• Aucun résultat trouvé

Uncertainty quantification and global sensitivity analysis of complex chemical process using a generalized polynomial chaos approach

N/A
N/A
Protected

Academic year: 2021

Partager "Uncertainty quantification and global sensitivity analysis of complex chemical process using a generalized polynomial chaos approach"

Copied!
8
0
0

Texte intégral

(1)

ComputersandChemicalEngineering90(2016)23–30

Contents lists available atScienceDirect

Computers

and

Chemical

Engineering

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c o m p c h e m e n g

Uncertainty

quantification

and

global

sensitivity

analysis

of

complex

chemical

process

using

a

generalized

polynomial

chaos

approach

Pham

Luu

Trung

Duong

a

,

Wahid

Ali

b

,

Ezra

Kwok

c

,

Moonyong

Lee

b,∗

aLuxembourgCentreforSystemsBiomedicine,SystemsControlGroup,UniversityofLuxembourg,Luxembourg

bSchoolofChemicalEngineering,YeungnamUniversity,Gyeongsan,RepublicofKorea

cChemical&BiologicalEngineering,UniversityofBritishColumbia,Vancouver,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6December2015

Receivedinrevisedform18February2016

Accepted22March2016

Availableonline29March2016

Keywords:

Generalizedpolynomialchaos

Uncertaintyquantification

Processuncertainty

Sensitivityanalysis

Monte-Carloapproach

a

b

s

t

r

a

c

t

Uncertaintiesareubiquitousandunavoidableinprocessdesignandmodeling.Becausetheycan signifi-cantlyaffectthesafety,reliabilityandeconomicdecisions,itisimportanttoquantifytheseuncertainties andreflecttheirpropagationeffecttoprocessdesign.Thispaperproposestheapplicationofgeneralized polynomialchaos(gPC)-basedapproachforuncertaintyquantificationandsensitivityanalysisofcomplex chemicalprocesses.ThegPCapproachapproximatesthedependenceofaprocessstateoroutputonthe processinputsandparametersthroughexpansiononanorthogonalpolynomialbasis.Allstatistical infor-mationoftheinterestedquantity(output)canbeobtainedfromthesurrogategPCmodel.Theproposed methodologywascomparedwiththetraditionalMonte-CarloandQuasiMonte-Carlosampling-based approachestoillustrateitsadvantagesintermsofthecomputationalefficiency.Theresultshowedthat thegPCmethodreducescomputationaleffortforuncertaintyquantificationofcomplexchemical pro-cesseswithanacceptableaccuracy.Furthermore,Sobol’ssensitivityindicestoidentifyinfluentialrandom inputscanbeobtaineddirectlyfromthesurrogatedgPCmodel,whichinturnfurtherreducestherequired simulationsremarkably.Theframeworkdevelopedinthisstudycanbeusefullyappliedtotherobust designofcomplexprocessesunderuncertainties.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Mostrigorousprocessdesignproblemsarecarriedoutunder adeterministicsettingwithfixedspecifications.Inreality, how-ever,theprocessinputsandparametersexhibitsomerandomness asdepictedinFig.1,whichcanhave asignificanteffectonthe safety,reliabilityandeconomicdecisions.Therefore,itisimportant toexaminetheeffectsoftheseuncertaintiesandanalyzethe sen-sitivityoftheprocessmodelwithrespecttotheseuncertaintiesin thedesignstage.Monte-Carlo(MC)andQuasiMonte-Carlo(QMC) methodsarerepresentativeprobabilisticapproachesforthe propa-gationofuncertaintiesinthemodelinputtoitsoutput(Niederreiter etal.,1996;Liu,2001;Kroeseetal.,2011;Abubakaretal.,2015).The brute-forceimplementationofthesemodelsfirstinvolvesthe gen-erationofanensembleofrandomrealizationswitheachparameter drawnrandomlyfromitsuncertaintydistribution.Deterministic solversarethenappliedtoeachmembertoobtainanensembleof results.Theensembleofresultsisthenpost-processedtoestimate

∗ Correspondingauthor.Fax:+82538113262.

