r r i e d through f o r a superconductor ( E l i a s h b e r g / l o / 1971 ; Schmid and SchZn /11/ 1975 ; Larkin and Ovchinnikov 1121 1977).

However, one should be aware of a d i f f e r e n c e i n mea- n i n g s i n t h e d i s t r i b u t i o n f u n c t i o n s n+ and f

P E,F*

Whereas t h e former ( e x c i t a t i o n p i c t u r e ) r e f e r s t o q u a s i p a r t i c l e s having o n l y p o s i t i v e e n e r g i e s ( i n - deed, E > A), t h e l a t t e r one ( p a r t i c l e p i c t u r e )

P

-

d e s c r i b e s q u a s i p a r t i c l e s having n e g a t i v e and posi- t i v e e n e r g i e s . The p a r t i c l e p i c t u r e i s more o r l e s s e q u i v a l e n t t o t h e semiconductor model, t h e most con- v e n i e n t model t o d e s c r i b e t u n n e l i n g between super-

conductors.

There e x i s t s a formal r e l a t i o n s h i p between t h e in- crements of t h e d i s t r i b u t i o n f u n c t i o n s :

f o r conversion ;

wgere E =

I E I .

Note t h a t i n t h e c o n v e r s i o n mode, P

p a r t i c l e s a r e added symmetrically t o t h e up and down band, whereas, i n t h e condensation mode, a p a r t i c l e - h o l e p a i r i s c r e a t e d o r s h i f t e d symmetri- c a l l y . The f a c t o r E /E d e r i v e s i t s e x i s t e n c e from

P P t h e BCS coherence f a c t o r s .

It i s n o t n e c e s s a r y h e r e t o go i n t o t h e de- t a i l s of t h e p a r t i c u l a r s t r u c t u r e of t h e Boltzmann e q u a t i o n f o r f i n a superconductor. It seems

E,G

t h a t i n most c a s e s a form l i n e a r i n 6f i s s a t i s - E , h

f a c t o r y where o n l y some non-linear terms i n t h e electron-phonon c o l l i s i o n i n t e g r a l a r e n e g l e c t e d .

The whole problem i s s t i l l h i g h l y non-linear i n t h e o r d e r parameter. Some s i m p l i f i c a t i o n i n t h e s t r u c t u r e of t h e e q u a t i o n s can be obtained i f one r e s t r i c t s o n e s e l f t o a small temperature r e g i o n c l o -

s e t o t h e t r a n s i t i o n temperature where A << kBTc

.

I n t h i s c a s e , t h e BCS-gap e q u a t i o n ( i n c l u d i n g spa- t i a l and temporal d e r i v a t i v e s ) i s e q u i v a l e n t t o t h e time dependent Ginzburg-Landau e q u a t i o n

T - T

2 i e

"

+ 6(012 (V

-

A ) ~

-

b 1 ~ 1 ~ 1 A ,

-

where b = 75(3)/81r~k;~:. One r e c o g n i z e s t h a t t h e Ginzburg-Landau e q u a t i o n f o r thermal e q u i l i b r i u m amounts t o p u t t i n g t h e r . h . s . e q u a l t o z e r o . Save f o r t h e appearance of t h e unknown q u a n t i t y X, t h i s e q u a t i o n i s r a t h e r of a s t a n d a r d phenomenological type which d e s c r i b e s a p u r e l y r e l a x a t i o n a l motion of t h e o r d e r parameter. R e c e n t l y , such e q u a t i o n s have o f t e n been d i s c u s s e d i n connection w i t h t h e c r i t i c a l dynamics a t a phase t r a n s i t i o n .

