• Aucun résultat trouvé

Power MOSFET

N/A
N/A
Protected

Academic year: 2022

Partager " Power MOSFET"

Copied!
8
0
0

Texte intégral

(1)

IRF540N

HEXFET

®

Power MOSFET

S D

G

V

DSS

= 100V R

DS(on)

= 0.052Ω

I

D

= 33A

TO-220AB

5/13/98

Parameter Max. Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 33

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 23 A

IDM Pulsed Drain Current  110

PD @TC = 25°C Power Dissipation 140 W

Linear Derating Factor 0.91 W/°C

VGS Gate-to-Source Voltage ± 20 V

EAS Single Pulse Avalanche Energy‚ 300 mJ

IAR Avalanche Current 16 A

EAR Repetitive Avalanche Energy 14 mJ

dv/dt Peak Diode Recovery dv/dt ƒ 5.0 V/ns

TJ Operating Junction and -55 to + 175

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds 300 (1.6mm from case )

°C Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)

Absolute Maximum Ratings

Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 1.1

RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W

RθJA Junction-to-Ambient ––– 62

Thermal Resistance Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

l

Advanced Process Technology

l

Dynamic dv/dt Rating

l

175°C Operating

l

Fast Switching

l

Fully Avalanche Rated

(2)

IRF540N

 Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )

‚ Starting TJ = 25°C, L = 2.0mH RG = 25Ω, IAS = 16A. (See Figure 12) .

Notes:

ƒISD ≤ 16A, di/dt ≤ 210A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C

„ Pulse width ≤ 300µs; duty cycle ≤ 2%

S D

G

Parameter Min. Typ. Max. Units Conditions

IS Continuous Source Current MOSFET symbol

(Body Diode) ––– –––

showing the

ISM Pulsed Source Current integral reverse

(Body Diode) † ––– –––

p-n junction diode.

VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 16A, VGS = 0V „ trr Reverse Recovery Time ––– 170 250 ns TJ = 25°C, IF = 16A

Qrr Reverse RecoveryCharge ––– 1.1 1.6 µC di/dt = 100A/µs„

ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

Source-Drain Ratings and Characteristics

A 33 110

Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA

∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.11 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.052 Ω VGS = 10V, ID = 16A „ VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs Forward Transconductance 11 ––– ––– S VDS = 50V, ID = 16A

––– ––– 25

µA VDS = 100V, VGS = 0V

––– ––– 250 VDS = 80V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V

Gate-to-Source Reverse Leakage ––– ––– -100 nA

VGS = -20V

Qg Total Gate Charge ––– ––– 94 ID = 16A

Qgs Gate-to-Source Charge ––– ––– 15 nC VDS = 80V

Qgd Gate-to-Drain ("Miller") Charge ––– ––– 43 VGS = 10V, See Fig. 6 and 13 „

td(on) Turn-On Delay Time ––– 8.2 ––– VDD = 50V

tr Rise Time ––– 39 ––– ID = 16A

td(off) Turn-Off Delay Time ––– 44 ––– RG = 5.1Ω

tf Fall Time ––– 33 ––– RD = 3.0Ω, See Fig. 10 „

Between lead,

––– –––

6mm (0.25in.) from package

and center of die contact

Ciss Input Capacitance ––– 1400 ––– VGS = 0V

Coss Output Capacitance ––– 330 ––– pF VDS = 25V

Crss Reverse Transfer Capacitance ––– 170 ––– ƒ = 1.0MHz, See Fig. 5 nH

Electrical Characteristics @ T

J

= 25°C (unless otherwise specified)

LD Internal Drain Inductance

LS Internal Source Inductance ––– –––

S D

G

IGSS

ns

4.5 7.5 IDSS Drain-to-Source Leakage Current

(3)