E-mailaddress:mynlee@yu.ac.kr(M.Lee).

therelevantstatisticalproperties,suchasthemean,standard devi-ationandquantile.Despitethis,estimationsofthemeanconverge withtheinversesquarerootofthenumberofruns,making MC-andQMC-basedapproachescomputationallyexpensiveandeven infeasibleforcomplexchemicalprocessproblems.

Recently,uncertaintyanalysisusingageneralizedpolynomial chaos(gPC)expansionwasstudiedinvariousapplications includ-ingmodeling,control,robustoptimaldesign,andfaultdetection problems.NagyandBraatz(2007)consideredthegPCapproachfor uncertaintyquantificationandrobustdesignofbatchcrystalized process.Intheirwork,itwasshownthatthegPCapproachtobe morecomputationallyefficientthantheMC/QMCmethodsfora systemwithamoderatenumberofrandominputs.DuongandLee (2012,2014)appliedthegPCmethodtothePIDcontrollerdesign for fractionalorder andinteger ordersystems. Duet al.(2015) consideredthefaultdetectionproblembycombiningmaximum likelihood withthegPC framework.ThegPC methodoriginated fromWienerchaos(Wiener,1938).Thismethodisaspectral repre-sentationofarandomprocessbytheorthonormalpolynomialsofa randomvariable.ExponentialconvergenceisexpectedforthegPC expansionofinfinitelysmoothfunctions(i.e.,analyticandinfinitely differentiable).GhanemandSpanos(1991)reportedthatthegPC http://dx.doi.org/10.1016/j.compchemeng.2016.03.020

(2)

Fig1.Uncertaintypropagationandquantificationinchemicalprocesses.

isaneffectivecomputationaltool forengineeringpurposes.Xiu andKarniadakis(2002)furthergeneralizedPCforusewith non-standarddistributions.

Thisworkdemonstratesandvalidatestheapplicabilityof poly-nomialchaostheoryforuncertaintyquantificationandsensitivity analysisforcomplexchemicalprocessessuchasnaturalgasand syngasproduction.TheproposedgPCbasedmethodcanreduce sig-nificantlythecomputationalcost(simulationtime)foruncertainty quantificationovertraditionalapproaches, suchastheMC/QMC methods.Moreover,Sobol’ssensitivityindices(Sobol,2001)can alsobedirectlyobtainedfromthegPCsurrogateanalyticalmodel (Crestauxetal.,2009;Sandovaletal.,2012),whichcaninturnbe usedtodetecttheinfluentialinputsinthepropagationofprocess uncertainty.

2. Uncertaintyquantificationusingpolynomialchaos theory

Considerasteady-stateprocessthatisdescribedwithasetof followingnonlinearequations:

F(y,)= 0 (1)

where=(1,2,...N)isaprocessinputvariablevectorexpressed

byarandomvectorofmutuallyindependentrandomcomponents withprobabilitydensityfunctionsofi(i):i→R+;andydenotes

aprocessstateandoutputvariablevector.

Thejointprobabilitydensity oftherandom vector,, is=

N



i=1

i,andthesupportofis N



i=1

iRN.Theuncertainties

intheprocessinputsarethenpropagatedthroughtheentire pro-cess,asshowninFig.1.Thesetofone-dimensionalorthonormal polynomials,{i(i)dmi=0},canbedefinedinfinitedimensionspace,

i,withrespecttotheweight,i(i).Basedonaone-dimensional

setofpolynomials,anN-variateorthonormalsetcanbeconstructed withPtotaldegreesinspace,,usingthetensorproductofthe

one-dimensionalpolynomials,thebasisfunctionofwhichsatisfiesthe following:



 ˚m()˚n()()d=



1,m=n 0,m=/n (2)

Considera response functionf(y())for a processstate vari-able,y, withthestatistics (e.g.,mean,variance)of interest,the N-variatePthorderapproximationoftheresponsefunctioncanbe

constructedasfollows: fNP(y())= M



i=1 ˆfi˚i(); M+1=



N+P N



=(N+P)! N!P! (3)

wherePistheorderofpolynomialchaos,and ˆfmisthecoefficient

ofgPCexpansionthatsatisfiesEq.(2)asfollows: ˆfi=E[if(y)]=





f(y)i()()d (4)

whereE[·]denotestheexpectationoperator.