The complex valued q u a n t i t y X has played a r a t h e r m y s t e r i o u s r o l e i n t h e p a s t . Gorkov and E l i a s h b e r g

1131

(1968) have shown t h a t i t d e r i v e s from v e r t e x c o r r e c t i o n s ( i n t h e language of t h e Green f u n c t i o n technique) and t h e y c a l l e d X t h e anomalous c o n t r i b u t i o n . However, a mystery e x i s t s only i f one f o r g e t s t h i s one l e s s o n of t h e BCS-the- o r y , namely : t h a t t h e b a s i c v a r i a b l e s of a super- conductor a r e n o t o n l y t h e o r d e r parameter b u t a l s o t h e q u a s i p a r t i c l e d i s t r i b u t i o n f u n c t i o n . Indeed, X i s a l i n e a r f u n c t i o n a l of t h e increment 6f of

E , h t h e d i s t r i b u t i o n f u n c t i o n

where 6fE i s t h e angular average. One can show t h a t t h e r a t h e r opaque e q u a t i o n s f o r t h e v e r t e x c o r r e c - t i o n s a r e e q u i v a l e n t t o (some s p e c i a l i z e d form o f ) t h e Boltzmann e q u a t i o n .

I do n o t wish t o comment on X v e r y much i n d e t a i l . However, i t i s n o t d i f f i c u l t t o understand t h a t Rex corresponds t o t h e e x t r a term ( s a v e f o r a f a c t o r A) i n t h e BCS-gap e q u a t i o n which r e s u l t s from t h e non-thermalincrement 6n i n t h e d i s t r i b u - t i o n f u n c t i o n . Hence, P

where N i s t h e BCS d e n s i t y of s t a t e s . A s f a r a s 1

ImX i s concerned, one may perhaps keep i n mind t h a t

(6)

JOURNAL DE PHYSIQUE

i t must have t r a n s f o r m a t i o n p r o p e r t i e s such t h a t t h e J a c k e l 1161 (1977) a l o n g a f i l a m e n t i n t h e d i s s i p a - time dependent Ginzburg-Landau e q u a t i o n i s gauge co-

v a r i a n t . Furthermore, we n o t e t h a t ImX i s a s s o c i a - t e d w i t h t h e conversion mode, whereas Rex i s s p e c i - f i c f o r t h e condensation mode. We w i l l s e e l a t e r , t h a t t h e appearance of t h e q u a n t i t y X h a s d r a s t i c consequences on t h e time dependent Ginzburg-Landau e q u a t i o n . The r a t h e r small i n e l a s t i c r e l a x a t i o n r a t e

I / T a l l o w s an e x c e s s i v e accumulation of non-thermal E

q u a s i p a r t i c l e s . Furthermore, t h e s t r o n g dependenceof t h e i r p r o p e r t i e s on energy (expressed here by t h e f u n c t i o n L(E)) a m p l i f i e s d i s t o r t i o n s i n t h e shape of t h e d i s t r i b u t i o n f u n c t i o n i n r e g a r d t o i t s in- f luence on X.

I n g e n e r a l , i t i s extremely d i f f i c u l t t o f i n d adequate s o l u t i o n s 6f of t h e Boltzmann e q u a t i o n ,

E , B

which i s from a formal p o i n t of view, an i n t e g r o - d i f f e r e n t i a l e q u a t i o n w i t h c o e f f i c i e n t s which depend on t h e v a r i a b l e s . N e v e r t h e l e s s , t h e r e s t r i c t i o n t o t h e c a s e A << kkTc i s a l s o h e l p f u l i n s o l v i n g t h e Boltzmann equation. Then t h e q u a s i p a r t i c l e r e l a x a - t i o n time rE i s f a i r l y independent of t h e energy i n t h e range of i n t e r e s t and c o n s t i t u t e s t h u s , a cha- r a c t e r i s t i c time of t h e Boltzmann e q u a t i o n . I t f o l - lows t h a t , t h e r e i s a l s o a c h a r a c t e r i s t i c l e n g t h A (Pippard e t a l . 1141 1971) d e f i n e d by

A = (DT,)'/~

,

where D =

-

1 v R i s t h e d i f f u s i o n c o n s t a n t . We c a l l

3 F

A t h e i n e l a s t i c d i f f u s i o n l e n g t h which c o n t r o l s t h e s p a t i a l changes of t h e energy d i s t r i b u t i o n of t h e q u a s i p a r t i c l e s .