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature

Fig 2. Typical Output Characteristics

1 1 0 1 0 0 1 0 0 0

0.1 1 1 0 1 0 0

I , Drain-to-Source Current (A) D

V , D rain-to-S ourc e V olta ge (V )D S

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V

20 µ s P U LS E W ID TH T = 2 5°CC

A 4 .5V

1 1 0 1 0 0 1 0 0 0

0.1 1 1 0 1 0 0

4.5 V

I , Drain-to-Source Current (A) D

V , D rain-to-S ource V oltage (V )DS

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V

2 0µ s P U L S E W ID T H T = 17 5°CC

A

1 1 0 1 0 0 1 0 0 0

4 5 6 7 8 9 1 0

T = 2 5 °CJ

V , G ate-to -S o urce V oltag e (V )G S

DI , Drain-to-Source Current (A)

V = 5 0V

2 0µ s P U L S E W ID TH DS T = 1 75 °CJ

A 0 . 0

0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

T , Junction T em perature (°C )J R , Drain-to-Source On ResistanceDS(on) (Normalized)

V = 10 V G S A I = 2 7AD

(4)

IRF540N

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 5. Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 8. Maximum Safe Operating Area Fig 6. Typical Gate Charge Vs.

Gate-to-Source Voltage

0 4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 0 2 4 0 0

1 1 0 1 0 0

C, Capacitance (pF)

V , D rain-to-S ourc e V oltage (V )D S A V = 0V , f = 1 M H z

C = C + C , C S H O R TE D C = C

C = C + C G S

iss g s g d d s rs s g d

o ss ds g d

C is s

C os s

C rs s

0 4 8 1 2 1 6 2 0

0 2 0 4 0 6 0 8 0 1 0 0

Q , T ota l G ate C h a rg e (n C )G V , Gate-to-Source Voltage (V)GS

V = 80 V V = 50 V V = 20 V

D S D S D S

A F O R TE S T C IR C U IT S E E F IG U R E 1 3 I = 16 AD

1 0 1 0 0 1 0 0 0

0 . 4 0 . 8 1 . 2 1 . 6 2 . 0

T = 2 5°CJ

V = 0V G S

V , S o urc e-to -D ra in V o lta ge (V )

I , Reverse Drain Current (A)

S D

SD

A T = 1 75 °CJ

1 1 0 1 0 0 1 0 0 0

1 1 0 1 0 0 1 0 0 0

V , D rain-to-S ource V oltage (V )D S

I , Drain Current (A)

O P E R A T IO N IN T H IS A R E A L IM ITE D B Y R

D

D S (o n)

1 0 µ s

1 0 0 µ s

1 m s

1 0 m s

A T = 2 5°C

T = 1 75 °C S in gle P uls e

C J

(5)

Fig 9. Maximum Drain Current Vs.

Case Temperature

Fig 10a. Switching Time Test Circuit

VDS 90%

10%

VGS

td(on) tr td(off) tf VDS

Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %

Fig 10b. Switching Time Waveforms

RD

VGS

RG

D.U.T.

10V

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

+

-VDD

25 50 75 100 125 150 175

0 5 10 15 20 25 30 35

T , Case Temperature ( C)

I , Drain Current (A)

C °

D

0.01 0.1 1 10

0.00001 0.0001 0.001 0.01 0.1 1

Notes:

1. Duty factor D = t / t

2. Peak T = P x Z + T

1 2

J DM thJC C

P t

t DM

1 2

t , Rectangular Pulse Duration (sec)

Thermal Response(Z )

1

thJC

0.01 0.02 0.05 0.10 0.20 D = 0.50

SINGLE PULSE (THERMAL RESPONSE)

(6)

IRF540N

Fig 12a. Unclamped Inductive Test Circuit

VDS L

D.U.T.

VDD

IAS

tp 0.01Ω

RG +

-

tp

VDS

IAS

VDD V(BR)DSS

10 V

Fig 12b. Unclamped Inductive Waveforms

D.U.T. VDS

ID IG

3mA VGS

.3µF 50KΩ 12V .2µF

Current Regulator Same Type as D.U.T.