ThecoefficientsofthegPCexpansionfromEq.(4)arenormally obtainednumericallyusingthefollowingprocedure(Xiu,2010): • Choosea N-dimensionalintegrationrule(cubaturenodes and

weights) Q[g]=(Qq1 (1)...Q qN (N)) [g]= q1



j1=1 ... qN



jN=1 g((j1) j ,..., (jN) j ) (w1(j1)...w1(jN)) ∼=



 g()()d (5)

where⊗denotesthetensorproduct,andQ[·]denotesthe multi-variatecubatureapproximation.

(3)

P.L.T.Duongetal./ComputersandChemicalEngineering90(2016)23–30 25 ˜ˆfi=Q[f(y,)()]= Q



m=1 f((m))j( (m) )w(m) for j=1,...,M (6) where˜ˆfrepresentsthenumericalapproximationof ˆfandf(␰)j(␰)

playstheroleofg(␰)inEq.(5);Qisthenumberofnodesincubature approximation.Thenumberofcubaturenodes(simulations)rises exponentiallyandhencethetensorcubatureshouldbeusedonly forsmallnumberofparameters.However,formoderatenumber ofparameters(5–10parameters),asparsegridquadraturecanbe usedforcalculatingthegPCinEq.(6)(Crestauxetal.,2009;Xiu, 2010).

• Construct an N-variate Pth order gPC approximation of the

responsefunctionintheform:

˜fP N= M



j=1 ˜ˆfjj() (7)

OnceallthegPCcoefficientsandthesurrogatemodelinEq.(7) havebeenobtained,apost-processingprocedureisthencarriedout toobtainthestatisticalpropertiesoftheresponsefunctionf(y()).

Thefirstexpansioncoefficientisthemeanvalueasfollows:

E[˜fNP]= f=



 ˜fP N()d=







M j=1 ˜ˆfj()˚j()

()d=˜ˆf1 (8)

Thevarianceoftheresponsefunctionf(y())canbeevaluated asfollows: Df =2f =E[(f− f)2] =



 ( M



j=1 ˜ˆfj()j()−˜ˆfj)( M



j=1 ˜ˆfj()˚j()−˜ˆf1)()d= M



j=2 ˜ˆfj2 (9)

Eqs.(8)and(9)employthepropertythatthepolynomialset beginswith1()=1.Theweightfunctionofthepolynomialisthe

probabilitydensityfunction.

Thedistributionfunctionoftheresponsefunctionisobtained bysamplingthesurrogatemodelinEq.(7).

Ifaresponsefunctionf(y)ischosenforasstatevariable,y,the meanandvarianceofthesystem’sstatesaregivenapproximately byEqs.(8)and(9),respectively.DuongandLee(2012)andthe referencesthereinpresentdifferentmethodsforconstructingaset oforthonormalpolynomialswithrespecttoagivendistribution. Remark. IntheMC/QMC methods, it isnecessary tosimulate theprocessnumeroustimesatthesamplingpointstoobtainthe requiredprobability. On theotherhand,the gPCrequires solv-ingEq.(1)onlyatthecubaturenodesforobtainingtheanalytical representationinEq.(7).TheanalyticalmodelbyEq.(7)canbe sam-pledeasilywithlittlesimulationeffort.Thestatisticalmomentsare availabledirectlyfromthesurrogatemodel,asexpressedinEqs.(8) and(9).

3. Variancebasesensitivityanalysis

3.1. Brieftheoryofvariancebasesensitivityanalysis

Inadditiontotheuncertaintyquantification,globalsensitivity analysisisanessentialsteptoidentifytheparametersthatare rel-ativelymoreimportantthantheothersovertheentireparameter

spaceofthemodelsinthescienceandengineeringfields.One pop-ularapproachforsensitivityanalysisisvariancebased;itstheory isgivenbrieflyinthissection.

ConsiderthesystemdescribedinFig.1andEq.(1).Themean andvarianceoftheresponsefunctionf(y())canbeexpressedas

fy=



1 ...



N f(y(1,...,N)) N



i=1 i(i)di (10) Dfy=



1 ...



N

f(y(1,...,N))− fy

2 N



i=1 i(i)di. (11)

Theresponsefunctionofthesystemoutputcanbedecomposed intosumoftermswithincreasingdimensions(Satellietal.,2004):

f(y())=f0+ N



i=1 fi(i)+ N−1



i=1 N



j>i fij(i,j)+...+fi1...iN(i,...,N), (12) wheref0= fy.