4. PHASE SLIP CENTER.- L e t me f i r s t r e c a l l t h e ex- p e r i m e n t a l f a c t t h a t a superconducting f i l a m e n t c a r r y i n g s u f f i c i e n t c u r r e n t jumps i n t o a d i s s i p a t i - v e s t a t e d i s c o n t i n u o u s l y . This behaviour i s r e f l e c - t e d i n t h e c u r r e n t - v o l t a g e c h a r a c t e r i s t i c by t h e appearance of a v o l t a g e s t e p of a h e i g h t c o n s i d e r a - b l y l e s s t h a n what one would expect i f t h e f i l a m e n t would undergo a complete t r a n s i t i o n t o t h e normal s t a t e . Now, a superconductor cannot s u s t a i n a v o l - t a g e d i f f e r e n c e and m a i n t a i n phase coherence f o r any a p p r e c i a b l e amount of time. Consequently, Skocpol e t a1. ./I51 (1974) explained t h i s d i s s i p a t i v e s t a t e by t h e appearance of a l o c a l i z e d phase s l i p c e n t e r where t h e phase 0 of t h e o r d e r parameter s u f f e r s d i s c o n t i n u o u s changes such t h a t t h e time averaged p a i r p o t e n t i a l

Fs

jumps by a s t e p i n h e i g h t :

-

1 - 7

pS =

7

Z.0 = eV.

Recent measurements of

<

and

KN

by Dolan and

-

t i v e s t a t e c l e a r l y show t h a t pS i s c o n s t a n t e x c e p t a t t h e p o i n t where t h e phase s l i p t a k e s p l a c e . A s f a r a s t h e space v a r i a t i o n of

- vN

i s concerned, one should keep i n mind t h a t conversion of normal and s u p e r c u r r e n t s i s t h e r e l e v a n t c o n t r o l mechanism.

T h e r e f o r e , one e x p e c t s a c h a r a c t e r i s t i c l e n g t h

which i s a l s o b e i n g observed, indeed.

Though t h e g e n e r a l p i c t u r e of a phase s l i p c e n t e r i s i n t u i t i v e l y c l e a r , i t i s d e s i r a b l e t o have a b e t t e r understanding and t o know under which c i r - cumstances i t may be a c t i v a t e d . It i s my impression t h a t i n t h i s r e s p e c t t h e t h e o r e t i c a l i n v e s t i g a t i o n s of Kramer and B a r a t o f f 1171 (1977) and of Kramer and Watts-Tobin 1181 (1978) a r e most important. They

showed t h a t i n t h e l i m i t i n g c a s e

(which one may o b t a i n under r e a l i s t i c c o n d i t i o n s i f M/kgTc~E

2

i t i s p o s s i b l e t o e l i m i n a t e 6 f f r o m t h e system of e q u a t i o n s w i t h t h e r e s u l t t h a t t h e time dependent Ginzburg-Landau e q u a t i o n appears i n t h e f ~ r m

One may convince o n e s e l f t h a t t h e simple d i f f u s i v e time dependent Ginzburg-Landau e q u a t i o n

X + - ( i r e / 4 k T ) $ i s o b t a i n e d i f T ~ A / M << 1.

B c

This e q u a t i o n ( t o g e t h e r w i t h t h e c o n t i n u i t y e q u a t i o n l o r t h e c u r r e n t ) does have a r i c h v a r i e t y of s o l u t i o n s f o r a c u r r e n t c a r r y i n g f i l a m e n t . I t i s known t h a t t h e normal s t a t e i s l o c a l l y s t a b l e ( i . e . s t a b l e a g a i n s t i n f i n i t e s i m a l f l u c t u a t i o n s ) i f t h e cur- r e n t J > O . The same i s t r u e f o r t h e superconducting s t a t e provided t h a t J < J m a x , where J i s t h e maxi-

max

ma1 c u r r e n t i n t h e sense of Ginzburg and Landau.

Though r e l a t i v e l y s t a b l e , a t l e a s t one of t h e s e s t a - t e s i s g l o b a l l y u n s t a b l e ( i . e . u n s t a b l e a g a i n s t f i n i - t e f l u c t u a t i o n s )

.