Current Sampling Resistors

+ -

Fig 13b. Gate Charge Test Circuit

QG

QGS QGD

VG

Charge

10 V

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5

J E , Single Pulse Avalanche Energy (mJ) AS

A S tarting T , J unc tion T em perature (°C ) V = 25 V

I TO P 6 .6A 1 1A B O T T O M 16 A

D D

D

(7)

P.W. Period

di/dt Diode Recovery

dv/dt

Ripple ≤5%

Body Diode Forward Drop Re-Applied

Voltage Reverse Recovery Current

Body Diode Forward Current

VGS=10V

VDD

ISD Driver Gate Drive

D.U.T. ISDWaveform

D.U.T. VDSWaveform

Inductor Curent

D = P.W.

Period

+ - +

+

- + -

-

Fig 14. For N-Channel HEXFETS

*

VGS = 5V for Logic Level Devices

Peak Diode Recovery dv/dt Test Circuit

ƒ

‚ „

RG

VDD

• dv/dt controlled by RG

• Driver same type as D.U.T.

• ISD controlled by Duty Factor "D"

• D.U.T. - Device Under Test D.U.T Circuit Layout Considerations

• Low Stray Inductance • Ground Plane

• Low Leakage Inductance Current Transformer



*

(8)

IRF540N

L E A D A S S IG NM E NT S 1 - G A T E 2 - D R A IN 3 - S O U RC E 4 - D R A IN - B -

1.32 (.05 2) 1.22 (.04 8)

3X0.55 (.02 2) 0.46 (.01 8) 2.92 (.11 5) 2.64 (.10 4) 4 .6 9 (.1 85 )

4 .2 0 (.1 65 )

3X 0 .9 3 (.0 37 ) 0 .6 9 (.0 27 ) 4 .0 6 (.160 ) 3 .5 5 (.140 ) 1 .1 5 (.0 4 5) M IN 6 .4 7 (.2 55 ) 6 .1 0 (.2 40 )

3.7 8 ( .14 9 ) 3.5 4 ( .13 9 ) - A - 10 .5 4 (.415 )

10 .2 9 (.405 ) 2.87 (.11 3)

2.62 (.10 3)

1 5.24 (.60 0) 1 4.84 (.58 4)

1 4.09 (.55 5) 1 3.47 (.53 0)

3 X1 .4 0 (.0 55 ) 1 .1 5 (.0 45 ) 2.54 (.10 0)

2 X

0.36 (.0 14 ) M B A M 4

1 2 3

N O TE S :

1 D IM E N S IO N IN G & TO L E R A N C IN G P E R A N S I Y 14 .5 M , 1 982 . 3 O U TL IN E C O N F O R MS TO J E D E C O U T L IN E TO -2 20 A B . 2 C O N TR O L LIN G D IM E N S IO N : INC H 4 H E A T S IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .

P A R T N U M B E R IN T E R N A T IO N A L

R E C T IF IE R L O G O E X A M P L E : T H IS IS A N IR F 1 0 1 0

W IT H A S S E M B L Y L O T C O D E 9 B 1 M

A S S E M B L Y L O T C O D E

D A T E C O D E (Y Y W W ) Y Y = Y E A R W W = W E E K 9 2 4 6

IR F 10 1 0 9B 1 M

A

Part Marking Information

TO-220AB

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

P A R T N U M B E R IN T E R N A T IO N A L

R E C T IF IE R L O G O E X A M P L E : T H IS IS A N IR F 1 0 1 0

W IT H A S S E M B L Y L O T C O D E 9 B 1 M

A S S E M B L Y L O T C O D E

D A T E C O D E (Y Y W W ) Y Y = Y E A R W W = W E E K 9 2 4 6

IR F 10 1 0 9B 1 M

A

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 5/98

Références

Documents relatifs

[r]

Here, we study the throughput maximization version of the problem where we are given a budget of energy E and our goal is to determine a feasible schedule maximizing the number of

This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient

This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient

This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient

A better transistor switch will intensify rather than improve the shortcomings of the fast recovery rectifier, so it is nec- essary to consider more fully the conduction and

This power dis- sipation is relatively independent of gate drive as long as the gate-source voltage exceeds the threshold voltage by several volts and an elaborate drive circuit

La production distribuée se situe sur ce plan dans deux grandes catégories bien distinctes : les producteurs d'électricité d'origine renouvelable ou en cogénération, d'un coté,