• Aucun résultat trouvé

NOISE DOWN-CONVERSION IN A PUMPED JOSEPHSON JUNCTION

N/A
N/A
Protected

Academic year: 2021

Partager "NOISE DOWN-CONVERSION IN A PUMPED JOSEPHSON JUNCTION"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217694

https://hal.archives-ouvertes.fr/jpa-00217694

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

NOISE DOWN-CONVERSION IN A PUMPED

JOSEPHSON JUNCTION

Y. Taur

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque

C6, supplgment au

no

8, Tome 39, aotit 1978, page

C6-575

NOISE DOWN-CONVERSION IN

A

PUMPED JOSEPHSON JUNCTION

NASA Goddard I n s t i t u t e for Space Studies, Goddard Space F l i g h t Center, New York, N.Y. 10025, USA.

R6sumd.- Nous avons d t u d i d numdriquement l a c o n v e r s i o n du b r u i t v e r s l e s b a s s e s frdquence's d a n s une j o n c t i o n Josephson pompde e x t d r i e u r e m e n t . I1 appara'it que l ' e x c s s d e b r u i t b a s s e - f r d q u e n c e dans un mdlangeur Josephson p e u t Z t r e e x p l i q u d p a r l e s d i v e r s e s c o n t r i b u t i o n s provenant d e l a c o n v e r s i o n du b r u i t p r d s e n t

P

l a f r d q u e n c e Josephson e t aux f r d q u e n c e s h a r - moniques d e l a f r d q u e n c e d e pompe.

A b s t r a c t . - Downward f r e q u e n c y c o n v e r s i o n i n an e x t e r n a l l y pumped Josephson j u n c t i o n i s s t u - d i e d n u m e r i c a l l y . C a l c u l a t i o n shows t h a t t h e e x c e s s low-frequency n o i s e i n a Josephson m i x e r can be accounted f o r by t h e c o n t r i b u t i o n s of down-converted n o i s e from t h e Josephson f r e q u e n c y and harmonics of t h e pump f r e q u e n c y .

INTRODUCTION.- The s e n s i t i v i t y of a low-noise Josephson d e v i c e i s u l t i m a t e l y l i m i t e d by t h e i n - t r i n s i c low-frequency f l u c t u a t i o n s / I / . Noise much g r e a t e r than thermal h a s been observed i n mm- wave p o i n t - c o n t a c t m i x e r s 121. The e x c e s s n o i s e i s mainly c o n t r i b u t e d by components a t harmonics of

t h e pump and Josephson f r e q u e n c i e s which a r e down- converted by t h e j u n c t i o n . However, no g e n e r a l s o l u t i o n e x i s t s t o t h i s h i g h l y n o n l i n e a r problem, e x c e p t i n t h e c a s e of no e x t e r n a l pumping / 3 / . Assuming t h e r m a l n o i s e d r i v i n g t h e j u n c t i o n , an a n a l o g s i m u l a t o r has been used t o compute t h e low- frequency n o i s e i n a pumped Josephson j u n c t i o n / 4 / . Although t h e s i m u l a t o r r e s u l t a g r e e s r e a s o n a b l y w e l l w i t h e x p e r i m e n t a l d a t a , i t does n o t a c c o u n t a d e q u a t e l y f o r n o i s e c o n t r i b u t i o n s from v a r i o u s frequency-conversion p r o c e s s e s . I n t h i s p a p e r , we d e s c r i b e a n u m e r i c a l method u s i n g a d i g i t a l compu- t e r t o d e r i v e a l l t h e down-conversion c o e f f i c i e n t s from v a r i a t i o n s i n t h e s t a t i c I-V c u r v e . I n a d d i t i o n t o a q u a n t i t a t i v e u n d e r s t a n d i n g of t h e problem, t h e s e c o e f f i c i e n t s a l s o e n a b l e u s t o c a l c u l a t e t h e low-frequency n o i s e s p e c t r a l d e n s i t y when t h e junc- t i o n i s d r i v e n by non-thermal n o i s e i n t h e quantum l i m i t . m i c r o b r i d g e s /5,6/. The e q u a t i o n f o r a c u r r e n t - b i a s e d ( v a l i d f o r most low-impedance j u n c t i o n s ) j u n c t i o n w i t h a r e s i s t i v e s h u n t R i s d $ / d ~

+

s i n 4 = idc

+

i s i n Q T

.