I f T ~ A / K = 0 (more p r e c i s e l y :

%AIM

< 5.5) t h e r e i s , a s Likhareff 1191 ( 1 9 7 4 ) h a s shown,

-

even t h e p o s s i b i l i t y of a d i s s i p a t i v e f i r s t o r d e r phase t r a n s i t i o n a t J = J k <Jmax. Although t h e mea'ning of a f r e e energy i s n o t obvious i n non-equilibrium, s t a t e s , we may summarize t h e r e s u l t s on t h e s t a b i l i t y of t h e v a r i o u s s t a t e s by a f r e e energy diagram i n analogy w i t h t h e e q u i l i b r i u m t h e o r y a s follows.

(7)

Fig. 1 : The gap a s a f u n c t i o n of d i r e c t i o n (Amcose) r e l a t i v e t o t h e o r b i t a l v e c t o r

% .

Shown a r e two

s u c c e s s i v e c o n f i g u r a t i o n s a s a r e s u l t of t h e o r b i t a l motion

F i g . 4 : F r e e energy analogue r e p r e s e n t i n g t h e va- r i o u s degrees of s t a b i l i t y of c u r r e n t c a r r y i n g s t a - t e s of a f i l a m e n t . F u l l l i n e : t h e normal s t a t e i s g l o b a l l y s t a b l e . Dash-dotted l i n e : c o e x i s t e n c e of normal and superconducting s t a t e . Dotted l i n e s : l i m i t of l o c a l s t a b i l i t y of t h e normal r e s p e c t i v e superconducting s t a t e

A

IAl2

E,v; 0 ( i ) (ii 1

0 PN

Fig. 2 : Change i n t h e q u a s i p a r t i c l e d i s t r i b u t i o n

f u n c t i o n accompanying ( i ) conversion ; ( i i ) conden- ~ i5 ~: Limit cycle . of t h e square of t h e pa-

s a t i o n . rameter

161

v e r s u s e l e c t r o c h e m i c a l p o t e n t i a l FI of

t h e normal component a t t h e c e n t e r of t h e phase s l i p N

Fig. 3 : Excited s t a t e s i n ( i ) p a r t i c l e p i c t u r e ; ( i i ) e x c i t a t i o n p i c t u r e

Fig. 6 : Graphical c o n s t r u c t i o n of t h e s o l u t i o n s of t h e Ginzburg-Landau e q u a t i o n f o r a r a d i a t i o n stimu- l a t e d superconductor

(8)

JOURNAL DE PHYSIQUE

Accordingly, we e x p e c t a f i r s t o r d e r phase t r a n s i t i o n a t J = J k '

Most i n t e r e s t i n g , however, i s t h e appearance of a f u r t h e r s t a b l e s t a t e (not contained i n t h e s i m - p l e diagram above) which i s o s c i l l a t o r y and which resembles a t l e a s t q u a l i t a t i v e l y , an a c t i v a t e d phase s l i p c e n t e r . I n p a r t i c u l a r , i f .rEA/H

2

5.5, t h i s o s c i l l a t o r y s t a t e i s t h e only one which i s g l o b a l l y s t a b l e i n a range of c u r r e n t s below Jmax. Thus, a c u r r e n t c a r r y i n g superconducting f i l a m e n t may jump i n t o a d i s s i p a t i v e s t a t e of o s c i l l a t o r y n a t u r e which i s s t a b l e . Usually, one r e f e r s t o such a p r o c e s s a s a t r a n s i t i o n t o a l i m i t c y c l e .

The t h e o r e t i c a l p r e d i c t i o n t h a t a t r a n s i t i o n i n t o t h e normal s t a t e and/or an a c t i v a t i o n of a pha- s e s l i p c e n t e r may occur a t c u r r e n t s below t h e ma- ximal c u r r e n t , seems t o me of c o n s i d e r a b l e i n t e r e s t . There a r i s e s t h e n e x t q u e s t i o n on t h e n a t u r e of f l u c - t u a t i o n s such a s t o a c t i v a t e a c e n t e r .