ThetermsinEq.(12)arefunctionsofthefactorsinitsindexand canbeexpressedas fi(i)=E

f(y())|i

− f fij(i,j)=E

f(y())|i,j

−fi−fj− f ... , (13)

whereE

f(y())|i

(resp.E

f(y())|ij

)istheconditional expec-tation of f(y()) when i is set (resp. i and j are set). The

decompositioninEqs.(12)and(13)isuniqueprovidedthatthe randomfactorsareindependent.

Therefore,thevarianceoftheoutputfunctioncanbe decom-posedasfollows: Dfy= N



i=1 Di+ N−1



i=1 N



j>i Dij+...+D1,2,...,N (14) where Di=var



E

f(y())|i



Dij=var



E

f(y())|i,j



−Di−Dj ... D1,2,...,N=Dfy− N



i=1 Di−...−



1≤i1<···<in−1≤N Di1...iN−1 (15)

Notethatinvar



E

f(y())|i,j



,theinnerexpectationisover allfactorsexceptfori,j,andtheoutervarianceisoveri,j.

Thefirstordersensitivityindex(function)isdefinedasfollows: Si=

Di

Dfy

(16) Thefirstorderindexrepresentsthemaineffectcontributionofeach randominputfactortothevarianceoftheoutputalone.Siliesin

[0,1].Thesumofthefirstorderfunctionsequals1fortheadditive models.

Similarly, let the sensitivity functions of a higher order be definedas

Si1,...,ik= Di1,...,ik

Dfy

(4)

Fig.2. Syngasproductionprocess(Example1).

Thesensitivityfunctionofahigherorderisasensitivitymeasure thatdescribeswhatpartofthetotalvarianceisduetothe uncer-taintiesinthesetofparameters,{i1,...,is}.

Thetotaleffectfunctionforthefactor,i,canbewrittenas

Ti=1−

var(E(fy()|∼i))

Dfy(t)

. (18)

Thistotaleffectindexmeasuresthecontributiontotheoutput varianceofi,includingallvariancescausedbyitsinteractions,of

anyorder,withanyotherinputvariables.Thefunction,Ti,isthe

educatedanswertothequestion,“Whichfactorcanbefixed any-whereoveritsrangeofvariabilitywithoutaffectingtheoutput?” (Satellietal.,2004,2008).

3.2. VariancebasedsensitivityanalysisusinggPC

ThegPCexpansionsinEq.(7)canbereorderedtoseparatethe singleandcollectivecontributionofeachparameterasfollows.

Definethesetofmulti-indicesIk1,...,kssuchthat(Sandovaletal., 2012): Ik1,...,ks=



(k1,k2,...,ks) :0≤␥jk≤P,␥jk=0,k



1,...,n



\



k1,...,ks



(19) where kjistheone-dimensionalpolynomialdegree.Usingthis notation,thefirstordersensitivityfunctioncanbeexpressedas

Si=



j∈Ii ˆf2 j Df . (20)

Theestimatedsensitivityfunctionofahigherordercanbeobtained inthesamemannerasfollows:

Si1,...,is=



j∈I i1,...,is ˆfj2 Df . (21)

Remark. Normally,forestimationoffirstorderandtotal sensi-tivityindicesthecomputationalcomplexityis(N+2)×M,whereN isthenumberofvariables,andMisthenumberoftheMC/QMC samples(Satellietal.,2004,2008).NotethatonlyMsamplesare neededforuncertaintyquantificationproblem.

4. Chemicalprocessexamples

Inthissection,theproposedgPCbasedmethodwasappliedto uncertaintyquantificationandsensitivityanalysisoftwochemical processexamplesstudiedin(Abubakaretal.,2015),suchasa syn-gasproductionprocessandasalesgasprocess,andvalidatedusing standardMC/QMCmethods.