P P (1)

Here i s t h e s u p e r c o n d u c t i n g phase d i f f e r e n c e , idc and i a r e t h e d c and pump c u r r e n t s normalized t o

P

t h e c r i t i c a l c u r r e n t I of t h e j u n c t i o n , T = 2eRI / h ) t i s t h e normalized t i m e , and 52 = (M/2eRIc)

P w i s t h e d i m e n s i o n l e s s pumpfrequency. For g i v e n P v a l u e s of 52 and i e q u a t i o n ( 1 ) can be s o l v e d P P' n u m e r i c a l l y on a d i g i t a l computer t o o b t a i n t h e s t a t i c I-V c u r v e , i . e . t h e normalized d c v o l t a g e vdc = l i m $ ( T ) / T a s a f u n c t i o n of idc. To evalua- T- t e t h e c o e f f i c i e n t of down-conversion from a s i g n a l f r e q u e n c y Q s , we add a s m a l l c u r r e n t 6 i s i n (Qs' + 8) t o e q u a t i o n ( I ) and look f o r f i r s t - o r d e r v a r i a t i o n s i n t h e I-V c u r v e . L i n e a r r e s p o n s e i s found i n two c a s e s : ( i ) Qs = nQ and ( i i ) Q s =

P n52

+

Q where n i s an i n t e g e r and 52 = vdc i s t h e P j ' j normalized Josephson f r e q u e n c y . I n t h e f i r s t c a s e , a s m a l l c u r r e n t a t nQ P m o d i f i e s t h e s h e of a l l t h e pump-induced Josephson

s t e p s , a s shown i n t h e example of F i g u r e ] ( a ) . For t h e c a s e of i n t e r e s t where 52 5 1 , t h i s r e s u l t s i n

P

a change i n t h e d c c u r r e n t by a s l i g h t amount 6 i o which i s n e a r l y independent of v o l t a g e between NUMERICAL CALCULATION.- I n t h e a n a l y s i s , we assume

s u c c e s s i v e s t e p s . Because of t h e e x a c t harmonic t h e R e s i s t i v e l y Shunted J u n c t i o n (RSJ) model, which

r e l a t i o n s h i p between Cis and 52 i n t h e c a l c u l a t i o n , h a s been shown t o d e s c r i b e s u c c e s s f u l l y t h e I - V P

t h e s i g n a l phase f o r maximum c u r r e n t r e s p o n s e i s c u r v e s of RF-biased p o i n t c o n t a c t s and s h o r t

€I = 0' f o r odd n and 8 = 90" f o r even n. Therefore,

3

Also w i t h Columbia ~ a d i a t i o n L a b o r a t o r y , Columbia the coefficients of current conversion, a i d c / a i n = U n i v e r s i t y , New York, N.Y. 10027. U.S.A.

1

6io/6is

1

max* can b e found f o r n = 1 , 2 , 3 , e t c .

(3)

NORMAL12 ED DC VOLTAGE

Fig.

1 :

Response of static I-V curves to a small

signal for (a) n

:

Rs/Rp

=

2

(8 =

go0), and (b)

ns/n

=

0.4.

P

In the second case when a small current at nR

f 61

P j

is applied, the pump-induced steps remain unchanged

while new Josephson steps appear symmetrically at

voltages vdc

=

kR

f

$2. (k is an integer), as shown

P

3

in Figure I(b).

The step size 26i depends linearly

j

on 6is, but is independent of the signal phase

8.

Therefore, one can also evaluate the current con-

version coefficients, ai

dc

fain +

.=16i. ./6isl

,

for

J

R

=

nR

f Q =

(n

t

r)R

at a bias voltage vdf-=Qj.

s

p

j

P

There is no first-order down-conversion from hlgher

order

( > I )

harmonics of the Josephson frequency 131.