5. RADIATION STIMULATED SUPERCONDUCTIVITY.- It i s w e l l known t h a t t h e r m a l l y e x c i t e d q u a s i p a r t i c l e s

s u p p r e s s s u p e r c o n d u c t i v i t y s i n c e they r e s t r i c t t h e phase space a v a i l a b l e t o Cooper p a i r s

-

t h i s explains t h e phase t r a n s i t i o n a t f i n i t e temperatures. Less known, however, i s t h e f a c t t h a t e x c i t a t i o n s n e a r t h e gap edge a r e more d e s t r u c t i v e l y blocking t h e p a i r s t h a n those which a r e off t h e edge. Recognizing t h i s circumstance, E l i a s h b e r g 1201 (1970 ; I v l e v e t a l . 1201, 1973) p o i n t e d o u t t h a t e l e c t r o m a g n e t i c r a - d i a t i o n t e n d s t o remove, under c e r t a i n c o n d i t i o n s , e x c i t a t i o n s from t h e gap edge w i t h t h e consequence of an enhancement of t h e o r d e r parameter and even of a s t i m u l a t i o n of s u p e r c o n d u c t i v i t y above Tc.

R a d i a t i o n o f , s a y , frequency v induces t r a n s i - t i o n of t h e q u a s i p a r t i c l e s from s t a t e s of energy E t o s t a t e s of energy E +- Nv. I n i t i a l l y , t h e gap edge i s h e a v i l y populated w i t h e x c i t a t i o n s on account of i t s h i g h d e n s i t y of s t a t e s , and consequently, t h e n e t r a t e of t r a n s i t i o n s i s away from t h e gap edge.

I n t h e Boltzmann e q u a t i o n , t h e s e t r a n s i t i o n s a r e r e - p r e s e n t e d by a f i n i t e s o u r c e term P which i s propor- t i o n a l t o t h e a p p l i e d r a d i a t i o n power.

A t f i r s t , we look f o r s p a t i a l l y homogeneous and s t a t i o n a r y s t a t e s . One f i n d s t h a t t h e q u a n t i t y X i s r e a l and only a f u n c t i o n of A/$v,

where B i s a c o e f f i c i e n t p r o p o r t i o n a l t o a p p l i e d power. I n t h e c a s e of e l e c t r o m a g n e t i c r a d i a t i o n , G

i s p o s i t i v e and h a s one maximum i n t h e form of a kink a t Hv = 2A. Obviously, t h e s t a t i o n a r y Ginzburg-Landau e q u a t i o n

~ 2 T - T

BG(-)A = ( b

- -

~ ~

H2v2 ) A

Tc

a l l o w s always t h e normal s t a t e s o l u t i o n A = 0. A g r a p h i c a l c o n s t r u c t i o n shows c l e a r l y , t h a t t h e r e i s one superconducting s t a t e s o l u t i o n A

#

0 f o r T < T w i t h t h e p r o p e r t y t h a t A i n c r e a s e s w i t h i n c r e a s i n g r a d i a t i o n power a B. For t e m p e r a t u r e s above T b u t below some maximal temperature T t h e r e e x i s t s

max

'

two superconducting s t a t e s o l u t i o n s .

Turning our a t t e n t i o n t o t h e dynamic behaviour s f t h e s e s o l u t i o n s , one f i n d s i n a l i n e a r s t a b i l i t y a n a l y s i s t h a t f o r T < Tc, t h e normal s t a t e i s l o c a l l y u n s t a b l e , i n c o n t r a s t t o t h e superconducting s t a t e which i s s t a b l e . I n t h e temperature range

Tc < T < Tmax, t h e superconducting s t a t e w i t h t h e s m a l l e r v a l u e of A i s l o c a l l y u n s t a b l e , whereas t h e superconducting s t a t e w i t h t h e l a r g e v a l u e of A a s w e l l a s t h e normal s t a t e a r e a t l e a s t l o c a l l y s t a b l e .