4.1. Example1.a:syngasproductionprocesswithGaussian uncertainties

Fig.2showsaprocessflowdiagramofasynthesisgas(or alterna-tivelyknownassyngas)productionprocess.Inthisprocess,natural gas(NG)richinmethaneentersthereformer,wherealargeamount ofmethanereactswithsteamandproducessyngaswithCO2.The

effluentfromthereformeristhensenttothecombustorwithanair stream.Steamisalsofedintothecombustortomaintainthe reac-tortemperatureandensurethecompletecombustionofmethane. Theproductfromthecombustorpassesthroughtheshiftreactors, wherethewatergasshiftreactionsarecarriedout.Thesynthesis gasisfinallytakenasthefeedstockforanammoniaproduction plant.Tofacilitatetheproduction ofammonia,thehydrogento nitrogenmolarratio(HNr)inthesyngasneedstobecontrolled preciselyat3:1,whichrepresentsthestoichiometricamountsof thereactantsintheammoniaprocess.

Inthisexample,theNGfeedtemperature,flowrate,andthe reformer steam flow rate were assumed to be uncertain and normally distributed independently with a mean and standard deviation of {370C, 100kgmol/h, 240kgmol/h} and {55.5C,

15kgmol/h, 36kgmol/h}, respectively. Allother process inputs (suchasairstreamandcombustionsteamtothecombustor)and processparameters(suchasthevesselvolume,heatdutyand pres-sure)wereassumedtobedeterministic.Acodetogeneratethe cubaturenodesandweightsinthegPCmethodwasdevelopedin aMatlabTM environmentandconnectedtoHYSYSTM,wherethe

syngasprocess in Fig. 2was modeled rigorously. Thecubature nodesfromgPCcodearepassedtoHYSYSTM,andtheimpactof

(5)

P.L.T.Duongetal./ComputersandChemicalEngineering90(2016)23–30 27 MC/QMCmethodscannotofferanaccurateresultwithalow

num-berofsamples.Sincetrueestimatesoftheoutputforthestudied processarenotavailable,theresultfromtheproposedmethodwas comparedwiththosefromtheMC/QMCmethodswithasufficiently largenumberofsamples.Table1liststhestatisticalpropertiesof HNrobtainedfromthegPCmethodandtheconventionalMC/QMC methods.Fig.3comparesthedensityfunctionsofHNrobtained fromthegPC/MC/QMCmethods.TheresultsfromtheproposedgPC methodmatchedthosefromthetraditionalMCandQMCmethods. NotethatthenumberofsimulationsrequiredbytheproposedgPC methodwassignificantlylowerthanthosebytheothertwo meth-ods.AsshowninFig.3,thetraditionalMCand/orQMCmethods requireahugenumberofsamplestogetsimilarresults.Itisnoted thattheperformanceofthegPCmethodmaydegradeforhighorder statisticalmomentsofnon-smoothquantityofinterest(output).

AnotheruniqueadvantageoftheproposedgPCmethodisthat Sobol’ssensitivityindicestoidentifytheinfluentialinputsinthe propagationofprocessuncertaintycanbeobtaineddirectlyfrom thesurrogateanalyticalmodel,whichcanbeusedtoreducethe numberofsimulationsrequiredfrom10–100times,andthe com-putationaleffortsneededfortheuncertaintyquantification.Inthis example,thesensitivityindicesfortheprocessvariableHNrwith respecttothreeuncertaininputs(theNGfeedtemperatureand flowrate,thereformersteamflowrate)canbeobtainedfromthe surrogategPCmodel.Table2liststhesensitivityindicesobtained fromthesurrogategPCmodel.Theonlyinputthatmattersisthe secondone,i.e.,theNGfeedflowrate.Thenaturalgas tempera-tureandthereformersteamflowarenon-influentialandcanbe excludedfromtheanalysisofuncertaintypropagation.Fig.4 com-paresdensitydistributionspredictedbythegPCandQMCmethods withonerandomparameter(i.e.,theNGfeedflowrate)andthatby theQMCmethod(with10,000simulationsfromHaltonsequence) withallthree randomparameters.Note thatinthecase ofone randominput,onlyfivesimulationswereusedfortheproposed gPCmethod,whereas10,000simulationsfortheQMCmethod.The densityfunctionsfrombothmethodswithonerandomvariable showedaclosematchwiththatusingallthreerandomvariables. The number of samples for the MC/QMC methods was chosen accordingtoChernoffbound(Tempoetal.,2013)foraccurate esti-mationoftheprobability.