Although there is no dc effect when we

consider the small signal to consist only of noise

components at the same frequencies, similar conver-

sion processes still occur. If we assume the junc-

tion to be driven by thermal noise due to the re-

sistance R, the low-frequency spectral density of

current fluctuations (normalized by 4kT/R) is

m

fi2

=

1

+

2

g

(aidc/ainI2

+

2

,o(aidc/ain+,P

at a bias voltage vdc

=

rQD. Here we include the

(2)

direct noise component and double sideband conver-

sions of high-frequency noise. A larger value of f i 2

is obtained for small R since there are significant

P

contributions from more harmonic frequencies. Of

particular interest is the degenerate case in which

r

=

k

+

112, i.e.

a bias midway between pump-indu-

ced steps, where the second summation consists of

only half as many terms and

$ 2

is a minimum. We have

calculated all the significant conversion coeffi-

cients for

i2 =

0.16 and 0.50, with r

=

112 and a

P

pump current which suppresses the zeroth step to

I 12 as summarized in Table I It follows from

Equation (2) that

B2 =

6.11 for R

=

0.16 and

B2 =

P

3.25 for R

=

0.50, in excellent agreement with the

P

low-frequency noise observed in the analog simula-

tion of a Josephson mixer 141. These conversion co-

efficients are insensitive to noise rounding, in

contrast to the equivalent noise temperature which

depends on the dynamic resistance and is strongly

influenced by the quadratic effect of noise/2/.

-- HARMONIC

MIXING

4laf

I

2

3

4

5

JOSEPHSON

ns/ap,

MIXING

34

5/2 7/2

94

Table I

:

Current conversion coefficients for i

-0.8

PT

(f$=O.16),

and ip=0.9($=0.5).

The bias voltage 1s

at v

d

c

'

f

+

,

/

2

in both cases.

CONCLUSION.- We have derived the down-conversion

coefficients from the linear response of the noise-

free dc I-V curves to a small high-frequency signal.

Such a quantitative picture of frequency conversion

in an externally pumped junction provides a satis-

factory explanation of the excess low-frequency noi-

se in a Josephson mixer. In addition, equation (2)

can be easily extended to non-thermal situations

knowing the frequency-dependent spectral density at

all the harmonics, such as in the quantum-noise li-

mit when Qs

>

kT/eRI 171. The conversion efficien-

cy of a harmonic Josephson mixer can also be evalua-

ted. This is potentially useful at small pump fre-

quencies,

52

<

1, where the mixing coefficient ai

1

P

dc

ai decreases slowly with the harmonic order.

n

References

/I/ Richards,P.L., Auracher,F. and VanDuzer,T.,

Proc. IEEE

61

(1973) 36

/2/ Taur,Y., Claassen,J.H. and Richards,P.L., Appl.

Phys. Lett.

26

(1974)

101

131 Likharev,K.K. and Semenov,V.K., JETP Lett.

15

(1972) 442

141

Claassen,J.H., Taur,Y. and Bichards,P.L., Appl.

Phys. Lett.

(1974) 759

/5/ Taur,Y. ,Richards,P.L., Auracher,F., Proc. 13th

1nt.Conf.Low

Temp.Phys.,Boulder,Colorado

(1972)

161 Gregers-Hansen,P.E and Levinsen,M.T., Phys. Rev.

Lett.

27

(1971) 847

Références

Documents relatifs

Due to the discrete nature of the charge carriers, the current presents some fluctuations (noise) known as shot noise , which we aim to characterize here (not to be confused with

Picard, Non linear filtering of one-dimensional diffusions in the case of a high signal to noise ratio, Siam J. Picard, Filtrage de diffusions vectorielles faiblement

While such solid-state lasers are known to exhibit very narrow spectral widths, they suffer from resonant inten- sity noise at low frequencies, i.e., from a few kHz to a few MHz [1].

This noise floor (i.e the observed junction noise as long as the junction is rid of any excess noise) is a diffusion noise classically given by the Gupta’s theorem and, for

Our method analyses an histogram based on the noise density function at the local level in order to reveal suspicious areas, by using a new tool exploiting the uniform prop- erty of

Here we consider a Josephson junction consisting of two non-centrosymmetric su- perconductors (NCSs) connected by a uniaxial ferromagnet, and demonstrate that it exhibits a

Ce travail porte sur l’étude d’un système hybride d’énergie (photovoltaïque-éolien), non connecté au réseau électrique, utilisé pour l’alimentation d’un

Amplitude of the demodulation spectral peak (normalized to noise) in function of transducer driving voltage U (normalized to reference level U 0 ) studied for three glass plates