A s t a b i l i t y a n a l y s i s , which i n c l u d e s s p a t i a l f l u c t u a t i o n s of t h e o r d e r parameter i n l i n e a r o r d e r , reproduces t h e r e s u l t s on l o c a l s t a b i l i t y found abo- ve. It i s now an i n t e r e s t i n g q u e s t i o n whether t h e allowance of l a r g e s p a t i a l v a r i a t i o n s of t h e o r d e r parameter may l e a d t o a s t a t e where a normal and a superconducting r e g i o n c o - e x i s t

-

perhaps i n a manner s i m i l a r t o t h e r e s u l t found p r e v i o u s l y w i t h a cur- r e n t c a r r y i n g f i l a m e n t . I n o r d e r t o i n v e s t i g a t e t h i s p o s s i b i l i t y , we add t o t h e s t a t i o n a r y Ginzburg-Landau e q u a t i o n , given above, t h e u s u a l bending energy ex- p r e s s i o n

c2

(o)v'A. (The i n f luence of t h e q u a s i p a r t i - c l e d i f f u s i o n on t h e s p a t i a l s t r u c t u r e i s weak i f t h e r a d i a t i o n power i s small.)

One can show t h a t t h i s e q u a t i o n p r e d i c t s a d i s s i p a t i v e f i r s t o r d e r phase t r a n s i t i o n a t T = T k ' where T < Tk < Tmax, w i t h t h e p r o p e r t y t h a t t h e su- perconducting (normal) s t a t e i s g l o b a l l y u n s t a b l e f o r T > Tk (T < Tk). The r e s u l t a g r e e s w i t h i n v e s t i - g a t i o n s 1211 on t h e s t a b i l i t y of t h e homogeneous sta- t e i n t h e presence of quantum f l u c t u a t i o n s i n t h e q u a s i p a r t i c l e occupation number. We f i n d t h a t t h e r e e x i s t s a p r o b a b i l i t y d i s t r i b u t i o n

where t h e non-equilibrium f r e e energy diagram i s t h e

1

same a s i n F i g . (4) except f o r t h e f o l l o w i n g r e p l a -

(9)

cement References

Eventually, we may calculate the probability of the occurrence of such fluctuations which cause transi- tions from a globally unstable state to a stable one. Unfortunately, the numbers seem to be so small that one should not expect to observe such a tran- sition. In contradiction to this result, one does observe, for instance, a transition from the normal to the superconducting state even above T .

(Klapwijk, van den Bergh and Mooij 1221)

These considerations on radiation stimulated superconducting states and on their stability con- clude my talk on superconductors away from thermal equilibrium. There are interesting problems which I have not mentioned and some of them are rather di- rectly related to the problems I have tried to dis- cuss. For instance, there is a prediction of

Scalapino and Owen 1231 on a first order phase tran- sition of a superconductor at low temperatures as a result of laser irradition. The stability of states produced in this way is an intriguing and open question.

I regret that I could not present all these interesting problems. On the other hand, I had to make a selection, and certainly, this selection re- flects, to some extent, my personal taste.

It seems to me that the possibility of manipu- lating the quasiparticle distribution function by irradiation or by tunnel injection is a fascinating aspect of this field of physics. I think there are more interesting phenomena than in the related field

of semiconductor physics because here the quasipar- ticle distribution does have a decisive influenceon the order parameter, which means on the gap. As the magnitude of the gap strongly controls the proper-

ties of the quasiparticles,enhanced mutual inter- dependence of the basic variables of superconductor does occur. Consequently, we meet a variety of phe- nomena and, among others, dissipative phase transi- tions and even a transition into stable dissipative oscillatory states which are realized in phase slip centers.

/I/ Langenberg, D.N., Nonequilibrium phenomena in Superconductors. Proceedings of LT 14

:

M. Krusius and M. Vuorio, Eds (North-Holland)

1975

/2/ Aronov, A.G. and Gurevich, V.L., Fiz. Tverd.Tela, 16 (1974) 2656 bngl. Transl.

:

Sov. Phys. Solid

- State 16 (1975) 17221

131 Clarke, J., Phys. Rev. Lett. 8 (1972) 1363, Clarke,

J.,

and Paterson, J.L., J. Low Temp.