4.2. Example1.b:syngasproductionprocesswithuniform uncertainties

In this example, all the three process inputs of the syngas productionprocessinFig.2wereassumedtohaveindependent uncertainties distributed uniformly in intervals of {370±50◦C, 100±20kgmol/h,240±54kgmol/h}.TheGaussLegendre cuba-ture nodes were used to obtain the surrogate gPC model, as describedinSection2.TheresultfromtheproposedgPCmethod wasthencompared withthetraditionalMCandQMCmethods. Tables1 and2listthestatisticalpropertiesof theHNrandthe sensitivityindices,respectively.

Fig.5comparesthedensityfunctionspredictedusingthe pro-posedgPCmethod(7thordergPCwith343simulations),theQMC methodwith16,000simulationsandtheMCmethodwith1000 simulations.TheMCmethodwithalownumberofsamples can-notprovideanaccurateresult,eventhoughthenumberofsamples wasmuchlargerthanthatusedinthegPCmethod.Theresultby thegPCmethodshowedaclosematchwiththatusingtheQMC methodwithalargenumberofsamples.Sobol’sindicesinTable2 alsoshowedthattheimportantrandomparameterinfluencingthe uncertaintypropagationwasonlyaNGfeedflowrateandtwoother randominputscanbeexcludedfromtheanalysis.Fig.6compares thedensityfunctionofHNrwiththreerandominputsandthose

withonerandominput(i.e.,theNGfeedflow),whereastheother Table

(6)

Table2

Sobol’ssensitivityindicesfromthesurrogatedgPCmodelforExamples1.a,1.b,and2.

Sobol’ssensitivityindices(Sij ... n)

Example1.a S1 S2 S3 S12 S13 S23 S123

2.272E-05 0.9806 0.0137 1.646E-05 0.0020 0.0022 0.0014

Example1.b S1 S2 S3 S12 S13 S23 S123

4.940E-05 0.9479 0.0062 5.220E-04 8.840E-04 0.0371 0.0074

Example2 S1 S2 S3 S4 S12 S13 S14 S23

0.9036 0.0795 0.0167 9.7715E-06 6.7285E-05 2.5839E-06 1.8018E-12 6.4715E-05

S24 S34 S123 S124 S134 S234 S1234

3.2377E-09 1.8833E-09 5.4235E-08 3.9457E-14 7.5100E-14 5.8284E-12 4.6192E-14

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hydrogen-Nit

rogen rati

o in syng

as (HNr

)

Dens

ity f

u

nc

tion

f(

HN

r)

MC with 1000 simulations MC with 10000 simulations QMC with 10000 simulations gPC with 125 simulations

Fig.3.Densitydistributionsofthehydrogen-nitrogenratioinsyngaswith3

Gaus-sianrandominputs(Example1.a).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Hydrogen-Nitrogen ratio in syngas (HNr)

De ns ity f un ction f(H N r) QMC: 3 random inputs QMC: 1 random input gPC: 1 random input

Fig.4. Densitydistributionsofthehydrogen-nitrogenratioinsyngaswith3and1

Gaussianrandominputs(Example1.a).

twoinputsareassumed tobeconstantattheirmeanvalues.As showninthefigure,theresultsusingtheimportantrandominput onlywereidenticaltothoseusingallthree randominputs.The proposedgPCmethodwithonerandominputrequiredonlyseven simulations,whereas theQMCmethodused16,000simulations toobtainanaccurateresult.Notethatforcalculatingsensitivity indicesusingtheQMCmethod,onemayneed16,000×5 simula-tions.Henceduetothelargecomputationalburdenforcalculating sensitivityindicesbytheQMCmethod,wewillnotdotheQMC approachforvalidationofthegPCmethod.However,Fig.6shows thatthegPCapproachcorrectlydetectsnon-influentialinput.

2 2.5 3 3.5 4 4.5 5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Hydrogen-Nitrogen ratio in

the synga

s (HNr)

De

ns

ity

fun

ct

ion

f(

HN

r)

MC with1000 simulations QMC with 16000 simulations gPC with 343 simulations

Fig.5. Densitydistributionsofthehydrogen-nitrogenratioinsyngaswith3uniform

randominputs(Example1.b).