Phys. 2 (1974) 491

/4/ Tinkham, M., Phys. Rev. (1972) 1747;

TinkhamrM. andClarke,J. , Phys. Rev. Lett. 8

(1972) 1366

/5/ See, for instance, the review article

:

~Elfle,~., Sound propagation and kinetic coefficients in superfluid 3 ~ e . Prog. Low Temp. Phys., Vol. VII (North-Holland) 1978

/6/ Peters, R. and Meissner, H., Phys. Rev. Lett.

30 (1973) 965

-

/7/ Schuller, I. and Gray, K.E., Solid State Conrmun, 23 (1977) 337

-

/8/ Paulson, D.N., Krusius, M., and Wheatley, J.C., Phys. Rev. Lett. 36 (1976) 1322

/9/ Prange, R.E., and Kadanoff, L.P., Phys. Rev. 134

(1964) A566

/lo/ Eliashberg, G.M., Zh. Eksp. Theor. Fiz 61 (1971)

1254 [~n~l. Transl . , Sov. Phys .- JETP 36

(

1972) 6681

/11/ Schmid, A., and Schgn, G., J. Low Temp. Phys.

20 (1975) 207

-

/12/ Larkin, A.I. and Ovchinnikov, Yu.N., Zh. Eksp.

Teor. Fiz 73 (1977) 299

/13/ Gorkov, L.P., and Eliashberg, G.M.,

J.

Low Temp.

Phys. 2 (1970) 161

1141 Pippard, A.B., Shepherd,

J.G.

and Tindall, D.A., Proc. R. Soc. (London) 3 (1971) 17

1151 Skocpol, W.J., Beasley, 1I.R. and Tinkham, M., J. Low Temp. Phys. 16 (I 974) 145

/16/ Dolan, G.I., and Jackel, L.D., Phys. Rev. Lett.

39 (1977) 1628

-

/17/ Kramer, L., and Baratoff, A., Phys. Rev. Lett.

38 (1977) 518

-

1181 Kramer, L., and Watts-Tobin, R.J., Phys. Rev.

Lett. 2 (1978) 1041

1191 Likharev, K.K., ZhETF Pis. Red. 20 (1974) 730

[SOV.

Phys. - JETP Lett. 20 (197q 3381

1201 Eliashberg G.M., Pisma Zh. Eksp. Teor. Fiz. 11

(120) 1 8 6 t ~ n ~ l . Transl.

:

JETP Lett.

1 1

(1970)

1 1 2

;

Ivlev, B.I., Lisitsyn, S.G., and- Eliashberg, G.M., J. Low Temp. Phys. 10 (1973) 449

1211 Schmid, A., Phys. Rev. Lett. 38 (1977) 922 1221 Klapwijk, T.M., van den Bergh, J.N., Mooij, J.E.,

J.

Low Temp. Phys. 26 (1977) 385

1231 Owen, C.S. and Scalapino, D.J., Phys. Rev. Lett.

28 (1972) 1559

-

Références

Documents relatifs

The new force decays like 1=z 3 at large distances (i.e., slower than at equilibrium), exhibits a sizable temperature dependence, and is attractive or repulsive depending on whether

If the « s-d » exchange Hamiltonian is arbitrary and sufficiently large in comparison with the exchange integral in the local spin Heisenberg Hamiltonian, one

In this Appendix, we briefly review the theory of the de SQUID in so far as it concems the effects of trie intrinsic phase shift in YBCO-Pb SQUIDS. We wiii assume that in zero

The majority of geometric constraint solver (also called planners) proposed in the literature discuses some specific prop- erties of the constraints graphs: the size of the

Glasses are interesting materials because they allow us to explore the puzzling properties of out-of-equilibrium systems. One of them is the Kovacs effect in which a glass, brought

The latter result indicates that the quasiparticle- lattice scattering rate is not sufficiently greater than recombination rate in our aluminum films to cause a more

investigation of the ordering kinetics, some reference measurements performed at the zone center (r point) pointed out that aging also induced an apparent broadening of the Bragg

The prominent superficial mass migration (abbr. SMM below) phenomenon of Pb or Bi radially along the solid surface of Cu from the liquid drop has been observed during