2 2.5 3 3.5 4 4.5 5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Hydrogen-Nitrogen ratio in the syngas (HNr)

De ns ity f unction f( HN r)

QMC: 3 random inputs

QMC: 1 random input

gPC: 1 random input

Fig.6. Densitydistributionsofthehydrogen-nitrogenratioinsyngaswith3and1

uniformrandominputs(Example1.b).

(7)

P.L.T.Duongetal./ComputersandChemicalEngineering90(2016)23–30 29

Fig.7.Salesnaturalgasprocess(Example2).

1900 200 210 220 230 240 250 260 270 280 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Lean

na

tural ga

s production rate G (kg

mol/h

r)

Dens

ity

fun

ction f

(G)

MC with 10000 simulations QMC with 10000 simulations gPC with 625 simulations

Fig.8. Densitydistributionsofleangasproductionratewith4Gaussianrandom

inputs(Example2).

rate,pressure,temperature,and thechiller duty wereassumed tobevariedindependentlywithameanandstandarddeviation of{300kgmol/h,4150kPa,15◦C,2×105kJ/h}and{10kgmol/h,

150kPa,3◦C,500kJ/h},respectively.Fig.8showsthedensity func-tionsforleandrygasproductionpredictedfromthegPC/MC/QMC methods.TheresultfromthegPCmethod(5thordergPCwith625 simulations)closelymatchedtheresultfromtheMC/QMCmethods with10,000simulations.Table1liststhestatisticalpropertiesof leangasproductionandsimulationparametersfromtheproposed gPC and MC/QMC methods. Table2 lists thesensitivity indices obtainedfromthesurrogategPCmodel.Thesensitivityindices indi-catethatthecrudeNGfeedflowrateandpressureareinfluentialfor uncertaintypropagationwhilethecrudeNGfeedtemperatureand thechillerdutyarenon-influential.Fig.9showsthedensity

func-1900 200 210 220 230 240 250 260 270 280 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Lean natu

ral gas producti

on rate G (kgm

ol/h

r)

De

ns

ity

function

f(

G)

QMC: 4 random inputs QMC: 2 random inputs gPC: 2 random inputs

Fig.9. Densitydistributionsofleangasproductionratewith4and2Gaussian

randominputs(Example2).

tionsofleangasproductionwithtwoinfluentialrandominputs bythegPCmethod(with25simulations)andbytheQMCmethod (with10,000simulations),andcompareswiththatusingallfour randomparametersbytheQMCmethod(with10,000simulations). ThesensitivityindicesfromthegPCmethodcorrectlyidentifythe influentialinputs.

5. Conclusions

A stochastic spectral approach based methodwas proposed tomodeltheuncertaintypropagationandsensitivityincomplex chemicalprocesses.ThegPCmethodwasappliedtodeterminethe solutiontotheseproblems.AninterfacebetweenMatlabTM and

(8)

Theresultsshowedpreciseagreementwiththoseofthe conven-tionalapproachessuchastheMC/QMCmethods,whichmightbe beyondthecomputationalcapabilityforlargescalecomplex chem-icalprocessproblems.ThegPCapproachhasadvantagesoverthe popularMC/QMCapproaches,mainlyintermsofthecomputational cost:therequirednumberofsamplesfortheuncertainty predic-tioncanbereducedsignificantlybythegPCmethod.Moreover, Sobol’ssensitivityindicestoidentifytheinfluentialrandominputs foruncertaintypropagationcanbeobtaineddirectlyfromthe sur-rogatedgPCmodel,whichinturnreducestherequiredsamples remarkablyand allowsa focusontheimportant inputs forthe robustdesignofcomplexprocessesunderarangeofuncertainties. Acknowledgments

ThisstudywassupportedbytheBasicScienceResearch Pro-gramthroughtheNationalResearch FoundationofKorea (NRF) fundedbytheMinistryofEducation(2015R1D1A3A01015621),and alsobythePriorityResearchCentersProgramthroughtheNational ResearchFoundationofKorea(NRF)fundedbytheMinistryof Edu-cation(2014R1A6A1031189).

References

Abubakar,U.,SrirnivasSriramula,S.,Renton,C.,2015.Reliabilityanalysisof

complexchemicalengineeringprocesses.Comput.Chem.Eng.74,1–14.

Crestaux,T.,LeMaitre,O.,Martinez,J.M.,2009.Polynomialchaosforsensitivity

analysis.Reliab.Eng.Syst.Saf.94(7),1161–1172.

Du,Y.,Duever,T.A.,Budman,H.,2015.Faultdetectionanddiagnosiswith

parametricuncertaintyusinggeneralizedpolynomialchaos.Comput.Chem. Eng.76,63–75.

Duong,P.L.T.,Lee,M.,2012.RobustPIDcontrollerdesignforprocesswith

stochasticparametricuncertainties.J.ProcessControl22,1559–1566.

Duong,P.L.T.,Lee,M.,2014.Probabilisticanalysisandcontrolofsystemswith

uncertainparametersovernon-hypercubedomain.J.ProcessControl24, 358–367.

Ghanem,R.G.,Spanos,P.D.,1991.StochasticFiniteElements:ASpectralApproach.

DoverPublications,NewYork.

Kroese,D.P.,Taimre,T.,Botev,Z.I.,2011.HandbookofMonteCarloMethods.John

WileyandSons,Hoboken,NewJersey.

Liu,J.S.,2001.MonteCarloStrategiesinScientificComputing.Springer-Verlag,

NewYork.

Nagy,Z.K.,Braatz,2007.Distributionaluncertaintyanalysisusingpowerseriesand

polynomialchaosexpansions.J.ProcessControl17,229–240,SpecialIssueon AdvancedControlofChemicalProcesses.

Niederreiter,H.,Hellekalek,P.,Larcher,G.,Zinterhof,P.,1996.MonteCarloand

Quasi-MonteCarloMethods.Springer-Verlag,Berlin.

Sandoval,E.,Collin,F.A.,Basset,M.,2012.Sensitivitystudyofdynamicsystem

usingpolynomialchaos.Reliab.Eng.Sys.Saf.104(8),15–26.

Satelli,A.,Tarantola,S.,Campolongo,F.,Ratto,M.,2004.SensitivityAnalysisin

Practice:AGuidetoAssessingScientificsModels.JohnWiley&Sons, Chichester.

Satelli,A.,Ratto,M.,Andres,T.,Campolongo,F.,Cariboni,J.,Gatelli,D.,Saisana,M.,

Tarantola,S.,2008.GlobalSensitivityAnalysis:ThePrimer.JohnWiley&Sons,

Chichester.

Sobol,I.M.,2001.Globalsensitivityindicesfornonlinearmathematicalmodelsand

theirMonteCarloestimates.Math.Comput.Simul.55,271–280.

Tempo,R.,Calafiore,G.,Dabbene,F.,2013.RandomizedAlgorithmforAnalysisand

ControlofUncertainSystems:WithApplications,2ndedition.Springer-Verlag, London.

Xiu,D.,Karniadakis,G.E.,2002.TheWiener-Askeypolynomialchaosforstochastic

differentialequations.SIAMJ.Sci.Comput.24,619–644.

Xiu,D.,2010.NumericalMethodforStochasticComputations:ASpectralMethod

Approach.PrincetonUniversityPress.

Références

Documents relatifs

Partially-intrusive Monte-Carlo methods to propagate uncertainty: ‣ By using sensitivity information and multi-level methods with polynomial chaos. expansion we demonstrate

The PSI and the TSI are predicted quite well by the AFVB-PCE model using less number of significant terms in the polynomial basis as compared to the L-PCE model.. The PSI

– Offi cial development assistance (ODA) is defi ned on the international level as the total of all fi nancial fl ows to developing countries and territories (currently 148) and

Generally, CDF can be estimated in three ways: (a) analytical calculation (b) standard MC sim- ulation (c) meta-model MC simulation –i.e., genera- tion of an experimental design of

The introduction of specific effects associated with each partner country of Algeria will effectively eliminate all our binary variables (Adjacency, Religion, Colonial Link and Free

The thermal images obtained under the standard, stretching, and bending conditions of the CSF (Wale direction) carbonized at 1100 °C against the voltage A (a-g) Thermal analysis

The framework builds on a theory of infectious diseases as ecological drivers of poverty [25 –27] , and allows one to measure the impact of poul- try disease dynamics on

This situation has led the Ministry of Fisheries and Maritime Economy (MPEM) and the profession to call for research on the exploitable potential and therefore from